
Neurocomputing 366 (2019) 74–85

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

IEEE 754 floating-point addition for neuromorphic architecture

Arun M. George

a , Rahul Sharma

b , ∗, Shrisha Rao

c

a TCS Research and Innovation, Bangalore, India
b Continental Automotive Components India Pvt Ltd, Bangalore, India
c International Institute of Information Technology-Bangalore, Bangalore, India

a r t i c l e i n f o

Article history:

Received 6 July 2018

Revised 27 January 2019

Accepted 16 May 2019

Available online 22 July 2019

Communicated by Dr Chenchen Liu

Keywords:

Neuromorphic computing

Neuromorphic architecture

Floating-point arithmetic

IEEE 754

Nengo

Neural engineering framework

a b s t r a c t

Neuromorphic computing is looked at as one of the promising alternatives to the traditional von Neu-

mann architecture. In this paper, we consider the problem of doing arithmetic on neuromorphic systems

and propose an architecture for doing IEEE 754 compliant addition on a neuromorphic system. A novel

encoding scheme is also proposed for reducing the inter-neural ensemble error. The complex task of float-

ing point addition is divided into sub-tasks such as exponent alignment, mantissa addition and overflow-

underflow handling. We use a cascaded approach to add the two mantissas of the given floating-point

numbers and then apply our encoding scheme to reduce the error produced in this approach. Overflow

and underflow are handled by approximating on XOR logic. Implementation of sub-components like right

shifter and multiplexer are also specified.

© 2019 Elsevier B.V. All rights reserved.

N

w

w

l

n

h

t

o

i

L

o

c

p

t

p

s

w

I

a

v

s
1. Introduction

Neuromorphic computing has emerged in recent years as a

plausible future alternative to the pervasive and long-standing von

Neumann architecture. The term “neuromorphic computing” was

coined by Mead [1] , who referred to Very Large Scale Integration

(VLSI) systems with analog components that mimicked biologi-

cal neural systems. These neuromorphic architectures are known

for their high parallelism and low power needs. Neuromorphic ar-

chitectures have also received increased attention because of the

approaching end of Moore’s law [2] and the bandwidth restric-

tions between CPU and memory known as “the von Neumann bot-

tleneck” [3] . With energy efficiency being crucial for future high

performance and embedded computing platforms, neuromorphic

computing offers a solution to today’s rising demands in comput-

ing [4] .

Neuromorphic computing is not yet a practical technology in

a mainstream sense (see the tutorial by Volanis et al. [5] and the

survey by James et al. [6]), but there are effort s to make it work

using classical VLSI technologies [7,8] . One issue that is currently

being addressed is energy efficiency [4,9,10] . Newer technolo-

gies, particularly memristors [11,12] are also being considered

as possible routes for implementing neuromorphic architectures.
∗ Corresponding author.

E-mail addresses: arun.george@iiitb.org (A.M. George), rahul.sharma112@iiitb.org

(R. Sharma), shrao@ieee.org (S. Rao).

s

n

e

s

https://doi.org/10.1016/j.neucom.2019.05.093

0925-2312/© 2019 Elsevier B.V. All rights reserved.
euromorphic computing is also studied by neuroscientists who

ish to model or understand the brain [13–15] , and by those who

ish to mimic the functionality of sense organs [16] . Machine

earning also provides another important reason for interest in

euromorphic computing [8,17,18] .

Recent years have seen several breakthroughs in neuromorphic

ardware which address some important concerns with the uses of

he same (such as the lack of accuracy), and also expand the range

f applications possible with neuromorphic computing. Interest-

ng new hardware avenues include the neuromorphic processors

oihi [19] and Braindrop [20] ; the use of non-volatile memory [21] ,

n-chip communication [22] and reconfigurability through hierar-

hical addressing [23] ; and the DYNAPs architecture [24] . New pro-

osed uses of neuromorphic computing include network applica-

ions [25] and matrix-vector multiplication [26] .

Floating-point arithmetic is crucial for most scientific com-

uting. Any new computing architecture, therefore, would need a

ystem that can perform floating-point arithmetic. In this paper,

e propose a system which can perform the addition of two

EEE 754-compliant floating-point numbers on a neuromorphic

rchitecture. We have designed a system which follows the con-

entional addition process [27] but works on groups of neurons in-

tead of logic gates. There have been previous attempts to develop

ystems of computation on neuromorphic architectures [6,28] but

ot much has been done in the area of numerical computations,

specially in the area of floating-point arithmetic. The novelty and

ignificance of our work is to explore this area to understand how

https://doi.org/10.1016/j.neucom.2019.05.093
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.05.093&domain=pdf
mailto:arun.george@iiitb.org
mailto:rahul.sharma112@iiitb.org
mailto:shrao@ieee.org
https://doi.org/10.1016/j.neucom.2019.05.093

A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85 75

fl

b

e

t

i

c

n

c

a

fl

p

t

a

a

w

a

t

s

s

w

g

t

p

e

b

S

r

a

t

t

t

i

m

2

T

r

t

fl

w

p

c

p

u

T

a

p

m

a

t

c

t

f

r

M

t

o

(

a

m

l

r

c

t

i

T

a

a

a

c

r

r

t

h

i

t

t

v

s

t

h

p

l

w

t

a

s

b

t

p

e

s

i

d

i

e

c

t

d

e

n

T

2

p

n

a

2

o

b

n

T

b

u

W

t

7

i

d

t
oating-point arithmetic on a neuromorphic architecture can

e applied to problems of computation. Our work also gives an

stimate of the total number of neurons that would be required

o implement such an architecture in reality. The estimate also

ndicates the number of neurons required to implement each

omponent (see Table 2).

Our system is modular by design and therefore its compo-

ents (like the two’s complement converter or the mantissa adder)

an be used in other applications too. This system is also scal-

ble in the sense that it can work with different formats of

oating-point numbers, for instance, single-precision and double-

recision formats. It can also be easily extended to form solu-

ions to other floating-point operations like subtraction, with rel-

tively small changes required, given the modular nature of the

rchitecture.

The system design is based on the Neural Engineering Frame-

ork (NEF) [29] which provides the basic principles to develop

 neuromorphic system. For the implementation, simulation and

esting of our design we used Nengo [30,31] , a graphical and

cripting based software package for simulating large-scale neural

ystems. To use Nengo, we defined groups of neurons in terms of

hat they represent, and then formed connections between neural

roups in terms of what computation [32] should be performed on

hose representations.

One of the results of our work was to come up with an ap-

ropriate value of radius (see Sections 3.1.1 and 4.1), so that the

rror in representation of the values in a group of neurons could

e minimized. We also came up with an encoding scheme (see

ection 3.1.2) which reduced the inter-ensemble error, i.e., the er-

or generated when an output value of one ensemble is given as

n input value to another. We also devised a way to use a conven-

ional multiplexer circuit to map one of the two input values to

he output (see Section 3.4). We further modified the typical mul-

iplexer to develop a modified one which could map two different

nputs to two different outputs (see Section 3.5). The stage-wise

antissa adder (see Section 3.7) of our design takes as input two

3-bit mantissas and produces their 23-bit sum along with a carry.

he stage-wise computation approach utilizes a lower number of

esources as compared to a sequential one. This is turn reduced

he total number of neurons substantially.

