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Using Gradients and Tensor Voting in 3D Local
Geometric Descriptors for Feature Detection in

Airborne LiDAR Point Clouds in Urban Regions
Jaya Sreevalsan-Nair and Akshay Jindal

Abstract

Structural or geometric classification of three-dimensional (3D) point clouds of urban regions from airborne LiDAR enables
feature (object-based) classification, and 3D reconstruction. Here, we consider positive semidefinite symmetric second-order tensors
as local geometric descriptors (LGDs), which gives structural classification. We compute LGDs using local neighborhood, and their
eigenvalue-based features are conventionally used for object-based classification and 3D reconstruction. We combine derivative
based 2D gradient energy tensor, and anisotropically diffused 3D voting tensor, using a multi-scale approach, to compute a LGD.
We represent LGDs as second-order tensors, and compare the relevant eigenvalue-based features and saliency maps obtained from
them. We visually compare the outcomes of our LGD with conventionally used covariance matrix.
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I. INTRODUCTION

Conventionally used methods such as covariance analysis of point clouds capture its geometry efficiently and approximately.
Hence, they have been used widely in object-based classification and 3D reconstruction of airborne LiDAR (Light Detection
and Ranging) datasets. However, we have found that covariance analysis does not detect certain features in urban regions, such
as sharp features in gabled roofs, and unoriented regions in foliage, which are required for reconstruction. We hypothesize that
detecting sharp features and unoriented regions as strong line-type and (critical) point-type features, respectively, can reduce
the eigen-entropy of the structural classification. Clear separability of geometric classes can improve the 3D reconstruction
and alleviate problems of building-tree (class) disambiguations [7]. Local geometric descriptors (LGDs) define the local
neighborhood of each point, and the eigen-analysis of LGDs is used for geometric and object-based classifications of LiDAR
point clouds and 3D reconstruction [7], [3], [8]. Our goal is to improve point classification using new LGDs.

II. RELATED WORK

Structural classification indicates membership of each point to geometric classes, based on the shape of its local neighborhood.
The classes correspond to the point belonging to line-, surface- or point- type features, based on its local neighborhood. The
classification is determined by the relativeness of the eigenvalues of the LGD (λ0 ≥ λ1 ≥ λ2) [7], [3], [8]. For a point x in
point cloud P and given radius r, we take the spherical neighborhood as N(x) = {x, y ∈ P : ‖y − x‖ < r}. λ0 � λ1 ≈ λ2
imply curve-shaped, λ0 ≈ λ1 � λ2 disc-shaped, and λ0 ≈ λ1 ≈ λ2 spherical neighborhoods. These definitions correspond
to the point belonging to a line-, surface, and point-type (critical point) feature, respectively. While 3D tensor formulation of
LGDs gives probabilistic classification [3], [8] and is a conventionally used method for classification, the 2D tensor formulation
enables detection of line- and point-type features. However, in the latter, there are several points which have zero eigenvalues,
due to which they need not be classified as a feature point.

Eigenvalue-based features from the LGDs, such as aniso-tropy A, have been used for structural and object-based classification
in airborne LiDAR point clouds [7]. In addition to these feature values we consider saliency values [8]. Saliency values for
each structural class give us the likelihood of a point belonging to that class. Saliency values for line-, surface-, and point-type
features are given as cl, cs, and cp, respectively. Here, we use anisotropy and saliency values (defined in Table I) to evaluate
the point classification, specifically in the line-type features.

A. 3D Tensor Formulation

Conventionally, covariance matrix is used as LGD for 3D point clouds in LiDAR community [7]. The covariance matrix is
given by T3DCM =

∑
y∈N(x)(y−x̄)(y−x̄)T , where x̄ is the centroid of the local neighborhood N(x). However, anisotropically
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TABLE I
DEFINITIONS OF EIGENVALUE-BASED FEATURE VALUES (ANISOTROPY A, AND SALIENCY VALUES {cl, cs, cp} FOR LINE-, SURFACE- AND POINT-TYPE

FEATURES) FOR 3D AND 2D SECOND-ORDER POSITIVE SEMIDEFINITE SYMMETRIC TENSORS, WHEN USED AS LGDS.

Tensor→ 3D 2D
Eigenvalues λ0 ≥ λ1 ≥ λ2 λ0 ≥ λ1

Sum S (λ0 + λ1 + λ2) (λ0 + λ1)

A (λ1 − λ2)/λ0 (λ0 − λ1)/λ0
cl (λ0 − λ1)/S (λ0 − λ1)/S
cs 2 ∗ (λ1 − λ2)/S 0
cp 3 ∗ λ2/S 2 ∗ λ1/S

diffused 3D voting tensor [8] has been shown to classify points belonging to line-type features more accurately1. The voting

tensor is computed as an unoriented ball tensor at point x, V (x) =
∑

y∈N(x)

µy.

