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Abstract

Point classification is necessary for detection and extraction of geometric feature (folds, creases, junctions, surfaces), and sub-
sequent 3D reconstruction of point-sampled geometry of topographic data captured using airborne LiDAR technology. Geometry-
based point classification (line-, surface-, point-type features) is determined using shape of the local neighborhood, given by the
local geometric descriptor (LGD) at every point in the point cloud. Covariance matrix of local neighborhoods is the conventionally
used LGD in the LiDAR community. However, it is known that covariance analysis has drawbacks in detection of sharp features,
which are a subset of the line-type features. Here, we compare the performance of new variants of existing LGDs, such as
weighted covariance matrix, and that based on tensor voting concept, in geometric classification with that of covariance matrix.
We propose a multi-scale probabilistic saliency map based on eigenvalues of the LGDs for computing the classification. Usually
the state-of-the-art performance analyses of LGDs in the classification outcomes are done downstream after feature extraction.
We propose that the comparisons may be done upstream at the classification stage itself, which can be achieved by expressing
these LGDs as positive semidefinite second-order tensors. We perform qualitative comparisons of the tensor fields based on shape
and orientation of the tensors, and the classification outcomes using visualizations. We visualize LGDs using superquadric tensor
glyphs and point rendering, using our proposed saliency map as colormap. Our detailed comparative analysis shows that the new
variant of LGDs based on tensor voting classify line-type features, especially sharp features, better than covariance-based LGDs.
Our proposed LGD based on tensor voting performs better than the covariance matrix, for our goal of detecting sharp features,
e.g. gabled roofs in buildings.

I. INTRODUCTION

Geometric feature detection is a key operation in the processing of three-dimensional (3D) point clouds, which includes
surface reconstruction, surface matching, shape detection, registration of point clouds, and finding deformations in time-varying
point sampled geometry. The definition of feature is however application-specific, which makes the process of feature extraction
subjective. Features are generally defined as entities which help the user to gain meaningful insight from the data. In some
cases, features may be a subset of either raw or derived data, which persist through multiple scales, time-steps, and/or other
attributes, which give multiple series of the same dataset.

We focus on geometry-based point or geometric classification, which is the first step in detection and classification of
features, such as folds, creases, junctions, and planar surfaces. In point clouds, the features are determined using local geometric
descriptors (LGDs). Such a descriptor at a point is a variable which describes the shape of local neighborhood of any point [4].
The shape of the local neighborhood as a key criterion for point classification, which gives the geometric classes1, namely line-,
surface-, and (critical/degenerate) point-type features. The outcomes of point classification imply that the point will belong to
a feature, namely, the line-, surface-, or point-type feature, respectively. The choice of LGD plays a crucial role in influencing
the point classification outcomes. We refer to geometry-based point classification as “classification,” hereafter.

The 3D point-sampled geometric datasets generally encountered in graphics and modeling communities and LiDAR (Light
Detection and Ranging) datasets are essentially 2.5-dimensional data. Specifically, in the case of airborne LiDAR data, the
point cloud is a height map of two-dimensional planar geometry (latitude-longitude coordinate system). Airborne LiDAR point
clouds include geometry of arbitrary topology from multiple objects in environmental scans, owing to which several methods
in point-sampled geometry cannot be directly extended to LiDAR point clouds. The resolution of the scans are different. In
airborne LiDAR points, the resolution is lower, compared to other point-sampled geometry obtained from indoor or other
controlled settings.

Covariance analysis of local neighborhood of LiDAR point clouds is used conventionally for geometry-based point clas-
sification, which gives satisfactory results [2], [10]. Classification using covariance matrix is followed by a processing step,
such as minimum spanning tree [6], [10], [23] to find sparse set of points which reveals the features. Multi-scale extension
of the covariance-based methods has improved the identification of various visually significant features [10], [23]. However,
pruning of an already sparse sets of points leaves these methods ineffective in detecting sharp features. At the same time, the
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1Here, we use geometric classes and feature classes interchangeably.
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computer vision community have proposed the use of weighted covariance matrix and tensor voting2 for unique signatures for
local surface description [28] and perceptual organization for feature extraction [22], [30].

To bridge the gap between these communities, we propose improving classification outcomes in LiDAR point clouds,
specifically of line-type features which include sharp features, by using variants of weighted covariance matrix and voting
tensor as LGDs. Our goal is to compare the performance of the aforementioned LGDs in extracting sharp features, such as
gabled roofs in buildings.
Motivating Problem: In the LiDAR community, 3D point clouds are beneficial as they do not have as many occlusion problems
or shadow casts found in aerial imagery. In practice, fusion of the two types of datasets gives good results for object-based
classification (buildings, road, natural ground, and vegetation). Building detection is a key outcome, which is followed by
outline delineation and 3D reconstruction of the detected buildings. The outlines of building, which are derived using aerial
imagery, are known to be more accurate and of better quality in comparison to those from point clouds [25]. In practice,
building outlines are derived using a fusion of imagery and 3D data. Improving 3D building reconstruction implies improving
either the fusion of datasets from hybrid sources, or the geometry extraction of building outlines exclusively from LiDAR point
clouds; both of which have been identified as open research problems [25]. For the latter, we propose extraction of line-type
features and assembling them to extract outlines. In this paper, we address the improvement of line-type feature extraction by
proposing a probabilistic method for identifying points which belong to the line-type features. In the scope of this paper, we
perform only the geometry-based point classification, along with preliminary results of line-type feature extraction.

Here, we compare the performance of different variants of LGDs based on the weighted covariance matrix and tensor
voting, for geometry-based classification. The latter takes into account continuity and proximity principles. Tensor voting
methods are known to behave consistently across a variety of datasets, including de-noised LiDAR point clouds. Additionally,
we propose application of anisotropic diffusion after applying tensor voting, for enhancing line-type features, as well as giving
classification outcomes similar to that of covariance matrix. Owing to the inherent uncertainty in classification, we propose a
probabilistic approach for computing saliency map that gives the classification. We additionally use a multi-scale method to
compute our novel probabilistic saliency map, where the radius of the local neighborhood is the scale [10], [22], [23]. Since we
did not find any existing literature on methods of comparing classification outcomes of two different LGDs, for performance
analysis, we perform comparisons by aligning the reference frames of the LGDs. We perform qualitative comparative analysis
using visualization. For visualizing the classification outcomes, we take the following approach of: (a) representing LGDs
as second-order tensors and using state-of-the-art superquadric tensor glyph visualization [12], [26], and (b) using our novel
multi-scale saliency map to guide the colormap for visualization. We propose the use of juxtaposed views and classification
matrix visualization, for composite visualizations for comparative analysis of classification outcomes of different LGDs. Our
work is unique in comparing point classification outcomes. Existing methods for surface reconstruction and surface fitting use
classification as one of the preliminary steps, without any in-depth analysis, which limits the scope of usage of geometry for
classification.