Our system also indicates if there is an overflow or an under-

ow during the addition process (see Section 3.8) though a flag,

hich can then be used to handle it appropriately. The most im-

ortant and also complex part of the floating-point addition pro-

ess is the matching of the exponents of the two different in-

uts. This in turn requires shifting of the mantissa bits. We came

p with an approach to accomplish this which is supported by

heorems 3.1 and 3.2 (see Section 3.6). These two theorems are

 salient contribution of our work as they address the crux of the

roblem, i.e., the procedure of shifting mantissa bits in a neuro-

orphic architecture when the exponents of the two given inputs

re different.

We also did a performance analysis of our implementation over

hree different groups of inputs (see Section 4.2). The first group

ontained random pairs of inputs with large differences, whereas

he second group contained random pair of inputs with small dif-

erences. The third group contained random pair of inputs with

andom differences. We used two performance analysis metrics:

ean Absolute Error (MAE) and Mean Encoded Error (MEE) to es-

imate the performance of our system. We also observed the effect

f varying the number of neurons on the accuracy and bit error

see Sections 4.3 and 4.4 . We found that the overall bit error for

dding two floating-point numbers was around 0.002%. We earlier

entioned that we came up with an appropriate value of radius to

ower the error. We also observed the effects of different values of

adius on the accuracy (see Section 4.1).
Our work addresses the issue of performing floating-point cal-

ulations on a neuromorphic architecture. We have proposed a sys-

em for adding two IEEE 754-compliant floating-point numbers us-

ng the conventional adder circuits made up of spiking neurons.

his system can also be extended for subtraction, multiplication

nd division, thereby making possible a completely neuromorphic

rithmetic unit.

The rest of the paper is structured as follows. We first give

 brief description of the IEEE 754 floating-point addition pro-

ess in Section 2.1 . Then we move on to briefly describe the Neu-

al Engineering Framework (NEF) and its three basic principles:

epresentation, transformation and dynamics, in Section 2.2 . Af-

er this we explain the overall architecture in Section 3 with the

elp of Fig. 3 . In Section 3.1 we talk about the value of radius

n Section 3.1.1 and the encoding scheme in Section 3.1.2 . These

wo concepts are have important roles in our implementation. Af-

er this we explain the most important component of our system,

iz., the exponent aligner, in Section 3.2 . This component is re-

ponsible for matching the two exponents of the inputs by shifting

he bits of one of their mantissas. Next in Section 3.3 we explain

ow two’s complement is computed. In Sections 3.4 and 3.5 we ex-

lain the workings of the two multiplexers that we mentioned ear-

ier. In Section 3.6 we explain the workings of the mantissa shifter

hich solves the most complex part of our problem, viz., shifting

he bits of a mantissa such that the exponents of both the inputs

re matched. We also state and prove Theorems 3.1 and 3.2 in this

ection. Next we explain how the stage-wise addition is performed

y the mantissa adder in Section 3.7 . Then we describe the last of

he remaining components which computes the sign bit of the out-

ut and overflow/underflow flag in Section 3.8 . In Section 3.9 we

xplain how our system can be extended to perform floating-point

ubtraction. We present the observations and results of our work

n Section 4 . Here we explain the effect of different values of ra-

ius on accuracy in Section 4.1 ; the performance analysis metrics

n Section 4.2 deals with the two metrics that we have used to

valuate our system: the Mean Absolute Error (MAE) and Mean En-

oded Error (MEE). In Section 4.3 we describe the relationship be-

ween the number of neurons and accuracy, and in Section 4.4 we

escribe the relationship between the number of neurons and bit

rror. In Section 4.5 we describe how we estimated the optimal

umber of neurons required for all the ensembles and list them in

able 2 . Finally, we present the conclusions in Section 5 .

. Background

First we briefly discuss the floating-point addition process as

er the IEEE 754 standard [27] , then we describe the Neural Engi-

eering Framework (NEF) which we have used to design, simulate

nd evaluate our system. [29] .

.1. IEEE 754 floating-point addition

Fig. 1 illustrates the overall process of addition and subtraction

f two floating-point numbers – Input 1 and Input 2 represented in

inary format. Fig. 2 is an example of how a 32-bit floating-point

umber is represented according to the IEEE 754 standard [27] .

here is a sign bit which is used to represent whether the num-

er is positive or negative. There are 8 bits and 23 bits which are

sed to represent the exponent and mantissa values, respectively.

hile designing this system we assumed that both inputs, i.e., the

wo floating-point numbers are represented according to the IEEE

54 standard in binary representation.

Now in Fig. 1 the first step of the process involves the match-

ng of the exponents and shifting of the mantissas. Once this is

one, we check the sign bit to decide whether we need to add

he two mantissas or subtract them. If it is an addition then it is

76 A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85

Fig. 1. Overall process for addition/subtraction of floating-point numbers.

Fig. 2. IEEE 754 32-bit floating-point representation.

Fig. 3. System architecture with two 23-bit inputs and a 23-bit output.

2

c

n

m

s

T

t

2

g

a

b

i

w

a

t

a

w

i

a

fi

x

d

2

t

i

w

d

d

d

t

i

l

d

t

2

N

n

v
a straightforward process of adding two binary numbers, else we

subtract the two numbers which involves representing one of the

two inputs in two’s complement representation [33] .

Here is an example of addition of two floating-point numbers.

We take two inputs as shown below and represent them in the

normalized scientific notation:

Input 1 : 123456 . 7 = 1 . 234567 × 10

5

Input 2 : 101 . 7654 = 1 . 017654 × 10

2

Now, we modify Input 2 such that it has the same exponent as

Input 1 :

Input 2 : 1 . 017654 × 10

2 = 0 . 001017654 × 10

5

Now both Input 1 and Input 2 have the same exponent, therefore we

can go ahead and add their respective mantissas. Hence:

123456 . 7 + 101 . 7654 = (1 . 234567 + 0 . 001017654) × 10

5

= 1 . 235584654 × 10

5

Note that the same process can be adapted for these two numbers

when they are represented in the binary format as shown in Fig. 2 .

We now state a few assumptions regarding the format of the

inputs which we considered while designing the system:

1. Both inputs should be in binary representation according to the

IEEE 754 format [27] with sign, exponent and mantissa bits as

shown in Fig. 2 .

2. Both inputs should be normalized [34] , for example, Input A be-

low is normalized whereas Input B is not.

Input A : 1 . 234567 × 10

5

2
Input B : 101 . 7654 × 10 t
3. Since our system is designed to only handle positive inputs,

therefore a negative input should be converted into a positive

one using two’s complement conversion [33] and then fed into

the system.

.2. The Neural Engineering Framework (NEF)

The Neural Engineering Framework [29,35,36] is a generalized

omputational framework used for modelling large and complex

eural systems. In NEF, we can create ensembles of spiking neuron

odels, represent values on these neural ensembles and solve for

ynaptic connection weights for computing functions using them.

here are three underlying principles for NEF, on which neural sys-

ems of fairly high complexity can be built.

.2.1. Representation

NEF uses distributed representations for values. It distin-

uishes the value that is being represented from the neural

ctivity. A scalar or a vector can be represented on a neural ensem-

le with different values corresponding to different neural activ-

ty patterns. This representation involves non-linear encoding and

eighted linear decoding. If x is the value getting represented on

 neuron ensemble and e i is the encoding vector for the neuron,

hen activity a i for each neuron can be obtained as

 i = G (αi e i · x + b i) (1)

here G is the neural non-linearity, αi is a gain parameter and b i
s the constant background bias current for the neuron. Given an

ctivity, the set of weights to estimate the value can be done by

nding a linear decoder d i as:

ˆ =

∑

a i d i (2)

d i can be calculated as the set of weights that minimize the

ifference between x and ˆ x .