(
Id − t(y)t(y)T

t(y)T t(y)

)
, where for y ∈ N(x),

t(y) = (y − x) and µy = exp
(
− ‖t(y)‖

2
2

σ2

)
and Id is identity matrix of size of the dimensionality, i.e., 3. We use the

anisotropically diffused voting tensor, T3DV T , computed from eigenvalues λi, corresponding eigenvector ei of V (x), for
i = 0, 1, 2, and diffusion parameter δ = 0.16 [9], as follows:

T3DV T =
2∑
i=0

exp(−λi/δ) ∗ eieTi .

B. 2D Tensor Formulation

Structure tensor, in image processing and computer vision, uses the gradient of function value at a point to detect line-type
features, such as edges and ridges [4]. The performance of the structure tensor, given as TS = ∇f.∇fT , for function f , has been
improved by using higher order derivatives, in the gradient energy tensor (GET) [2]. GET uses the two-dimensional gradient of a
function f , given by∇f = ( df

dx ,
df
dy ) = (fx, fy), the gradient of the Laplacian of f , given by T f = ∇(∇T∇f), and the Hessian

of the function, given by Hf = ∇∇T f . The GET is defined as TGET (f) = (Hf)(Hf)T − 0.5
(
(∇f)(T f)T + (T f)(∇f)T

)
.

The GET is an improvement of the energy tensor [1] and the structure tensor. It is used for improving detection of points of
interest (POI) in an image. We consider the point-type features in 3D point clouds to be analogous to POI in 2D images. Hence,
we propose the use of the GET in improving the LGDs of point clouds. Structure tensor is a second-order positive semidefinite
symmetric tensor. The GET is a second-order symmetric tensor, but not positive semidefinite at all points. However, it has
been found that the GET is positive semidefinite at the POIs (such as corner points), and hence the negative eigenvalues of the
tensor can be truncated to zero [5]. Thus, we effectively reduce the GET to be a positive semidefinite second-order symmetric
tensor. Here, we propose a method of aggregating the LGD and GET to improve structural classification.

C. Multi-scale Approach

In our previous work [8], we have found that multi-scale approach performs better than single-scale ones, which could
be either adaptive or optimal. Hence, we compute eigenvalue-based features using tensors computed at multiple scales. The
average of the saliency values computed across multiple scales give the multi-scale values, since probabilities of exclusive
events of multiple scales can be added [8].

However, for computing anisotropy, we require a multi-scale aggregated tensor. Hence, we compute a multi-scale aggregated
tensor, TMS , as a weighted sum of tensor products of unit vectors of eigenvectors, where the weights are normalized eigenvalues.
For dimensionality of the tensor, d, Nr scales, given that the eigenvalues and corresponding eigenvectors of the LGD at scale,

r, are λi and ei for 0 ≤ i ≤ d− 1, we get: TMS =
Nr∑
r=1

1
d−1∑
i=0

λi(r)

·
d−1∑
i=0

λi(r) ˆei(r) ˆei(r)
T

III. OUR APPROACH

Our objective is to enhance line-type and point-type feature detection, so as to improve object-based classification or 3D
reconstruction downstream. Our goal is to improve outcomes of the eigenvalue-based feature, namely anisotropy, as well as
saliency maps, namely {cl, cs, cp} in the LGDs. In our proposed four-step method for improving probabilistic point classification
in airborne 3D LiDAR, we compute all the LGDs as aggregate multi-scale tensor.

Use of 2D Tensors: The conventionally used LGD is three-dimensional, which uses covariance information (in T3DCM ) or
perceptual organization based on differences (in T3DV T ) [8]. However, the use of higher order derivatives of the height map
in the LGDs can improve the structural classification outcomes, as has been done in image data [1], [2], [5]. We consider the

1We disambiguate between “tensor voting” and “voting tensor,” where the former is the approach used in computer vision for perceptual grouping based
on Gestalt’s principles and the latter is the positive semidefinite symmetric second-order tensor computed during tensor voting.
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Fig. 1. In Area-2 of Vaihingen dataset (266,675 points), T3D improves line- and point-type feature detection, thus, distinguishing gabled roofs and foliage,
respectively. T3DV T detects (77,679, 173,991, 15,005) points as (line, surface, point)-type features; T3DV T−GET detects (73,332, 68,175, 25,168), and
T3D detects (64,849, 158,937, 43,889), respectively.

airborne LiDAR point cloud to be a digital elevation model (DEM), in which case the altitude z = f(x, y), is a function of
latitude (y) and longitude (x) values of each point. Using this representation, we compute the 2D structure tensor, similar to
that of an image, using spatial derivatives. However, different from a structured data structure in an image, the (x, y) domain
is unstructured in the case of airborne LiDAR point clouds. Hence, we use the derivative computation used for unstructured
grid [6] for finding gradient of z, given by ∇z. Structure tensor is computed as ∇z∇zT . We use a variant of the structure
tensor, which is the gradient energy tensor [2], [5] of z, given by T2D = TGET (z). We use T2D to improve the eigenvalue-based
features given by T3DV T . In Table I, we tabulate the definitions of the eigenvalue-based features for LGDs as 2D tensors.