Using our proposed methods and additional quantitative analysis, we have shown how different LGDs perform in line-type
feature detection (Figure 13). We observe that more points are detected as line-type features, when using tensor voting in
comparison to conventional covariance analysis. The larger number of points allows better extraction of sharp (line-type)
features 4. Our contributions are:

1) multi-scale probabilistic geometric classification of airborne LiDAR point clouds using a novel saliency map;
2) novel approaches for visual comparison of performance of LGDs (Figures 1 and 2) in classification, such as: (a) expressing

LGDs as positive semidefinite second-order tensors, and consequently, using superquadric tensor glyphs for visualization;
and (b) visualizing the classification matrix;

3) comparative analysis of variants of two existing LGDs for point classification, computed using weighted covariance
matrix and tensor voting, respectively.

Notations: We refer to a point in a point cloud, P , as x ∈P , and the local neighborhood of x, for a given radius r, is
N(x) = {x,y ∈P : ‖y− x‖< r}. Covariance matrix, voting tensor and weighted covariance matrix are annotated as C, V , and
Cw. Our proposed modifications to the LGDs are indicated as superscripts, e.g. LRF and AD refer to the alignment of the local
reference frame (LRF) and anisotropic diffusion, respectively. Thus, CLRF and V LRF are the LRF-aligned weighted covariance
matrix and voting tensor, respectively. V LRF−AD is the tensorial outcome of applying anisotropic diffusion on V LRF . We use
shorthand notations for our proposed LGDs, CLRF and V LRF−AD, as TT and TN , to highlight the tensor representation of the
LGDs and their relationship to the tangent and normal spaces of the point, respectively.

2Here, we disambiguate tensor voting as the algorithm, and voting tensor as the second-order tensor, which is the outcome of the algorithm.
3In Figures 1, 4, and 7–10, color coding correspond to a geometric class or the combination of classes a point belongs to, which is determined by using

the saliency maps. We use the colorblind safe color palette options from ColorBrewer2.0 http://colorbrewer2.org/.
4We have demonstrated results on fan-disk and smooth-feature datasets, apart from airborne LiDAR datasets, purely for more comprehensible comparative

analysis of LGDs for classification.
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Fig. 1: Superquadric tensor glyphs for visually comparing LGDs: (Top) C, CLRF , V , and V LRF−AD, using a geometric class-
based colormap. The LGDs computed at scale, r = rmin for smooth-feature (6,177 points). The bottom row shows zoomed out
portions of the corner and roof, where glyphs represent (left) C and (right) V LRF−AD. Note that, in comparison to C, V LRF−AD

shows the line-type features using more cylindrical glyphs with red color, indicating higher saliency in line-type features. Thus,
our novel saliency map determines the geometric classification.

Fig. 2: Summary of the different LGDs we compute and how we compute them. The dotted lines indicate the pairwise
comparisons of LGDs done in this paper.

II. RELATED WORK

We describe relevant work on LGDs, its tensor representations, and the tensor field visualization techniques. We have briefly
looked at relevant work on the use of LGDs for the classification in computational geometry and LiDAR communities.
LGDs for Point Clouds: Gumhold et al. [6] have proposed feature classification and extraction using correlation matrix and
neighborhood graph. The correlation matrix is the total least squares problem for surface fitting, which has been proposed by
Hoppe et al. [8]. In [6], tensor voting scheme was explicitly avoided for feature detection and extraction, in order to avoid
volume discretization. However, more recent research [22] has shown that tensor voting can be applied directly on point clouds
without volume discretization. Gelfand et al. [4] have made a distinction between high- and low-dimensional LGDs. High-
dimensional or richer LGDs (spin images, shape contexts, their proposed integral volume descriptors) are generally used for
object recognition and shape retrieval. The low-dimensional LGDs (curvature-related descriptors) are easier to compute, store
and use – hence is used with voting schemes or iterative alignment methods for shape matching and point cloud registration.
LGDs considered for the point classification are generally low-dimensional ones. Integration based LGDs are recommended for
feature classification in [4], however point classification in LiDAR point clouds is conventionally done using differentiation-
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based low-dimensional descriptors.
Tensor Representation of LGD: Knutsson [13] has used tensor definition for structure tensor, which is based on differentiation
of functions and is used as LGD for 3D space. Knutsson et al. [14] have enumerated LGDs for images, some of which can
be extended to 3D point clouds.
Point/Feature Classification: In the LiDAR community, geometric classification is often called “structural classification.” Point
classification and feature classification are often interchangeably used in literature. Several methods for feature classification
of point clouds exist in literature [22], [31]. Attributes from feature/structural classification (e.g. linearity, anisotropy, etc.)
are extensively used for semantic or object-based classification in LiDAR point clouds [2], [16], [17], which use covariance
analysis. Kim et al. [11] have used 3D tensor voting for wall and roof segmentation and classification in LiDAR point clouds.
They have generated surface meshes from the point clouds, where tensor voting is used for fitting a planar surface in local
neighborhoods and segmenting the surface mesh [19]. The mesh segmentation is similar to [19], [30]. While our proposed
LGD using tensor voting can be used for orientation just as in [11], our goal is to extract line-type features, which can be
further used for segmentation.

Covariance analysis of local neighborhoods based on centroid is a robust method for normal estimation [15], but not
necessarily for finding the shape of the neighborhoods. Two neighboring points with approximately similar local neighborhoods
with the same centroid will have the same LGD, which makes the LGD fail specifically for the classification of sharp features.
Moreover, all neighbors in the local neighborhood are considered equal in the covariance matrix, which is not the case. The
rationale is that its nearer neighbors have more “influence” in reconstructing the surface at the point than its distant neighbors.
Thus, a weighted covariance matrix computed with respect to a point is a more accurate “signature” of a point compared to
the conventionally used covariance matrix. Kobbelt and Botsch [15] have discussed that for consistent orientation of normals
estimated using covariance analysis, propagation along a minimum spanning tree will be needed. Similarly, Tombari et al. [28]
have made the argument of lack of repeatability of sign of LRF when using the covariance matrix, and have proposed a weighted
covariance matrix based on the point itself instead of the centroid, for surface matching. They have proposed an LGD for surface
matching, based on signatures of histograms, where local reference frame can be made unique, repeatable, and an invariant
for a point. For classification of sharp features, moving least squares method [1], [3] or Gauss map clustering [31] have been
used effectively, which are not centroid-based methods. Local tensor-based techniques are a tradeoff between computational
complexity and accuracy in feature detection; e.g. use of tensor voting [22], [30] for feature classification.
Multi-scale Classification: Pauly et al. [23] have proposed the use of multi-scale surface variation, estimated using covariance
matrix of local neighborhood. There, surface variation at a user-defined scale gives feature weights, which on appropriate
thresholding gives features. Keller et al. [10] have used a similar multi-scale approach, for LiDAR point clouds, in determining
feature weights from covariance matrix of local neighborhoods. However, the difference between the methods in [23] and [10]
is that a single adaptive scale and averages across multiple scales have been used, respectively. Algorithms for finding optimal
neighborhood size or scale has been of interest to the LiDAR community [2], [5], [17], [33].
Tensor Voting: Guy and Medioni [7] have proposed tensor voting scheme to detect and classify the feature points in structured
point cloud. The voting scheme uses the proximity and continuity principles of Gestalt psychology to propagate the votes.
Each point is encoded as tensor based on given input data information, and nonlinear tensor voting has been performed using
local neighbors to update the tensor information at each point in 3D data. Saliency maps, computed from eigen analysis of the
second-order tensor obtained after vote aggregation, give the likelihood of each point belonging to different feature classes,
i.e., ball-, stick-, or plate-tensor.