.2.2. Transformation

Computation using spiking neural ensembles can be done by

ransformations which approximate a function of value that is be-

ng represented in an ensemble. Transformation is done by another

eighted linear decoding. For approximating a function f(x) , the

ecoded weights d f(x) can be computed as

f (x) = �−1 ϒ f (x) (3)

�i j =

∑

x

a i a j (4)

ϒ f (x)
j

=

∑

x

a j f (x) (5)

This is similar to a Support Vector Machine (SVM) [37] as we

o a random projection on e i and the function f(x) is expressed as

he sum of tuning curves of neurons. This method of approximat-

ng a function, although not as powerful as approximation using a

earning rule, works well for linear functions. Some non-linear and

iscontinuous functions can also be computed with a trade-off be-

ween number of neurons in the ensemble and accuracy.

.2.3. Dynamics

The dynamics of the neural systems can also be modelled in

EF using control theoretic state variables. NEF can compute dy-

amic functions of the form d x /d t = A (x) + B (u) where x is the

alue getting represented, u is some input, A and B are some arbi-

rary functions.

A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85 77

3

s

l

a

(

m

o

s

e

t

q

t

c

fl

t

a

3

a

N

[

b

s

I

m

u

s

a

t

t

(

i

r

3

t

b

t

3

r

a

p

t

e

I

e

E

b

e

a

0

z

i

Fig. 4. Exponent aligner architecture.

t

m

p

3

t

t

t

n

a

w

i

m

p

o

p

o

p

i

t

o

t

d

3

v

e

s

i

i

i

f

c

. System architecture and implementation

We designed a system that performs floating-point addition and

ubtraction according to the process illustrated in Fig. 1 . Fig. 3 il-

ustrates the system architecture. The two inputs are represented

s (S 1 , M 1 , E 1) and (S 2 , M 2 , E 2) and the output is represented as

 S out , M out , E out). Here S i represents the sign bit, M i represents the

antissa bits and E i represents the exponent bits where i ∈ {1, 2,

ut } This representation follows the IEEE-754 32-bit floating-point

tandard [27] as illustrated in Fig. 2 . The core of the system is the

xponent aligner component which ensures that the exponents of

he input numbers match and any shifting of mantissa bits (if re-

uired) is performed before the mantissas are added by the man-

issa adder component. The S out and OF/UF calculation component

omputes the sign bit of the output and the overflow/underflow

ag which can then be used for rounding the resultant output [27] .

We now go on to explain the simulation method followed by

he description and workings of all the components of the system

s shown in Fig. 3 in detail.

.1. Simulation

To represent information, say one bit from the input, we cre-

ted neural ensembles (a group of a number of neurons) using

engo [30,31] . We used the Leaky Integrate-and-Fire (LIF) model

38] in Nengo to create the neural network. Each of these ensem-

les has two important properties — dimension and radius. Dimen-

ion refers to the number of values represented by the ensemble.

n case of a scalar quantity, it is 1 whereas for a vector it can be

ore than 1. Radius, on the other hand, defines the range of val-

es that can be represented by the ensemble. For instance, if we

imulate a neural ensemble (of say, 10 neurons) with dimension

s 1 and radius as 1, then these neurons can accurately represent

he values between −1 and 1. Another way to understand this is

o think about it geometrically. If the dimension is 1 and radius

or length) is 1 then from a point we can either go + 1 or −1. Sim-

larly, if dimension is 2 and radius is 1 then we have a circle with

adius 1.

.1.1. The value of radius

In our system, since we work with binary numbers, the addi-

ion or subtraction of two bit values always lies between 0 and 2,

oth inclusive. Therefore, we set the radius of all neural ensembles

o 2.

.1.2. Encoding scheme

Next we observed that when we give the output of one neu-

al ensemble as an input to another, the error propagates. For ex-

mple, if a neural ensemble represents the value 1 and when we

robe it, we get the value 1.1. Then this value is given as an input

o the next ensemble which further adds its own representational

rror. To avoid this error, we use the following encoding scheme.

f the output of a neural ensemble is ˆ x , the i th component of the

ncoded output value of an ensemble is given as:

(̂ x i) =

{
0 , ˆ x i ≤ 0 . 5

1 , otherwise
(6)

By using this encoding scheme on outputs of a neural ensem-

le, we reduce the error to one side. All the values less than or

qual to 0.5 are considered 0, as such the error towards the neg-

tive direction is reduced to zero. Similarly all values greater than

.5 are considered as 1.0, reducing the positive direction error to

ero. On top of this, the encoding scheme provides a margin of 0.5

n the other direction as well. Our encoding scheme acts similar
o a rounding scheme on neuron signals and can be easily imple-

ented in hardware. We now explain the workings of each com-

onent of the system.

.2. Exponent aligner

The exponent aligner is the core of our system. It takes the

wo exponents from the inputs and finds their difference and

hen shifts the mantissa of the smaller exponent by the magni-

ude of the difference. Fig. 4 illustrates the workings of the expo-

ent aligner. The exponent subtractor takes in the two exponents

nd computes their difference. It produces a carry which signifies

hether the difference is positive or negative. If the difference is

n two’s complement form [33] then it is converted back to sign

agnitude form. The difference multiplexer then uses the carry

roduced by the exponent subtractor to generate the magnitude

f the difference between the two exponents.

The exponent multiplexer uses the carry produced by the ex-

onent subtractor to choose the larger of the exponents to be the

utput exponent E out . The mantissa selector also uses the carry

roduced by the exponent subtractor to differentiate between the

nput mantissas to figure out the one which has to be shifted. Once

he mantissa shifter shifts one of the mantissas by the magnitude

f the difference between the two exponents then, the two man-

issas are added by the mantissa adder.

We now explain the workings of each of these components in

etail.

.3. Exponent subtractor and two’s complement converter

Fig. 5 illustrates the working of the two’s complement con-

erter. It takes in each of the 8-bits of the exponent and represents

ach of them using a neural ensemble. Next, at each of these en-

emble outputs, we perform a transformation such that each bit

s flipped, i.e., it changes 0’s to 1’s and 1’s to 0’s. Finally, we take

n all the flipped bits into an 8-bit adder and add one to it, with

nput carry as 0 to perform the standard two’s complement trans-

ormation.

The exponent subtractor in Fig. 4 is essentially performing two’s

omplement binary subtraction. It works as follows:

• Take in both exponents E 1 and E 2 as input and convert E 2 into

its two’s complement form E ′
2

using the two’s complement con-

verter as described above.
• Add E 1 and E ′

2
using the 8-bit adder and let the carry produced

be C out .
• If C out is 1, then it means that the result is positive and it is

given directly as an input to the difference multiplexer in Fig. 4 .

78 A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85

Fig. 5. Two’s complement converter architecture.

s

fi

w

3

m

p

s

S

n

f

n

c

f

a

t

u

o

s

c

c

n

a

b

o

t

T

w

{
M

w

�
• If C out is 0, then it means that the result is negative and there-

fore we perform two’s complement of the result and then give

it as an input to the difference multiplexer.

3.4. Exponent/difference multiplexer

This component’s working is based on that of a multiplexer. It

selectively outputs one of the input values based on the value of

a selection input. In the exponent multiplexer and the difference

multiplexer, the carry generated by the exponent subtractor, i.e.,

C out acts as the selection bit.