Probabilistic Point Classification: We use the point classification using eigenvalues [3], [8]. When using 3D tensors, such
as T3DCM , V (x), or T3DV T , the points with high cl, cs, cp values have high likelihood of belonging to line-, surface-, and
point-type features, respectively. By using anisotropically diffused voting tensor T3DV T [8], we enhance the line-type features,
in comparison to the conventionally used covariance tensor (Figure 1)2. For 2D tensors, we detect line- and point-type features
using the cl and cs values of T2D, as given in Table I. However, we observe that the points identified with high cl values of
T2D (Figure 1) are the POIs [1], and hence belong to point-type features. Hence, we use these points to correct the point-type
features in T3DV T . We thus substitute {cl, cs, cp} of T3DV T of such points with {0, cp, cl} of the T2D, and modify the saliency
results of these points to correspond to the same as T2D(Figure 1). We refer to the resultant LGD as T3DV T−GET . Thus, we
improve on the detection of point-type features by using T3DV T−GET , specifically targeting the POIs (Figure 1).

Post-processing: We convert the probabilistic point classification to a deterministic one by using the maximum value of the
saliency map, so that the structural classification can be used for object-based classification or 3D reconstruction. Thus, points
with maximum of the saliency values {cl, cs, cp} being cl becomes a line-type; with that of cs, a surface-type; and with that of
cp, a point-type feature. We perform a post-processing to uniformly describe foliage as (critical) point features. Hence, for each
point, if there is a majority of point-type features in its local neighborhood, we correct all points in the local neighborhood to
point-type feature. Our post-processing step is akin to a voting method. However, we have not studied the influence of different
traversals through the point cloud in converting the point-type features, such as, initiations using seeds, using ranking order,
etc. We use the resultant 3D tensors as LGDs, referring to them as T3D.

A. Our Proposed Four-Step Method

Our proposed method entails the following steps in sequence: 1. Multi-scale aggregate of the anisotropically diffused 3D
voting tensor, T3DV T , is computed at each point.
2. Multiscale aggregate of the gradient energy tensor T2D, is computed at each point.
3. We use the cl value of T2D to identify points of interest, and correct the T3DV T using its corresponding T2D value. Thus,
we get T3DV T−GET at each point.
4. At each point, we check if its local neighborhood has a majority of point-type features. If yes, then we change all points
in the local neighborhood to be point-type features. Thus, we get T3D at each point.

IV. EXPERIMENTS & RESULTS

We have conducted our experiments on Area-2 and Area-1 of the benchmark Vaihingen dataset3. Visualizations of the
eigenvalue-based features, A and saliency values of the LGDs, using 5 different scales, are shown in Figure 2.

Area-1 belongs to the “inner-city” of Vaihingen, characterized by buildings with complex shapes and sparse vegetation. Area-2
is the “high-riser”, with several buildings surrounded by trees. Our proposed LGD detects line-type features, specifically gabled

2Red boxes highlight conventionally used T3DCM and blue boxes highlight our proposed T3D .
3http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html

http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html
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Fig. 2. Experimental results: [A] Comparison of T3DCM and T3D show that foliage is better visible in the case of latter, for Area-2 of Vaihingen dataset.
[B] Comparison of T3DCM and T3D show that gabled roofs are better visible in the case of latter, for Area-1 of Vaihingen dataset (179,997 points). [C]
Classification matrix shows which local geometric descriptor (T3DCM or T3D) has identified the points in point cloud as (left) line-type and (right) point-type
features. Points identified exclusively by T3D (yellow) show building outlines (left) and foliage (right).

roofs, in Area-1 and point-type features, specifically foliage, in Area-2 more accurately and emphatically than conventionally
used T3DCM (Figure 2). These results are attributed to the use of higher order derivatives in GET. The classification matrix
for a specific class determines between two LGDs, the subset of points which were classified as belonging to that class by
both the LGDs, or one of the two exclusively, or not by both. The matrix results (Figure 2 (C)) show that T3D detects more
line-type features exclusively than what T3DCM does exclusively. For the point-type features, while T3DCM finds more points
in the class exclusively, T3D finds clusters of point-type features to indicate foliage. The latter is as per design.

V. CONCLUSIONS

We have shown how combining the use of tensor voting and gradient energy tensor enables in better structural classification
of airborne 3D point clouds. We have shown that the use of our proposed descriptor also improves the eigenvalue-based
features, such as anisotropy, which is expected to improve 3D reconstruction and object-based classification.
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