Park et al. [22] have used tensor voting and surface variation to classify and detect line features in point clouds, where th
surface variation function is computed using a multi-scale method. Our proposed tensor, obtained after anisotropic diffusion
upon tensor voting, V LRF−AD, is different from that from tensor voting, V , in [22] as the classification in the latter does not
confirm to the conventional method [10], as point-type features in the former are equivalent to line-type features in the latter,
as per the classification given in the latter; while ours matches with the conventional method. Park et al. compute an optimal
scale from multiple scales for further analysis, whereas we propose an aggregated multi-scale saliency map. In our case, the
anisotropic diffusion after tensor voting enhances line-type feature detection as well as modifies the classification outcomes
of the new tensor to match with that of the covariance matrix. Our approach based on anisotropic diffusion is inspired from
[30], where anisotropic diffusion is performed after tensor voting for feature classification and extraction in polygonal mesh
data, and subsequent mesh segmentation.
Tensor Field Visualization: We use superquadric tensor glyphs [12], [26] for comparing different (positive-semidefinite)
second-order tensor fields of the LGDs. These glyphs are designed using mirror symmetry, symmetry, continuity, and disambi-
guity as guiding principles. Thus, by design, these glyphs show the shape and orientation of a positive-semidefinite second-order
tensor more effectively than other conventionally used glyphs. Zhang et al. [34] have recently proposed the use of tender glyphs
for simultaneously comparing two different tensor fields.

III. LOCAL GEOMETRIC DESCRIPTORS

Conventionally used covariance-based methods have limitations in capturing line-type features [31]. They often detect points
on the sharp features contrarily as weak line-type features (Figure 1). However, the use of an LGD which enhances the sharp
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features can improve the classification. Hence, we propose two different LGDs, which are variants of the weighted covariance
matrix, Cw, and tensor voting, V . We further exploit the tensor representation of the LGDs for its analysis.

In our work, Cw is an improvement over C for two reasons. First, Cw at the point gives a unique LGD, thus giving a
“signature” of the point itself. Additionally, in the case of the classification using Cw. the normal estimation is not done using
the centroid. Second, the contribution of all neighbors in the computation of C(x) are equal, i.e., a distant neighbor will
“influence” the shape of the local neighborhood as much as a neighbor in closer proximity. Contrarily, these contributions are
inversely proportional to the distance between the neighbor and the point, x. Hence, a weighted covariance matrix, such as Cw,
is ideal as an LGD. Here, we study how the changes proposed by Tombari et al. [28] influence the geometric classification.
Similarly, tensor voting can also be considered as an improvement over C. Tensor voting approach follows the Gestalt principles
of proximity and continuity, which makes the resultant tensor viable as an LGD.

Comparing the performance of LGDs can be done in two ways, namely, comparing the relative performance of each LGD
against the ground truth and comparing the outcomes of the LGDs, taking two at a time. For the latter, the classification
outcomes for two LGDs, say Cw and V , are comparable if the comparisons can be done using a common invariant, e.g. local
reference frame (Figure 3). Additionally, one must be aware that there are cases where the outcomes of the classification of
the two LGDs are different and hence, not comparable, e.g. C (or Cw) and V (Figure 1). However, certain modifications to the
LGDs can resolve these differences and facilitate the comparisons subsequent to modifications, e.g., anisotropic diffusion after
tensor voting makes its classification outcomes comparable to those of C (Figure 1).

Fig. 3: A schematic showing modifications to LGDs, C and V , to compare their point classification outcomes effectively. For
points/samples (circle) on a curve (in R2), the LRF and shape of local neighborhood obtained from the spectral decomposition
of the LGD are shown (solid lines and ellipse for those of C; and dashed lines and ellipse for those of V ). (a) C and V at a
point; (b) The LRF of C has been aligned to that of V ; (c) Anisotropic diffusion has been applied to V , which gives V LRF−AD.
Similar to C, this is applicable to Cw as well.

Local Geometric Descriptors LGDs at a point, in P , encodes the geometry of the local neighborhood of the point. LGDs
are important, as the local geometric analysis leads to the global description for the entire point cloud. Here, we focus on
two LGDs, computed using the conventionally used covariance matrix and tensor voting, respectively. Here, we discuss the
construction of these variants of the LGDs.
Weighted Covariance Matrix: The covariance matrix [8], also called correlation matrix [6], is computed as C(x) = ∑y∈N(x)(y−
x̄)(y− x̄)T , where x̄ is the centroid of the local neighborhood N(x). We refer to it as the “tangent covariance matrix,” as it is
constructed using tangent vectors. C is conventionally used as an LGD in the LiDAR community [2], [5], [17], [33]. However,
in computer vision applications, weighted covariance matrix is used for surface description and local sign disambiguation [28].
Since we are performing surface description as opposed to surface fitting in LiDAR point clouds, we propose the use of
weighted covariance matrix, Cw (Equation 1) for the same. The weights have the property of inverse proportionality to distance
between the concerned point and its neighbor. Local reference frames (LRF) are invariants that define the local neighborhood
of a point uniquely. The eigenvectors of the LGD are conventionally used as basis vectors of the LRF. Cw gives repeatable
LRFs, as opposed to C. Repeatable LRFs give non-repeatability of sign of principal directions across multiple objects in the
scene [28], which are applicable in the case of LiDAR point clouds.
Voting Tensor: In tensor voting [19], there is a notion of a receiver and a voter, where the voter casts a vote to the receiver. A vote,
defined in the form of a tensor, contains information of the neighbor in the local neighborhood. A predefined voting field is used
to aggregate the votes as a tensor, and to provide a saliency map for each feature type. Saliency values of the resultant tensor,
which is the sum total of all information collected at the receiver, are scalar values derived from the spectral decomposition
of the tensor. The saliency values, “pointness,” “curveness,” and “surfaceness”, correspond to feature (or structural) classes,
namely, ball- (point), stick- (line), and plate- (surface) tensors, respectively. Thus, these classes correspond to the feature classes
in point sampled geometry. In tensor voting, we initialize the tensor V (x) as a ball tensor, for unoriented points (i.e. points
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without predetermined normal information) [22], as is our case (Equation 1). In Equation 1, Id is a d-dimensional identity
matrix, and scale parameter σ . We use the radius of the neighborhood, r as the scale parameter, thus, σ = r. While σ influences
the vote propagation range, the Gaussian function, µy, is the attenuation factor for the size of the vote collected from y at x.
Here, we can see that V (x) is a weighted covariance matrix just as Cw(x), with the difference that they are constructed from
normals and tangents, respectively. For y ∈ N(x), t(y) = (y− x) and z(y) = ‖t(y)‖2