The difference multiplexer is given three inputs — C out as the

selection bit, the difference of the two exponents E 1 and E 2 when

C out is 1, i.e., the result is positive and when C out is 0, i.e., the result

is negative. The difference multiplexer now works as follows –

• If the selection bit, i.e., C out is 1, then it means that the result

is positive and it is generated as the output of the difference

multiplexer as the magnitude of the difference of the two ex-

ponents E 1 and E 2 .
• If the selection bit, i.e., C out is 0, then it means that the result

is negative, therefore, its two’s complement converted form (as

explain in the workings of the exponent subtractor) is gener-

ated as the output of the difference multiplexer.

The output of the difference multiplexer (the number of shifts

to be performed on the mantissa) is then given as an input to the

mantissa shifter.

We now look at the workings of the exponent multiplexer. It

uses the selection bit C out to figure out the larger exponent from

E 1 and E 2 and outputs it as E out . It works as follows:

• If the selection bit, i.e., C out is 1, then it means that E 1 –E 2 is

positive, therefore E 1 is larger and it is output as E out .
• If the selection bit, i.e., C out is 0, then it means that E 1 –E 2 is

negative, therefore E 2 is larger and it is output as E out .

E out is needed in the final representation of the output, i.e., the

sum of two floating-point numbers.

3.5. Mantissa selector

The mantissa selector takes in the two mantissas M 1 and M 2

as inputs and decides which one of them has to be shifted based

on the carry generated by the exponent subtractor. It is similar to

the exponent/difference multiplexer but here we have two outputs

— the mantissa to be shifted and the mantissa not to be shifted.

These are chosen based on the selection bit C out .

The mantissa selector works as follows.
• If the selection bit, i.e., C out is 1, then it means that E 1 –E 2 is

positive, therefore E 1 is larger and therefore M 1 is the mantissa

which is not to be shifted whereas M 2 is the mantissa which is

to be shifted.
• If the selection bit, i.e., C out is 0, then it means that E 1 –E 2 is

negative, therefore E 2 is larger and therefore M 2 is the mantissa

which is not to be shifted whereas M 1 is the mantissa which is

to be shifted.

The mantissa to be shifted is given as an input to the mantissa

hifter which performs the shift operation and outputs the modi-

ed mantissa to be used as an input by the mantissa adder along

ith the mantissa which is not to be shifted.

.6. Mantissa shifter

The mantissa shifter is a logical right shifter for our 23-bit

antissa on an offset value of 8-bit difference bits from our ex-

onent subtraction circuit. Unlike synchronous clock-driven digital

hift circuits, neuromorphic computing is asynchronous in nature.

o normal shifting method using a shift register and a counter will

ot work for neuromorphic chips. We propose a different approach

or achieving logical right shift. If the 8-bit difference from expo-

ent subtraction circuit is negative, then the difference is in two’s

omplement form and needs to be converted to the magnitude

orm with the help of a two’s complement converter. The appropri-

te offset is then selected from the difference bits of the subtrac-

ion circuit and those from two’s complement conversion circuit

sing an 8-bit difference multiplexer circuit. This ensures that the

ffset to right shifter is always in magnitude form and the right

hift is logical in nature.

Although there exist approaches for making shift registers asyn-

hronous, we found them to be complex, considering that the cir-

uit needs to be implemented with spiking neurons and that we

eed only right shift which can be carried out using a cascaded

pproach. The task of logical right shift of the 23-mantissa bits can

e divided as right shift of the mantissa bits by the positional value

f each of the individual offset bits. To this end we state and prove

he following theorems.

heorem 3.1. Logical right shift of a number M represented in binary

ith length m by an arbitrary binary positional value of p · 2 q , p ∈
 0 , 1 } , q ∈ { 0 , 1 , . . . , k } to another number M

′
has

′
i = �i

here � is a fixed shift function defined as,

i =

{

M i if p = 0

M i +2 q if p � = 0 ∧ (i + 2

q ≤ m)
0 otherwise

(7)

A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85 79

P

M

p

C

C

T

n

e

S

P

M

t

M

I

s

s

c

M

H

m

v

v

t

i

n

w

t

t

p

O

i

o

p

c

o

s

c

l

t

h

m

v

2

3

t

M

t

i

p

F

w

o

f

A

S

m

m

a

m

i

s

s

s

t

u

a

w

o

3

t

r

t

a

s

w

b

t

roof. We give a proof by cases. Let M be represented as

 m

M m −1 M m −2 . . . M 2 M 1 and M

′
as M

′
m

M

′
m −1 M

′
m −2 . . . M

′
2 M

′
1 . We

rove that M

′
i
= �i by considering the values of p

Case 1 : When p = 0

p = 0 ⇒ p · 2

q = 0

⇒ we want to shift M by 0

⇒ resultant M

′ = M

⇒ M

′
i = M i or M

′
i = �i

ase 2 : When p = 1 and (i + 2 q) ≤ m

p = 1 ⇒ p · 2

q = 2

q

⇒ we want to right shift M by 2

q bit positions

⇒ M i becomes M

′
i −2 q

⇒ i th bit of M

′
, M

′
i is shifted from M i +2 q

⇒ since (i + 2

q) < = m, ∃ a valid bit position

(i + 2

q) which can be shifted to M

′
i

⇒ M

′
i = M i +2 q

ase 3 : When p = 1 and (i + 2 q) > m

p = 1 ⇒ p · 2

q = 2

q

⇒ we want to right shift M by 2

q bit positions

⇒ M i becomes M

′
i −2 q

⇒ i th bit of M

′
, M

′
i is shifted from M i +2 q

⇒ since (i + 2

q) > m, � a valid bit position

(i + 2

q) which can be shifted to M

′
i

⇒ zeroes are added since it is logical right shift

⇒ M

′
i = 0 �

heorem 3.2. Logical right shift of a number M represented in bi-

ary with length m by another number K in binary with length k is

quivalent to a sequence of right shifts by values S i where

 i = K i · 2

i −1 , i ∈ { 1 , 2 , . . . , k }
roof. We need to shift0 ‘ M ’ by ‘ K ’. Let M be represented as

 m

M m −1 M m −2 . . . M 2 M 1 and K as K k K k −1 K k −2 . . . K 2 K 1 . We use
 −→
o denote the logical right shift operation.

 −→ K ≡ M m

M m −1 . . . M 2 M 1
 −→ K k K k −1 . . . K 2 K 1

≡ M m

M m −1 . . . M 2 M 1
 −→ (K k 0 k −1 . . . 0 2 0 1 +

0 k K k −1 . . . 0 2 0 1 + · · · + 0 k 0 k −1 . . . 0 2 K 1)

≡ M m

M m −1 . . . M 2 M 1
 −→ K k · 2

k −1 +

K k −1 · 2

k −2 + · · · + K 2 · 2

1 + K 1 · 2

0

nstead of shifting by the entire K , we can shift by sum of the po-

itional values of the bits in K . Since we are doing a logical right

hift by a sum of values which are positive, it is equivalent to do

ontinuous shifting by those values. That is

 −→ K ≡ ((. . . ((M
 −→ K k · 2

k −1)
 −→ K k −1 · 2

k −2) . . .)

 −→ K 2 · 2

1)
 −→ K 1 · 2

0

≡ ((. . . ((M
 −→ S k)
 −→ S k −1) . . .)
 −→ S 2)
 −→ S 1

ence the theorem. �

By Theorem 3.2 , we split the logical right shift of our 23-bit

antissa as a sequence of cascaded right shifts with positional

alues of the 8-bit difference offset. By Theorem 3.1 , each indi-

idual right shift by a positional value can be easily handled by

he fixed shift function, �. To implement the circuit, we approx-

mated this fixed shift function with NEF on Nengo. There are 24

eural ensembles for each bit, say j th bit in the difference offset

ith ij th ensemble connected to M i , the �i value and K j . This way
he ensembles need only represent three dimensions and the func-

ion to be approximated becomes a simple decision of which in-

ut value M i of �i to output based on the K j value being 0 or 1.

utput of j th level of ensembles becomes the mantissa input of

(j + 1) th level for shifting the mantissa bits sequentially accord-

ng to Theorem 3.2 . There is a single zero node which constantly

utputs value zero for the case in which �i being 0. Using this ap-

roach we perform the logical right shift of 24 mantissa bits (in-

luding the hidden bit) by 8 difference offset bits with a matrix

f relatively small ensembles which approximates a simple deci-

ion function, thereby considerably lowering the error which oc-

urs on direct approximation of logical right shift function with a

arge neural ensemble representing values of high dimensions.

Fig. 6 illustrates the overall working of the mantissa shifter. On

he left hand side we have the 23 mantissa bits and the additional

idden bit. At the bottom we have the 8 offset bits by which the

antissa has to be shifted. The Zero node at the top generates a

alue of 0 which is used by an array of ensembles E ij where i ∈ [1,

4] and j ∈ [1, 8].

.7. Mantissa adder

As shown in Fig. 3 , the exponent aligner component matches

he two exponents and provides the modified mantissas M

′
1

and

′
2 and the output exponent E out . The mantissa adder then takes

hese two modified mantissas, i.e., M

′
1

and M

′
2
, where one of them

s shifted by the mantissa shifter so that exponents of both the in-

uts can be matched and then adds them bit by bit as shown in

ig. 7 . The corresponding bits of the two mantissas, i.e., a i and b i
here i ∈ [0, 22] are added along with the carry from the previ-

us stage. For the first stage, the carry c 0 is set to 0. Consider the

ollowing example of addition of two 4-bit mantissas A and B:

c in = 0

A = 1010

B = 1100

 + B = 0110

c out = 1

imilarly, the 23-stage adder adds up the corresponding bits of the

odified mantissas and each stage outputs one sum bit each to

ake up the final output mantissa.

To implement this stage-wise addition process, we constructed

 network that takes two inputs (the corresponding bits of the two

antissas, i.e., a i and b i where 0 ≤ i ≤ 22) and represents them us-

ng two different ensembles of neurons, say A and B . These two en-

embles were then connected to another ensemble, say C, through

ynaptic connections. Since the incoming currents from different

ynaptic connections interact linearly, ensemble C now represents

he sum of values represented by ensembles A and B . We then

sed this arrangement to iteratively build up the mantissa adder

s shown in Fig. 7 . The mantissa adder also outputs the C out bit

hich is used in the calculation of the output sign bit S out and the

verflow/underflow (OF/UF) flag which we describe next.

.8. S out and OF/UF calculation

This component computes the S out bit of the output along with

he OF/UF (overflow/underflow) flag which can then be used for

ounding [27] separately. Fig. 8 illustrates the overall working of

his component. The Sign XOR block takes in the input sign bits S 1
nd S 2 and performs a XOR operation on them to find if they are

ame or different. This XOR operation is an approximation since

e are doing it on a neuromorphic architecture. The output sign

it S out is then computed using the output from the XOR operation,

he C out produced by the mantissa adder and one of the sign bits.

80 A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85

Fig. 6. Architecture of the mantissa shifter.

Fig. 7. Mantissa adder architecture for two 23-bit inputs.

o

a

c

Table 1 illustrates the computation of S out and OF/UF flags. The

S out bit is computed as follows -

1. If S XOR (the output of XOR operation on S 1 and S 2) is 0, which

happens when S 1 and S 2 are equal, then S out is equal to either

of the input sign bits, i.e., S 1 and S 2 (since they are both equal).

2. If S XOR is 1, which is the case when S 1 and S 2 are not equal,

then S out depends on C out which is the carry generated from

the sum of the two mantissas. In this case, since S out does not
depend on the input sign bits, therefore they can take any value

(0 or 1). According to two’s complement addition rules for a

positive and negative number [33] , if C out is 0 then S out is 1

whereas when C out is 1 then S out is 0.

Now we explain the computation of the OF/UF flag. An overflow

r underflow can happen only when the input sign bits (S 1 and S 2)

re equal, in all other cases it is 0. Thus we have the following two

ases for OF/UF flag computation -

A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85 81

Fig. 8. S out and OF/UF component architecture.

Table 1

Truth table for S out and OF/UF flag computation.

S 1 S XOR C out S out OF/UF

0 0 0/1 0 OF = 1 when C out = 1

1 0 0/1 1 UF = 1 when C out = 0

0/1 1 0 1 0

0/1 1 1 0 0

Table 2

Number of neurons for each ensemble.

Ensemble Number of neurons

Linear ensemble 100

Addition ensemble 350

Flipping ensemble 75

Multiplexing ensemble 700

Selector ensemble 700

Right shift ensemble 300

XOR ensemble 250

Overflow/underflow ensemble 300

Output sign ensemble 300

v

a

3

T

t

s

4

4

r

l

E

t

1

t

t

t

e

a

r

f

u

t

a

r

o

t

i

t

i

v

a

r

t

s

4

i

T

m

i

w

n

w

p

a

t

e

t

W

o

M

H

p

i

r
1. S 1 and S 2 are 0 and hence S XOR is 0. Since both numbers are

positive, therefore there is an overflow when a carry is gener-

ated, i.e., when C out is 1.

2. S 1 and S 2 are 1 and hence S XOR is 0. Since both numbers are

negative, therefore there is an underflow when no carry is gen-

erated, i.e., when C out is 0.

Our system does not round off the final result but it does pro-

ide the OF/UF flag which is useful when rounding off the result

s per the IEEE 754 standard [27] .

.9. Floating-point subtraction

So far, we have explained the process of floating-point addition.

he same architecture can be adopted for floating-point subtrac-

ion as it can be viewed as two’s complement addition [33] . The

ubtraction process is as follows:

• Assume that the first input is bigger and carry out two’s com-

plement addition.
• If the carry is 1 then the result is positive and our assumption

is correct else it means that we subtracted a bigger value from

a smaller one and the resulting difference is in two’s comple-

ment form.

. Observations and results

.1. Effect of different values of radius on accuracy

To observe the effect of different values of radius on the rep-

esentation of values, we did the following experiment. We simu-

ated two neural systems with the following configuration:
1. Two input nodes – N 1 and N 2 (where N 1 = 2.1 and N 2 = 6.9)

connected to two neural ensembles (E 1 and E 2) each with 100

neurons each. E 1 and E 2 were then connected to another neu-

ral ensemble S (again with 100 neurons) which represented the

sum of the values represented by E 1 and E 2 . The radius for E 1 ,

E 2 and S was set to 10 .

2. This neural system had everything same as the earlier one ex-

cept the radius for E 1 , E 2 and S which was changed to 50.

We ran the simulation for 5s and probed the values of N 1 , N 2 ,

 1 , E 2 and S every 10ms and plotted the generated values for both

he neural systems. Fig. 9 represents the system with a radius of

0 whereas Fig. 10 represents the one with a radius of 50.