r ,

Cw(x) = ∑
y∈N(x)

wyt(y)t(y)T ; V (x) = ∑
y∈N(x)

µy.

(
Id−

t(y)t(y)T

t(y)T t(y)

)
(1)

where wy =
1− z(y)

∑y∈N(x) 1− z(y)
; and µy = exp

(
− ‖t(y)‖

2
2

σ2

)
.

Alignment of Local Reference Frame for Local Geometric Descriptors: An LRF is an invariant of the LGD of a point, and
a common LRF for two LGDs implies that the orientations of the local neighborhoods defined by the LGDs are the same, at the
point. Thus, comparison of LRF-aligned LGDs reduces to qualitative comparison of the shapes of these local neighborhoods at
each point. Hence, we propose variants of Cw and V , whose LRFs are aligned, to facilitate their comparisons. Our construction
of these proposed LGDs are:

1) Modification to V , by normalizing the weights for Id in Equation 1. Given σ = r, we get µy = exp(−z(y)2). Thus, we
replace µy (Equation 1) with µ ′y (Equation 2) to give an LRF-aligned voting tensor, denoted as V LRF(x).

V LRF(x) = ∑
y∈N(x)

µ
′
y.

(
Id−

t(y)t(y)T

t(y)T t(y)

)
, where µ

′
y =

µy

∑
y∈N(x)

µy
(2)

2) Modification to Cw, by normalizing the tangent vector t(y) and modifying the weights in the computation of Cw from wy
in Equation 1 to w′y. This change in weight (Equation 3) is permissible as w′y has the same property that the weights wy
and µy (Equation 1) have, i.e., they are monotonous functions of dimensionless distance quantity z(y), and are inversely
proportional to the distance of the neighbor to the point, i.e. ‖t(y)‖. Thus, we get the LRF-aligned tangent covariance
matrix, CLRF(x), as follows:

CLRF(x) = ∑
y∈N(x)

w′yt(y)t(y)
T , where w′y =

µy

t(y)T t(y) · ∑
y∈N(x)

µy
. (3)

However, by aligning LRFs for the LGDs this way, the weights for weighted covariance matrix, CLRF , are not convex, unlike
the weights proposed in [28]. Since convexity is not recommended as a requirement in [28], we disregard it for the sake of
alignment of LRFs. Even though Equations 2 and 3 lead to different computations of the LGDs, they effectively perform
rotations of the eigenvectors, as schematically shown in Figure 3. Hence, we refer to these modifications as LRF “alignment”.
Anisotropic Diffusion on Normal Voting Tensor: While tensor voting is good for perceptual grouping using its saliency
maps, the point classification through its tensor V or its variant (V LRF ) is not similar to that of the covariance matrix (C) or its
variants (Cw or CLRF ), as shown in Figure 1. Hence, we perform anisotropic diffusion after aggregating votes in the tensor, so
that the resulting tensor V LRF−AD will give similar classification outcomes as C. We explain the rationale behind differences
and the resolution using anisotropic diffusion in Section VI.

Wang et al. have used V LRF−AD as the diffusion tensor in the heat diffusion equation [30], for polygonal mesh segmentation.
The rationale is that anisotropically controlling diffusion velocities in the diffusion tensor, would lead to slower diffusion across
sharp edges and faster diffusion along sharp edges. Thus, anisotropic diffusion has been proven to enhance line-type features
in a surface mesh. Along these lines, we propose applying anisotropic diffusion after tensor voting, so that the resultant tensor
can be used as the LGD of the point cloud to classify line-type features more accurately than the tangent covariance matrix.
We perform anisotropic diffusion by modifying the eigenvalues of the diffusion tensor as an exponential term and addition of
a diffusion parameter, δ , which controls diffusion velocities.

Anisotropic diffusion is applied to V LRF by modifying its eigenvalues (λ LRF
V )i (for i = 0,1,2) using an exponential function,

f ((λ LRF
V )i) = exp(−(λ LRF

V )i/δ ). However, the use of an exponential function reverses the order of eigenvalues:

(λ LRF
V )0 ≥ (λ LRF

V )1 ≥ (λ LRF
V )2, gives

f ((λ LRF−AD
V )0)≤ f ((λ LRF−AD

V )1)≤ f ((λ LRF−AD
V )2.

Thus, for anisotropically diffused LRF-aligned voting tensor V LRF−AD, with indices i={0,1,2} corresponding to the descending
order of eigenvalues, we get:

(λ LRF−AD
V )i = exp(−(λ LRF

V )2−i/δ ); and (eLRF−AD
V )i = (eLRF

V )2−i (4)

Finally, V LRF−AD(x) =
2

∑
i=0

(λ LRF−AD
V )i · (eLRF−AD

V )i(eLRF−AD
V )T

i (5)
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Fig. 4: (a) Comparing LGDs for fan-disk (10,921 points), using our proposed saliency map. (Left) is the tangent covariance
matrix C and (right) is our proposed anisotropically diffused voting tensor V LRF−AD (i.e., TN). (b) Comparison of saliency
maps computed for our proposed voting tensor V LRF−AD, using likelihood values in shape classes [line,point,surface], given in
(left) Equation 8, and (right) Equation 9, for Region-1 in Vaihingen (179,997 points).

Impact of Proposed Modifications: Here, we mathematically analyze the modifications caused by the alignment of LRFs
of Cw and V and anisotropic diffusion of V , shown schematically in Figure 3. Let us first compare the eigenvalues and
eigenvectors from CLRF(x), and V LRF(x). Suppose the set of eigenvectors for CLRF(x) and V LRF(x) are given by (eLRF

C )i and
(eLRF

V )i, respectively, for i = 0,1,2. Similarly, let the set of eigenvalues be (λ LRF
C )i and (λ LRF

V )i, respectively.