In Fig. 9 , the line and the spiking neural activity at the bot-

om represents input 1 , the middle segment represents input 2 and

he one at the top represents the sum of input 1 and input 2 . The

wo lines with constant values in the bottom and middle are gen-

rated by values probed from the nodes — N 1 and N 2 for input 1
nd input 2 , respectively. Whereas the spiking neural activity which

uns across these lines are generated by plotting the values probed

rom the ensembles – E 1 , E 2 and S . As mentioned earlier, these val-

es were probed every 10ms for 5s from the nodes as well as from

he neural ensembles. Similarly, Fig. 10 is a plot of values gener-

ted from the simulation of the second neural system which has a

adius of 50.

In Fig. 10 we can observe that because of a much higher value

f radius compared to the maximum value to be represented (i.e.,

he sum with a value of 10), we see a significant amount of error

n the value represented by the sum ensemble S . It can be inferred

hat a tight bound on the value of radius limits the neural activ-

ty in an ensemble and thus leads to a better representation of a

alue. This is clearly indicated in Fig. 9 . Thus, we can conclude that

 neural ensemble represents a value much better, i.e., with less er-

or if it has a radius close to the maximum value that it represents.

The adder is standard to the extent that it correctly implements

he IEEE 754 specification. A more general-purpose adder can be

uitably constructed given an appropriate specification.

.2. Performance analysis metrics

In our implementation, we simulated our proposed architecture

n Nengo on a 2.5 GHz Intel Xeon E5 Machine with 30 GB of RAM.

wo floating point numbers in IEEE 754 single precision binary for-

at was given as input to the system along with an extra carry

nput for the adder. The inputs were modelled in Nengo as nodes

hich provide a constant value of 1 or 0. The individual compo-

ents of the system were simulated as specified in Section 2 and

as interconnected to give a fully functional IEEE 754 floating-

oint adder working on Spiking Neural Networks (SNN) [39] .

The output of each component and the final result were probed

t a time interval of 10ms. The mean of these output values were

hen used to compute the error in each component as well as the

ntire system. Error in the system was calculated with and without

he encoding technique (Section 2.2) for performance comparison.

e used the following two metrics for assessing the performance

f each component –

AE =

∑ | C v − A v |
n v

ere, MAE is the Mean Absolute Error

C v is the Computed value

A v is the Actual value

n v is the number of values

In our case MAE represents the measure of error which is

resent in the output of each component due to the error present

n approximating a discontinuous function using NEF and the er-

or due to noise and randomness inherent to spiking nature of the

82 A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85

Fig. 9. Effect of different values of radius, input 1 = 2.1, input 2 = 6.9, radius = 10.

Fig. 10. Effect of different values of radius, input 1 = 2.1, input 2 = 6.9, radius = 50.

a

i

l

t

a

computation. It is the absolute distance between the actual binary

value we expected (A b) and the value computed by our compo-

nents and the system (C v), normalized by the number of values.

MEE =

∑

E b � A b

n b

Here, MEE is the Mean Encoded Error

E is the Encoded bit
b
A b is the Actual bit

n b is the number of bits

Encoding of the output from each component acts as a filter

nd boosting operation on the output signal which helps in reduc-

ng the error present in approximation and noise. MEE is calcu-

ated in a similar fashion to that of Hamming distance between

he encoded bit values (E b) and the actual bit values (A b) which

re expected, normalized by the number of bits in output.

A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85 83

Fig. 11. Mean absolute error frequency distribution.

Fig. 12. Mean encoded error frequency distribution.

t

p

fi

o

a

c

w

w

i

b

t

a

v

m

i

4

t

r

s

c

fi

t

Fig. 13. Accuracy v/s number of neurons per bit.

Fig. 14. Bit error v/s number of neurons per bit.

t

c

n

u

b

4

i

b

(

c

p

f

b

o

t

4

i

W

n

n

l

d

fl

e

w

T

m
Figs. 11 and 12 illustrate the MAE distribution and the MEE dis-

ribution. To generate these graphs, we took three groups of in-

ut pairs. Let D be the difference between the two inputs. The

rst group had random input pairs where D was large, the sec-

nd group again had random input pairs but here D was small

nd in the third group the D had random values. From Fig. 11 we

an infer that there were lots of instances where MAE was low

hen D was large. Whereas there were relatively less instances

here MAE was slightly higher when D was small or random. Sim-

larly, from Fig. 12 we can infer that there were a significant num-

er of instances where MAE was low when D was large. Whereas

here were around the same number of instances where MAE was

round 0.4 and D was either small or random.

Large differences in D are more difficult to work with as the

alues of the exponents are different, which would mean that

ore shifting of the mantissa bits is needed. A small difference

s easier to handle as much shifting is not needed.

.3. Accuracy v/s number of neurons

We define accuracy as the inverse of the MAE. We observed

hat the accuracy increases with an increase in the number of neu-

ons used to represent one bit. We varied the number of neurons

tarting from 1 to a maximum of 900 per bit and observed the ac-

uracy across all the components as shown in Fig. 13 . From this

gure, it is clear that the accuracy increases with an increase in

he number of neurons but beyond a certain threshold value (in
his case around 500 neurons) of the number of neurons, the in-

rease in accuracy with increase in number of neurons is not sig-

ificant. We can also see that the accuracy increases exponentially

ntil the increase in the number of neurons reaches 200 then it

egins saturating.

.4. Bit error v/s number of neurons

We define bit error as the number of bits that were generated

ncorrectly with respect to the actual output. We observed that the

it error was high when number of neurons per bit were very low

close to 1) as shown in Fig. 14 . We can see an exponential de-

rease in the value of the bit error until the number of neurons

er bit reaches 300, beyond which the bit error remains 0. There-

ore, it is evident that an increase in the number of neurons per

it results in smaller values of error but beyond a certain thresh-

ld value, the bit error remains 0. In this case, that value happens

o be 300 neurons.

.5. Total number of neurons

According to our observations, the accuracy increases with an

ncrease in the number of neurons as discussed in Section 4.3 .

ith the help of this observation and the threshold (minimum)

umber of neurons required per bit, we estimated the optimal

umber of neurons required for all the ensembles in Table 2 . The

inear ensemble is used to simply output the given input, the ad-

ition ensemble adds the two given inputs, the flipping ensemble

ips the bit, i.e., changes 0 to 1 and vice versa. The multiplexing

nsemble maps two inputs to one output using a selection bit

hereas the selector ensemble maps two inputs to two outputs.

he right shift ensemble performs the shift operation on the

antissa bits and the overflow/underflow ensemble is used to

84 A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85

[

[

[

[

compute the overflow/underflow flag. The XOR ensemble and

output sign ensemble compute the sign bit of the output, i.e.,

S out . We see that the accuracy increases as the number of neurons

used increase. We use a threshold of 0.9 for average accuracy (see

Fig. 13) to judge how many neurons are needed, and indicate in

Table 2 what the numbers are to reach such a threshold.

5. Conclusion

In this paper, we look at a relatively unexplored area: numerical

computation on neuromorphic computers, and specifically propose

an approach to build an IEEE-754 standard complaint floating-

point unit using Spiking Neural Networks (SNN) for neuromorphic

chips. The architecture that we have presented can either be used

in a full-fledged neuromorphic system or as a co-processor in an-

other system. Such usage can not only increase the power effi-

ciency and performance of the system but also help in achieving

the dream of true brain-like computing.

Our architecture comprises a complex floating-point unit whose

sub-components we have described. This architecture can, because

of its modular design, be extended to solve other floating-point

arithmetic problems like subtraction, multiplication and division.

The complex task of floating-point addition is divided into sub-

tasks such as exponent alignment, mantissa addition and over-

flow/underflow handling. Each component of these sub-systems

are then approximated using the Neural Engineering Framework

(NEF).

A novel encoding scheme has been used to reduce inter-neural

ensemble error. We also estimate the number of neurons required

to implement each component, thereby estimating the total num-

ber of neurons required for the entire system. With further op-

timization to the design, this number can be brought down. The

value of radius to be used in such a system is another important

outcome of our work. The most complex part of the floating-point

addition process is the shifting of the mantissa bits and we have

accomplished this successfully. Theorems 3.1 and 3.2 are the re-

sults that support solving this complex part of the overall prob-

lem. This architecture is scalable in the way that it can be used

with either floating-point numbers of single precision or double

precision. We also indicate the presence of an underflow/overflow

(in case it happens) during the addition process, which can then be

handled separately. We consider the effect of different values of ra-

dius on the accuracy, and also observe the effect of different num-

ber of neurons on the accuracy and bit error. Finally, we do a per-

formance analysis of the implementation of our system and draw

conclusions from the observations as mentioned in Section 4 . The

present paper extends the range of computations considered pos-

sible using neuromorphic computing, to include classical floating-

point addition, thus showing that a neuromorphic chip can hypo-

thetically take over such operations entirely, rather than requiring

a traditional CPU as a co-processor. While neuromorphic hardware

is yet to reach the point of viability where such a chip can com-

pletely replace a CPU, recent developments suggest that this may

indeed be possible in the not-too-distant future.

Declaration of interests

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

References

[1] C. Mead , Neuromorphic electronic systems, IEEE J. Proc. 78 (10) (1990)

1629–1636 .
[2] G.E. Moore , Cramming more components onto integrated circuits, IEEE J. Proc.
86 (1) (1998) .

[3] D. Monroe , Neuromorphic computing gets ready for the (really) big time, Com-
mun. ACM 57 (6) (2014) 13–15 .

[4] S.K. Esser, P.A. Merolla, J.V. Arthur, A.S. Cassidy, R. Appuswamy, A. Andreopou-
los, D.J. Berg, J.L. McKinstry, T. Melano, D.R. Barch, C. di Nolfo, P. Datta, A. Amir,

B. Taba, M.D. Flickner, D.S. Modha, Convolutional networks for fast, energy-
efficient neuromorphic computing, PNAS 113 (41) (2016) 11441–11446 http:

//www.pnas.org/content/113/41/11441 .

[5] G. Volanis , A. Antonopoulos , Y. Makris , A.A. Hatzopoulos , Toward silicon-Based
cognitive neuromorphic ICs—a survey, IEEE Design Test 33 (3) (2016)

91–102 .
[6] C.D. James , J.B. Aimone , N.E. Miner , C.M. Vineyard , F.H. Rothganger , K.D. Carl-

son , S.A. Mulder , T.J. Draelos , A. Faust , M.J. Marinella , J.H. Naegle , S.J. Plimp-
ton , A historical survey of algorithms and hardware architectures for neural-in-

spired and neuromorphic computing applications, Biol. Inspired Cognit. Archi-

tect. 19 (2017) 49–64 .
[7] S. Agarwal , R.B.J. Gedrim , A.H. Hsia , D.R. Hughart , E.J. Fuller , A .A . Talin ,

C.D. James , S.J. Plimpton , M.J. Marinella , Achieving ideal accuracies in ana-
log neuromorphic computing using periodic carry, in: Proceedings of the 2017

Symposium on VLSI Technology, 2017 . Kyoto, Japan
[8] C.D. Schuman, T.E. Potok, R.M. Patton, J.D. Birdwell, M.E. Dean, G.S. Rose, J.S.

Plank, A survey of neuromorphic computing and neural networks in hardware,

arXiv: abs/1705.06963 (2017).
[9] Y. Kim , Y. Zhang , P. Li , Energy efficient approximate arithmetic for error re-

silient neuromorphic computing, IEEE J. VLSI 23 (11) (2015) 2733–2737 .
[10] Q. Wang , Y. Li , B. Shao , S. Dey , P. Li , Energy efficient parallel neuromorphic ar-

chitectures with approximate arithmetic on FPGA, Neurocomputing 221 (2017)
146–158 .

[11] P. Maier , F. Hartmann , M. Emmerling , C. Schneider , M. Kamp , S. Höfling ,

L. Worschech , Electro-photo-sensitive memristor for neuromorphic and arith-
metic computing, Phys. Rev. Appl. 5 (5) (2016) .

[12] R. Kozma, E.R. Pino, E.G. Pazienza. (2012). Advances in Neuromorphic Memris-
tor Science and Applications. 10.1007/978- 94- 007- 4491- 2 .

[13] A. Calimera , E. Macii , M. Poncino , The human brain project and neuromorphic
computing, Funct. Neurol. 28 (3) (2013) 191–196 .

[14] C. Eliasmith, How to Build a Brain: A Neural Arhitecture for Biological Cogni-

tion, Oxford Series on Cognitive, Models and Architectures, Oxford Scholarship,
2013 Online: January 2014, doi: 10.1093/acprof:oso/9780199794546.0 01.0 0 01 .

[15] S. Reardon, Artificial neurons compute faster than the human brain, Nature
(2018) https://www.nature.com/articles/d41586-018-01290-0 .

[16] N. Imam , T.A. Cleland , R. Manohar , P.A. Merolla , J.V. Arthur , F. Akopyan ,
D.S. Modha , Implementation of olfactory bulb glomerular-layer computations

in a digital neurosynaptic core, Front. Neurosci. 6 (2012) .

[17] M.D. Tissera, M.D. McDonnell, Deep extreme learning machines: supervised
autoencoding architecture for classification, Neurocomputing 174 (2016) 42–49

http://www.sciencedirect.com/science/article/pii/S0925231215011327 .
[18] Q. Yu, H. Tang, K.C. Tan, H. Yu, A brain-inspired spiking neural network model

with temporal encoding and learning, Neurocomputing 138 (2014) 3–13 http:
//www.sciencedirect.com/science/article/pii/S0925231214003452 .

[19] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Di-
mou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Math-

aikutty, S. McCoy, A. Paul, J. Tse, Guruguhanathan, Venkataramanan, Y.-

H. Weng, A. Wild, Y. Yang, H. Wang, Loihi: a neuromorphic manycore processor
with on-chip learning, IEEE Micro 38 (1) (2018) 82–99, doi: 10.1109/MM.2018.

112130359 .
[20] A. Neckar, S. Fok, B.V. Benjamin, T.C. Stewart, N.N. Oza, A.R. Voelker, C. Elia-

smith, R. Manohar, K. Boahen, Braindrop: a mixed-signal neuromorphic archi-
tecture with a dynamical systems-based programming model 107 (1) (2019)

144–164, doi: 10.1109/JPROC.2018.2881432 .

[21] G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani,
M. Ishii, P. Narayanan, A. Fumarola, L.L. Sanches, I. Boybat, M. Le Gallo,

K. Moon, J. Woo, H. Hwang, Y. Leblebici, Neuromorphic computing using non-
volatile memory, Adv. Phys. X 2 (1) (2017) 89–124, doi: 10.1080/23746149.2016.