V LRF(x) = Id−CLRF(x), from Equations 2 and 3. (6)
(λ LRF

V )i = 1− (λ LRF
C )(2−i), and hence, (eLRF

V )i = (eLRF
C )(2−i), for i = 0,1,2. (7)

This implies that the ordering of the eigenvalues are reversed in V LRF(x) compared to those of CLRF(x), thus reversing the
order of their eigenvectors (i.e. major eigenvalue of V LRF corresponds to minor eigenvalue of CLRF , and so on). This explains
the difference in the classification outcomes between the descriptors in Figure 1. However, it is desirable that the ordering
of the eigenvalues be the same, so that the eigenvectors at a point can be the same, thus giving the same LRF and similar
classification outcomes from both descriptors. A similar transformation is used in [21] to change tangential orientations to
normal ones for structure estimation in images.

Thus, from Equations 4 and 6, we conclude that (eLRF−AD
V )i = (eLRF

C )i. This shows that the LRFs of V LRF−AD and CLRF

match (i.e. their major eigenvectors correspond to each other, and similarly, their middle and minor ones). This also implies
that the ordering of their eigenvalues also match, thus giving similar classification outcomes for both the LGDs, i.e. variants
of the covariance matrix and the anisotropically diffused voting tensor (Figures 1 and 4(a)).
Positive Semidefinite Second-order Tensor Representation We did not find any metrics in current literature for comparing
LGDs and their classification outcomes. We propose expressing these LGDs as a specific mathematical quantity, for validating
applications of mathematical operations such as, comparisons and replacements. We have found that second-order tensors are
the most natural choice of quantity, owing to the inherent construction of the LGDs as tensor products. Local neighborhood
can be described using various variables or approaches, such as spin images, covariance analysis, tensor voting, curvature,
etc. Here, we revisit the use of tensors in representing LGDs used for structural analysis in image processing and computer
vision [14], to apply the same for point-sampled geometry. While some LGDs are explicitly defined as tensors (e.g. in tensor
voting [20] and curvature tensor [27], [29]), the others are described using matrix representation (covariance matrix [8], [10]).
Nevertheless, in many such cases, the LGD is constructed using an outer product or tensor product of vectors, T (x) = xxT ,
where x ∈ Rd is either the tangent or the normal at the point. From Equations 1, 2, 3, and 5, we see that all LGDs discussed
in this paper are indeed positive semidefinite second-order tensors. By design, the tensor fields of LGDs correspond to the
tangent or the normal spaces to the manifold defined by the point cloud, respectively, at the concerned point [24]. The tangent
and normal spaces form disjoint sets themselves. Here, the covariance matrix and its variants (C,Cw,C

LRF ) correspond to the
tangent space; and the tensor and its variants from tensor voting (V,V LRF ,V LRF−AD), to the normal space. Hence, hereafter,
we use the shorthand notations for CLRF and V LRF−AD are TT and TN , respectively.

IV. MULTI-SCALE PROBABILISTIC POINT CLASSIFICATION

For probabilistic point classification, we propose an appropriate saliency map of the feature classes at each point, which is
aggregated from LGDs across multiple scales.
Multi-scale Approach: The advantage of using multi-scale approaches in comparison to single scale is that they do not rely
on a single scale for procuring the geometric information. The distributed approach improves the richness of the geometric
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information. Determining the shape of the local neighborhood has high degree of uncertainty, especially in multi-object
boundaries in LiDAR/computer vision datasets. When using single scale, obtained optimally or adaptively, the error margin
becomes high for such boundary cases. Additionally, multi-scale approach determines persistence from various scales, as
opposed to adaptive scale, which depends on a scale where the persistence is high. Thus, multi-scale methods capture persistence
of features better. However, the number of scales and bounds of the scales become crucial for the success of the multi-scale
method. Currently, these values are user-determined, which is a limitation. Multi-scale approaches also fail for cases where
there is a large difference in sampling density in the dataset, as the covariance analysis fails in the case of sparse local
neighborhoods. This can be alleviated by using k-nearest neighborhoods instead of spherical neighborhood [15]. One of the
the drawbacks of using adaptive scales or optimal scales is that they become computationally intensive for large point clouds.
More operations are required, in the former, for computing adaptive scales for each point, and in the latter, for optimizing a
single scale for all points.

Despite their drawbacks, multi-scale approaches have worked favorably for point classification in certain applications, as
preserving the persistence of features across several scales gives a better measure of the feature strength or saliency map [10],
[22], [23]. Keller et al. [10] have proposed probabilistic point classification for LiDAR datasets, where eigenvalues of the
covariance matrix is used to determine neighborhood shape and feature strengths at each scale, and finally, the likelihood of
the point belonging to the three feature classes are averaged across scales. For each scale, r (i.e., radius of local neighborhood),
given that λ0(x,r)≥ λ1(x,r)≥ λ2(x,r), which are eigenvalues of C(x), three subsets corresponding to the classes are defined
to bin all the points in the point cloud, using a user-defined threshold, ε: Pl(r) = {x ∈P|λ1(x,r)/λ0(x,r)< ε}; Ps(r) = {x ∈
P|λ2(x,r)/λ0(x,r)< ε}; and Pp(r) = {x ∈P|λ2(x,r)/λ0(x,r)≥ ε}. Here, by design, Pl(r)⊂ Ps(r). The likelihood of a point
belonging to (line, surface, point) feature classes, {Ll ,Ls,Lp}, are computed using a multi-scale approach. While Keller et al.
have not used the likelihoods explicitly for classifying the points, they have used these values to compute feature strengths,
which is further used for generating feature graphs, and refining the classification. Given Nr scales uniformly sampled in [rmin,
rmax],

Ll,s,p(x) =
1
Nr
·

Nr

∑
i=1

φl,s,p(x,ri), where φs(x,r) =
{

1, if λ2(x,r)≥ ελ0(x,r)
0, otherwise ;

φl(x,r) =

{
1, if λ1(x,r)< ελ0(x,r)
0, otherwise ; and φp(x,r) =

{
1, if λ2(x,r)< ελ0(x,r)
0, otherwise

(8)