1259585 .
22] S. Moradi, R. Manohar, The impact of on-chip communication on memory

technologies for neuromorphic systems, J. Phys. D Appl. Phys. 52 (1) (2019)

0140 03 http://stacks.iop.org/0 022-3727/52/i=1/a=0140 03 .
23] J. Park, T. Yu, S. Joshi, C. Maier, G. Cauwenberghs, Hierarchical address event

routing for reconfigurable large-scale neuromorphic systems 28 (10) (2017)
2408–2422, doi: 10.1109/tnnls.2016.2572164 .

[24] S. Moradi, N. Qiao, F. Stefanini, G. Indiveri, A scalable multicore architec-
ture with heterogeneous memory structures for dynamic neuromorphic asyn-

chronous processors (DYNAPs) 12 (1) (2018) 106–122, doi: 10.1109/TBCAS.2017.

2759700 .
25] J.B. Aimone , K.E. Hamilton , S. Mniszewski , L.R.C.D. Schuman , W.M. Severa ,

Non-neural network applications for spiking neuromorphic hardware, in: Pro-
ceedings of the Third International Workshop on Post-Moores Era Supercom-

puting (PMES 2018), 2018 . Dallas, TX
26] M. Hu, J.P. Strachan, Z. Li, E.M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge,

J.J. Yang, R.S. Williams, Dot-product engine for neuromorphic computing: Pro-

gramming 1t1m crossbar to accelerate matrix-vector multiplication, in: Pro-
ceedings of the Fifty-third ACM/EDAC/IEEE Design Automation Conference

(DAC 2016), 2016, doi: 10.1145/2897937.2898010 . Austin, TX, USA
[27] IEEE Standard for Floating-Point Arithmetic, in IEEE Std 754-2008, pp. 1–70,

(2008) doi: 10.1109/IEEESTD.2008.4610935.

http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0003
http://www.pnas.org/content/113/41/11441
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0007
http://arxiv.org/abs/1705.06963
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0010
https://doi.org/10.1007/978-94-007-4491-2
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0011
https://doi.org/10.1093/acprof:oso/9780199794546.001.0001
https://www.nature.com/articles/d41586-018-01290-0
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0014
http://www.sciencedirect.com/science/article/pii/S0925231215011327
http://www.sciencedirect.com/science/article/pii/S0925231214003452
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1080/23746149.2016.1259585
http://stacks.iop.org/0022-3727/52/i=1/a=014003
https://doi.org/10.1109/tnnls.2016.2572164
https://doi.org/10.1109/TBCAS.2017.2759700
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0023
https://doi.org/10.1145/2897937.2898010

A.M. George, R. Sharma and S. Rao / Neurocomputing 366 (2019) 74–85 85

[

[

[

[

[

[

[

[

[

[

M

28] J. Gosmann, C. Eliasmith, Optimizing semantic pointer representations for
symbol-like processing in spiking neural networks, PLoS ONE 11 (2016) https:

//doi.org/10.1371/journxal.pone.0149928 .
29] T.C. Stewart, A technical overview of the neural engineering framework, AISB

Q. 35 (2012) http://compneuro.uwaterloo.ca/files/publications/stewart.2012d.
pdf .

30] Nengo documentation release 1.4.0, (http://ctnsrv.uwaterloo.ca/docs/latex/
Nengo.pdf). Accessed February 27, 2018.

[31] T. Bekolay , J. Bergstra , E. Hunsberger , T. DeWolf , T. Stewart , D. Rasmussen ,

X. Choo , A. Voelker , C. Eliasmith , Nengo: a python tool for building large-s-
cale functional brain models, Front. Neuroinf. 7 (2014) .

32] Addition example nengo core 2.6.0 docs, (https://www.nengo.ai/nengo/
examples/addition.html). Accessed February 27, 2018.

33] D.J. Lilja , S.S. Sapatnekar , Designing Digital Computer Systems with Verilog,
Cambridge University Press, 2005 .

34] D. Fleisch , J. Kregenow , A Student’s Guide to the Mathematics of Astronomy,

Cambridge University Press, 2013 .
35] A.R. Voelker, C. Eliasmith, Methods for applying the neural engineering frame-

work to neuromorphic hardware, arXiv: 1708.08133 [q-bio.NC](2017).
36] A.R. Voelker , B.V. Benjamin , T.C. Stewart , K. Boahen , C. Eliasmith , Extending the

neural engineering framework for nonideal silicon synapses, in: Proceedings of
the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017 .

Baltimore, MD

[37] N. Cristianini , J. Shawe-Taylor , An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods, Cambridge University Press, 20 0 0 .

38] C. Koch , I. Segev , Methods in Neuronal Modeling – From Ions to Networks,
1999 .

39] W. Maass , Networks of spiking neurons: the third generation of neural net-
work models, Neural Netw. 10 (9) (1997) 1659–1671 .

Arun M. George is a graduate student enrolled in the In-

formation Technology program, with a specialization in
data science, at the International Institute of Informa-

tion Technology, Bangalore. He is also pursuing research
in machine learning and artificial intelligence, as part of

his internship at Media iQ Research. He has previously
worked on fMRI analysis and deep learning.
Rahul Sharma is a graduate student enrolled in the infor-

mation technology program, with a specialization in data
science, at the International Institute of Information Tech-

nology, Bangalore. Prior to this, he worked with Cognizant

Technology Solutions in Pune, Maharashtra, India, in the
area of embedded software development. Currently, he is

involved with research in the area of computer vision. His
research interests are in the field of autonomous vehicles,

computational neuroscience, machine learning, and artifi-
cial intelligence.

Shrisha Rao received his Ph.D. in computer science from
the University of Iowa, and before that his M.S. in logic

and computation from Carnegie Mellon University. His
primary research interests are in artificial intelligence and

other applications of distributed computing, including in

bioinformatics and computational biology, as well as algo-
rithms and approaches for resource management in com-

plex systems such as used in cloud computing. He also
has interests in energy efficiency, sustainable computing

(“Green IT”), renewable energy and microgrids, applied
mathematics, and intelligent transportation systems. Dr.

Rao is an ACM Distinguished Speaker and a Senior Mem-

ber of the IEEE. He is also a life member of the American
athematical Society and the Computer Society of India.

https://doi.org/10.1371/journal.pone.0149928
http://compneuro.uwaterloo.ca/files/publications/stewart.2012d.pdf
http://ctnsrv.uwaterloo.ca/docs/latex/Nengo.pdf
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0027
https://www.nengo.ai/nengo/examples/addition.html
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0029
arxiv:/1708.08133
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30888-4/sbref0033

	IEEE 754 floating-point addition for neuromorphic architecture
	1 Introduction
	2 Background
	2.1 IEEE 754 floating-point addition
	2.2 The Neural Engineering Framework (NEF)
	2.2.1 Representation
	2.2.2 Transformation
	2.2.3 Dynamics

	3 System architecture and implementation
	3.1 Simulation
	3.1.1 The value of radius
	3.1.2 Encoding scheme

	3.2 Exponent aligner
	3.3 Exponent subtractor and two’s complement converter
	3.4 Exponent/difference multiplexer
	3.5 Mantissa selector
	3.6 Mantissa shifter
	3.7 Mantissa adder
	3.8 Sout and OF/UF calculation
	3.9 Floating-point subtraction

	4 Observations and results
	4.1 Effect of different values of radius on accuracy
	4.2 Performance analysis metrics
	4.3 Accuracy v/s number of neurons
	4.4 Bit error v/s number of neurons
	4.5 Total number of neurons

	5 Conclusion
	Declaration of interests
	References