The averaging operation of the likelihoods across scales, can be seen as a union of Nr mutually exclusive events of the point
belonging to the given class for Nr scales, where the events have equal probability, i.e. 1/Nr. However, Ll,s,p(x), as computed
in Equation 8, causes higher incidence of points having “mixed” likelihoods, specifically across line- and surface-type features
(visualized as points belonging to “line & surface” class in Figure 4(b)). This is due to the subset relationship, Pl(r)⊂ Ps(r)
and binarization of the scale-wise contribution of each class towards multi-scale aggregation (Equation 8). The former leads
to the probabilities not adding up to one. The latter causes ambiguities in classification of points that lie in boundaries of two
different objects or point clusters e.g. a point lying on a line but in the close proximity of a junction. Additionally, the high
dependency of the algorithm on a user-defined parameter ε leads to erroneous classification. To alleviate the ambiguity, we
propose a probabilistic multi-scale saliency map.
Multi-scale Saliency Map for Probabilistic Point Classification: Saliency map of an attribute set is a set of values which
maps a value for specific attributes, based on the relative “saliency” or “differentiating quality” of the attribute with respect to
the others in the set. For instance, in tensor voting, eigenvalues of the resultant tensor have been used conventionally as saliency
map of its eigenvectors [7]. In LiDAR point clouds, saliency maps are derived from confidence index of 1-, 2- and 3-dimensional
features (i.e. line, surface, and point, respectively) [2]. We propose to use likelihoods of a point belonging to the feature classes
as the saliency map of classification of the point. These likelihoods, which explicitly imply the classification outcomes, are
derived from the spectral decomposition of LGD, thus, preserving the properties of the LGD. Thus, our classification is a
probabilistic or fuzzy one.

We use the likelihood with which a tensor can belong to each of the three shape classes [12], [32] found in 3D point clouds.
Given that λ0(x) ≥ λ1(x) ≥ λ2(x), cl,s,p(x,r), we compute the likelihood of the point x belonging to line, surface, or point
class, at a given scale r, {cl ,cs,cp}(x,r). At each scale, we ensure the sum of likelihoods for a point, (cl + cs + cp), is unity.
For multi-scale computation, we average the likelihoods of a point belonging to a given class across Nr scales, i.e.

Ll,s,p(x) =
1
Nr
·

Nr

∑
i=1

cl,s,p(x,ri); where cl(x,r) =
λ0(x,r)−λ1(x,r)

λ0(x,r)+λ1(x,r)+λ2(x,r)
;

cs(x,r) =
2∗ (λ1(x,r)−λ2(x,r))

λ0(x,r)+λ1(x,r)+λ2(x,r)
; and cp(x,r) =

3∗λ2(x,r)
λ0(x,r)+λ1(x,r)+λ2(x,r)

.

(9)
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Since multiple scales can be viewed as a union of mutually exclusive events with equal probability, we can justify averaging
of saliency maps across scales for computing the final saliency map. Our proposed saliency map disambiguates classification
of points to one of the three classes (Figure 4(b)).
A Note on Scale Parameters: Scale parameters are used for computation of both the tensor V (Equation 1), using tensor voting,
as well as saliency maps (Equation 9). However, the parameters are used differently. In the former, during the voting process,
as the scale increases, more tokens (or votes) can influence the given point due to increase in size of kernels, and smooth out
the noisy data and weak features. Similarly, when the scale is reduced, more details are preserved, which undesirably makes
tensor voting more sensitive to noise. In multi-scale classification, scale is used to measure the persistence of the features, thus
ensuring a robust feature extraction method. The scale can also be viewed as the regulator for smoothness [23].

V. COMPARISON OF LOCAL GEOMETRY DESCRIPTORS

We use tensor field visualization for qualitative comparison of LGDs and their classification outcomes. For comparative
visualizations, we use both juxtaposed views and classification matrix visualization. In juxtaposed views, we use point rendering
as well as tensor glyph visualization, using a geometric class-based colormap. In both renderings, our proposed saliency map is
used to demonstrate the shape and orientation of the LGD and its classification outcomes. Our work is unique in the application
of superquadric tensor glyphs for visualizing LGDs in 3D LiDAR point clouds.

A. Juxtaposed Views

The visualization tasks we propose for qualitatively comparing the two second-order tensor fields TT and TN are to compare
the tensor properties (i.e. shape and orientation) at each point in P , and to compare the classification outcomes at each point.
Juxtaposed views [9] of corresponding visualization of the fields for each of the tasks is an effective design pattern as long
as we implicitly establish the same orientation and affine transformations for visualizations corresponding to both the fields
in a single view. Juxtaposed view is easy to implement and effectively conveys the information on comparing the fields. We
use juxtaposed views of LiDAR point clouds using both tensor glyph visualization and point rendering (Figures 1 and 4,
respectively).
Tensor Glyph Visualization: We use superquadric tensor glyphs to compare the tensor properties of the LGDs in a single
scale. The glyphs are colored using our proposed saliency map. Both saliency map and shape of glyphs encode the information
on the likelihood of a point falling into the three feature classes, for instance, red color and cylindrical shape of glyphs indicate
line-type features (Figure 1). Thus, the saliency value and the shape of the local neighborhood are both encoded in the glyph
visualization of the tensor field.

In addition to single scale analysis, we visualize glyphs of a multi-scale aggregated tensor representation of the LGD, or
simply multi-scale aggregated LGD. However, we have used this tensor purely for representation, as we have not explored
the multi-scale aggregation of LGDs in detail. The aggregated LGD is generated by averaging the unit vectors of eigenvectors
and normalized eigenvalues (as the saliency values, cl ,cs,cp) values. By construction, the saliency map of the multi-scale
aggregated LGDs is the multi-scale saliency map (Equation 9).
Choice of Colormaps: Visualization of saliency maps is done by mapping the data to the RGB color model and using the
colormap to render the points. A trivial mapping of the parameterized values {cl(x),cs(x),cp(x)} to (red, blue, green) channels,
respectively, enables us to visualize the differences in the classification outcomes, computed from different LGDs. This is
applicable for both point and glyph rendering. However, this channel-based colormap results in a color palette with red and
green hues, which is not favorable for protanopic vision [18]. To resolve this, we use the likelihoods (Equation 8) or saliency
values (Equation 9) of a point to determine the class(es) (i.e., line, surface, and point-type features) the point is highly likely
to belong to. Both Equations 8 and 9 constrain the classes to be either line-, surface-, or point-type features. In the likelihood
based model, the points could belong to two classes simultaneously, which specifically occurs in the case of line- and surface-
type feature classes. Hence, overall, we use a geometric class-based color palette, for “line”, “surface”, “point”, and “line &
surface” classes (Figure 1).
Geometry-based Point Classification Algorithm:

1) octree construction and outlier removal in P (as given in [10]);
2) computation of LGD for each point x ∈P (C(x), TT (x), or TN(x)) (Equation 1, 3 or 5) or its variants;
3) probabilistic point classification by spectral decomposition of LGD for each point, and computation of saliency map for

each scale, r, (Equation 9);
4) multi-scale point classification by averaging saliency maps across scales (Equation 8 or 9)
5) visualization of feature classification using (a) juxtaposed views of point or glyph rendering using saliency map, or (b)

classification matrix of a specific feature class.

B. Classification Matrix Visualization

We use a superimposed visualization of a classification matrix of a feature class of two different LGDs. The classification
matrix stores four sets of points which have been labeled as the concerned feature class, by both the LGDs, or exclusively by
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Fig. 5: Classification matrix visualization of line-type features between two LGDs, C and TN . The color mapping shows which
LGD caused a point to be labelled as a line-type feature. LT N is the set of points identified as line-type by TN and LC by C.
The y-axis in the plot shows the percentage of points identified as line-type, given by the sizes of the sets themselves or set
intersections.

each of the LGDs, or by neither. The matrix rows pertain to the sets of points classified by the first descriptor, and the columns
are those by the second one. Numerically, the classification matrix gives the size of these sets in its cells, and here, we extend
its use to visualizing the points belonging to each cell. We color each of the four sets using different colors. We show the
classification matrix visualizations for line class in Figures 5 and 6, to compare between C and TN , as well as, between TT
and TN , respectively.

VI. EXPERIMENTS & RESULTS

We compare LGDs (C, TT , and TN) and their classification outcomes to demonstrate that choice of an appropriate LGD
can improve line-type point classification (Figure 2). Comparing TT and TN shows the performance of two different LGDs in
classification, with a fixed LRF. Finally, comparing C and TN displays the improvement of the outcomes in the classification
when using the latter, over the former. C is the state-of-the-art LGD used for airborne LiDAR point clouds.
Experiments: Apart from qualitative comparisons in juxtaposed views of point rendering (Figure 7) and glyph visualizations
(Figure 8), we have quantified points classified as line-type features using classification matrices (Figures 5 and 6). We have
also studied the influence of scale in LGD computation using tensor glyph visualization (Figure 8(b)), and influence of diffusion
velocity in computation of V LRF−AD (Figure 9). The default value of diffusion parameter δ is 0.16, for computing V , V LRF ,
V LRF−AD, as has been used in [30]. Dataset-specific parameters are given in Table I. For point classification using algorithm
by Keller et al. [10], we have used threshold parameter, ε = 0.5. For multi-scale approach, the radii of local neighborhood,
used as scales, are measured with respect to a normalized bounding box of the dataset. The normalization of the bounding
box gives a canonical view volume, which is a cube of size 2 units and centered at (0,0,0), in R3.
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Fig. 6: Classification matrix visualization of line-type features between TT and TN . Color mapping is similar to that in Figure 5.
LT N is the set of points identified as line-type by TN and LT T by TT .

TABLE I: Datasets and the parameters used for computing the local geometric descriptors in our experiments. rmin(TT ) and
rmax(TT ) are user-defined minimum and maximum values for scales, i.e. radius of local neighborhood, used when computing
C, Cw, and CLRF . Similarly, rmin(TN) and rmax(TN) are user-defined values for V , V LRF , and V LRF−AD.

Dataset Region- Region- Region- Region- Region- Autzen Bridge‡ Smooth- Fan-
5* 1* 2* 3* 4* Stadium† feature‡ disk‡

Size 163,305 179,997 231,725 266,675 323,896 693,895 5,284,131 6,177 10,921
(#points)
rmin(TT) 0.009 0.009 0.009 0.009 0.009 0.007 0.004 0.100 0.015
rmax(TT) 0.011 0.011 0.011 0.011 0.011 0.009 0.006 0.200 0.020
rmin(TN) 0.009 0.009 0.009 0.009 0.009 0.008 0.006 0.100 0.040
rmax(TT) 0.011 0.011 0.011 0.011 0.011 0.010 0.008 0.200 0.050

*http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html
†http://www.liblas.org/samples/
‡http://visionair.ge.imati.cnr.it/ontologies/shapes/viewmodels.jsp

We have used datasets (Table I) of airborne LiDAR point clouds*, and point set geometry (for bridge)† to showcase the
results of our chosen LGDs and their classification outcomes. There are no datasets existent with ground truth for geometry-
based point classification. Hence, we have used simple manifold datasets‡ to showcase for preliminary results, only because
the geometry in these datasets is more predictable (i.e. visually verifiable) than the LiDAR datasets. Visual comparative study
of behavior and classification outcomes of various LGDs can be better done on these datasets, even in the absence of ground
truth for classification.
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Fig. 7: Point rendering of the classification outcomes of LGDs for Regions1-5 (left to right) of Vaihingen benchmark datasets
(airborne LiDAR point clouds). Here, images are juxtaposed column-wise, for comparison.

Overall Performance of TN in Point Classification: We observe that TN captures sharp features such as edges on smooth-
feature, arches and railings in the bridge, stadium field, etc. better than the covariance matrix (Figures 5 and 7). However, TN
does not detect point-type features as well as TT (and C). The computational complexity of TN is similar to that of C and TT .
The better performance of TN in line-feature detection can be explained by the tensor voting approach. V is generated in the
normal space which encodes local surface geometry better. V (or V LRF ) detects surface-type features well, as V is constructed
in the normal space, which captures local surface geometry better. {Note that all classification outcomes considered in this
work use the definition as provided in the case of the covariance matrix, C.} Upon anisotropic diffusion, these surface-type
features are classified as line-type features. Thus, owing to the “persistence” of line-type features in V LRF , the feature detection
is more accurate in V LRF−AD, compared to that to C (or Cw or CLRF ). However, a noticeable shortcoming of TN is in detection
of degenerate points (junctions/corners), which is not as effective as that by TT or Cw. Since the point-type features are not
preserved during anisotropic diffusion, they tend to be detected as weak line-type features, e.g. the corners (Figure 1) and
foliage (Figure 8).

The plot comparing TN with C (Figure 5) shows that TN detects more points as line-type features than C. TN detects a
significant percentage of points detected as line-type features exclusively; and a larger percentage of the points detected as
line-type by C, is detected by TN as well. A very small percentage of points are detected as line-type by C exclusively. Except
in smooth-feature, TN detects as many line-type features exclusively, as are detected by both TN and C. Similar results are
observed in the plot comparing TN with TT (Figure 6), except that TT detects fewer line-type features exclusively, compared
to C.
Why does V LRF−AD detect line-type features better ? The classification outcomes using V (or V LRF ) are different from
that of C (or Cw or CLRF ) (Figure 1). However, they have certain patterns of correspondences, such as surface-type in former
are line-type in latter. These patterns are visible from both tensor shapes and saliency maps (Figures 1 and 8) and are better
understood using the LRF-aligned descriptors. They are attributed to the reversing of ordering of eigenvalues observed when
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Fig. 8: Superquadric tensor glyph visualization of LGDs of P , for tensor representation at one of the scales. The solid and
dashed boxes highlight the sharp features (e.g., gabled roof, edges, etc.), and undefined geometry (e.g. foliage), respectively.

the LRFs of CLRF and V LRF align, i.e. ((λ LRF
V )i = 1− (λ LRF

C )(2−i) for i = 0,1,2 given in Equation 6). Thus, a disc-shaped
neighborhood (for surface-type features) in V [(λ LRF

V )0� (λ LRF
V )1 ≈ (λ LRF

V )2] is equivalent to cylindrical-shaped neighborhood
(for line-type features) in C [(λ LRF

C )0 ≈ (λ LRF
C )1� (λ LRF

C )2]. Similarly, point- and surface-type features in C are captured as
point-type features in V . Additionally, the classification outcomes of V “persist” through anisotropic diffusion in our proposed
LGD, V LRF−AD.

TT (and hence, C) and TN have similar computational complexity as, TT +TN = Id (used in the definition of ball-tensor).
The complexity of tensor voting is given as O(dNl logN) for N points in P ∈ Rd [20]. Space requirements for all second-
order LGDs are O(Nd2). The point-rendering using saliency maps is less computationally expensive than the glyph-based
visualization. Hence, we use point-rendering to analyze the dataset globally, and glyphs for local regions-of-interest. The latter
is specifically useful in finding misclassifications in a local region.
Juxtaposed Views:

Juxtaposed views of the tensor glyph visualizations show the combined differences in tensor shapes and the saliency maps,
across the instances; e.g., the line-type features on sharp edges in gabled roof and fan-disk (Figure 8(a)) clearly are more
cylindrical in TN compared to that of TT and C. While comparing C and TN , we need to consider the orientation of the
glyphs, in addition to the color and size, since they are not LRF-aligned. However, for comparison of LRF-aligned CLRF

and V LRF − ad, we can ignore comparisons of glyph orientation. Glyph rendering across different scales as well as using
multi-scale aggregate (by averaging unit eigenvectors and normalized eigenvalues across scales) do not show any perceivable
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Fig. 9: (Top) Visualization of multi-scale aggregate of local maxima of the saliency map for line-type (red) and point-type
(blue) features. The likelihood of a point to be local maxima of line-type saliency is used as saturation of red, and similarly,
that of point-type saliency, as saturation of blue. (Bottom) Effects of change in diffusion parameter δ when computing TN for
Region-1. Default value for all other experiments is δ = 0.16 [30]. Boxes show sharp features, such as gabled roof.

differences in LiDAR datasets (Figure 8(b)). Additionally, glyph rendering and saliency maps help the user to decide some of
the user-defined parameters. Our method requires several user-defined parameters, namely, range of scale, number of scales,
and diffusion parameter, similar to [10], [30].
Multi-scale Probabilistic Feature Classification: Multi-scale aggregation of sal-iency maps, by averaging, has shown more
accurate classification of surface- and line-type features, as the scale-wise differences are implicitly taken into consideration.
As can be seen in the plot (Figure 10), the number of points classified in each feature class does not change considerably across
scales, for different LGDs (C, TT , TN), We chose the fan-disk dataset here as it has considerable distribution of points across
the feature classes. We also observe that the surface-type features which are misclassified as line-type features, get correctly
classified in higher scales (Figure 8(b)). In the case of LiDAR point clouds, multi-scale aggregation of local maxima of the
saliency maps for line- and point-type features from TN do not give useful information (Figure 9), as is expected in tensor
voting.
Anisotropic Diffusion: The change in diffusion parameter influences the outcomes of line-type feature classification in TN ,
e.g. gabled roofs in the Vaihingen dataset highlighted as the line-type features (black boxes in Figure 9). At lower values of
diffusion velocity parameter, δ , points are over-expressed as line-type features, and increase of δ causes most of those features
to increasingly be classified as point-type. Outcomes at higher values of δ appear to be similar to those of TT .
Weighted Covariance Analysis: TT (or Cw) captures sharp and point-type features better than C in two different instances
(Figures 1, 7, and 8). Firstly, TT detects sharp features as strong point-type ones; whereas C captures them as weak line-type
features, e.g. edges in fan-disk dataset (Figure 8). Capturing sharp features as point-type features by TT (or Cw) need not
be considered inaccurate as these points can be treated as degenerate points owing to being intersection points of multiple
planes. Secondly, the points in the foliage of trees in Vaihingen dataset (Figure 8) are captured as point-type features, owing to
random orientation of normals, by TT (or Cw), whereas both C and TN detect them as a mixture of line- and point-type features.
Foliage is considered as a crowd of multiple objects, where TT (or Cw) resolves the shape of local neighborhood at the point
as spherical. However, the use of centroid in C gives inaccurate result in resolving the same, due to the random distribution
of the points in the neighborhood. These two observations for TT (or Cw) are attributed to both modifications; the point-based
analysis (as opposed to the centroid-based) of the local neighborhood as well as weighted contributions of neighbors (i.e. using
weights inversely proportional to the distances of neighbor to the point).
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Fig. 10: (Left) The plot shows the variation in percentage of points detected in each feature class using each descriptor, in
each scale, for fan-disk. From left-to-right, three columns represent rmin, ravg, rmax, in that order; for each LGD. Columns 1-3
correspond to C, 4-6 to TT , and 7-9 to TN . With minor variations in classification across scales for each LGD, TN detects more
line-type features (red) comparatively. (Right) Point rendering of buildings (blue), foliage (green), road (white) of a region of
interest of LiDAR point cloud of Region-4 of Vaihingen dataset, and preliminary results of line features (red) extracted using
feature graph in [10]. Note that sharp features in gabled roofs can be observed in LGD TN , unlike in C.

VII. CONCLUSIONS

Here, we have studied LGDs of a point cloud for LiDAR datasets, for geometry-based point classification. We have compared
two LGDs with the conventionally used covariance matrix, namely, an anisotropically diffused voting tensor, TN , and a weighted
covariance matrix, TT . TN performs better extraction of line-type features in point clouds than the conventionally used C; e.g.
the gabled roofs in the Vaihingen dataset are detected (Figure 10). TT , enhances point-type features, however we reserve its
in-depth study as future work. For comparing the classification outcomes accurately, we have introduced variants of these LGDs
by aligning their LRFs. Expressing the LGDs as positive semidefinite tensors has enabled us to use tensor field techniques on
the LGDs, e.g. visualization for qualitative comparison. We have introduced a probabilistic multi-scale saliency map based on
its LGDs for geometric classification. We have used superquadric tensor glyphs for visually representing the LGDs of a point
cloud. The visualizations have enabled us to compare and qualitatively analyze the behavior of these LGDs, e.g. shape and
orientation.

Our proposed methods have a limitation of user-defined parameters for multi-scale computation and diffusion parameter,
as its predecessors [10], [30]. While these parameters give the user the control to bring out the best outcomes upon visual
inspection, it would help the user to have a default setting, which can be automated.
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