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NodeTrix-Multiplex: Visual Analytics of Multiplex
Small World Networks
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Abstract

Analyzing multiplex small world networks (SWNs) using community detection (CD) is a challenging task. We propose the
use of visual analytics to probe and extract communities in such networks, where one of the layers defines the network topology
and exhibits small-world property. Our novel visual analytics framework, NodeTrix-Multiplex (NTM), for visual exploration of
multiplex SWNs, integrates focus+context network visualization, and analysis of community detection results, within the focus.
We propose a heterogeneous data model, which composites multiple layers for the focus and context and thus, enables finding
communities across layers. We perform a case-study on a co-authorship (collaboration) network, with a functional layer obtained
from the author-topic similarity graph. We also perform an expert user evaluation of the tool, developed using NTM.

I. INTRODUCTION

Complex networks are real-world, ubiquitous and important, as networks can simultaneously encode objects in a specific
context and the pairwise relationships between those objects. Small world networks (SWNs) are a class of complex networks [1],
[31], which shows small-world property. Social networks, such as collaboration networks, are SWNs. Owing to the advances
in technological capability of gathering, storing, and analysis of these data sets, such networks are increasingly encoding more
information. Thus, the rich data is stored as multiplex complex networks, where different relationships, between the same
set of nodes, are stored as separate layers. The layers of the multiplex network have unique adjacency matrices [3], [15].
Since our focus is on multiplex SWNs, we assume one of the layers in the network gives the network topology of a SWN,
which in turn determines an initial community formation. We call such a layer “structural” layer, and the other layers, such as
similarity graphs, “functional” layers, borrowing terminology from brain networks [19]. Another way to look at it is that, we
use the existential layer (i.e. the layer that has caused the very existence of the complex network) as the structural network, e.g.
collaboration network. Thus, the other layers are “functional,” which depend on the existenial layer. In the case of multiplex
SWNs, we consider the existential layer, that exhibits the small-world property, to be the structural one.

Community detection (CD) can reveal several patterns in a complex network. However, CD across multiple layers is
challenging owing to the differences in “percolation” of communities in the layers [8]. Here, we focus in selectively exploring
the dynamics of communities within a small subnetwork in the complex network, which is a community in itself. Thus,
for community exploration and detection in multiplex SWNs, we propose a focus+context paradigm, and a visual analytic
framework, NodeTrix-Multiplex (NTM), that enables the user to see clustering tendencies in the focus. Visual analytics
is an active area of research where visualization plays a larger role in data analytics, in an interweaved manner, than
just summarizing information or exploring data. Figure 1 summarizes our proposed work, which shows our proposed
heterogeneous data model (HDM), on which visual analytics is used for drilling down across layers in a subnetwork of
interest. Our proposed visual analytic framework is designed with the visual information seeking mantra: overview first, zoom
and filter, then details on demand [26]. NTM uses the hybrid visual representation of SWNs, as proposed in NodeTrix [12],
which exploits the “locally dense, globally sparse” structure of a SWN. A preliminary version of our tool1 is available at
http://nmultiplex.au-syd.mybluemix.net/
Notations:: We denote a multiplex network with N layers (each defined by a unique adjacency matrix), as M = {V (M ),E 0, . . . ,
E N−1}, where V (M ) is the vertex set of the network, and E i is the set of edges belonging to the ith layer, and it is represented
by the weighted adjacency matrix of the ith layer. e(u,v) implies an edge exists between vertices u,v ∈ V and it encodes the
edge weight, a real value.

The ith layer of M is defined as L i = {V (M ),E i}. Non-overlapping (or crisp) communities in any layer L i, are denoted
as {C i

0, . . . ,C
i
Mi−1} for Mi communities, where C i

j is the vertex set of the jth community in the ith layer. Thus, 0≤ i < N and
0≤ j,k < Mi where j 6= k, we get V (C i

j)⊂ V (M ) and V (C i
j)∩V (C i

k) = /0.
Any subnetwork in L k is given as N (k), where its vertex set is V (N (k)) ⊂ V (M ), and its edge set is E(N (k)) =
{e(u,v)}|u,v ∈ V (N (k))∧e(u,v) ∈ E k}. However, a subnetwork in L k can be constructed using the vertex set of community
C i

j , where iQ k; in which case, the subnetwork is given as: N (k,C i
j), whose vertex set is V (C i

j) and edge set is E(N (k,C i
j)) =

{e(u,v)|u,v ∈ V (C i
j)∧ (e(u,v) ∈ E k)}.
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Our proposed focus and context exist in L k and pertain to a subnetwork N (k), and hence, are denoted as F (N (k)) and
U (N (k)). The shorthand notations for vertex sets of focus and context are VF and VU , respectively; and the edge sets are EF
and EU , respectively. Even though interchangeably used as synonyms, here, we use “network”, “multiplex network”,“nodes”
and “links” in the context of dataset, and “graph”, “multigraph”, “vertices”, and “edges” as data structures, respectively.

II. RELATED WORK

In our work, visualizing communities within a SWN and exploring them are key ideas. Prior to visualizing, we detect
communities using state-of-the-art algorithms; and for exploring the communities, we use matrix seriation. While there is
not much material on visualization of multiplex networks, CD in multiplex networks has been an active area of research.
Notwithstanding, as SWNs is a class of complex networks, here, we discuss relevant literature in complex networks as well.
Visualization of Communities in Complex Networks:: NodeTrix [12], is a visualization of social networks, where the small-
world property of “globally sparse but locally dense” has been exploited to provide the visual representation, which integrates
better readability of node-link and matrix representations of the network in respective scenarios (i.e. sparse and dense nature
of the network which in the global and local spatial context, respectively) [11]. The locally dense subgraphs are represented
as “aggregated nodes” (ANs), and rendered as matrices. We direct the readers to the state of the art article on visualizations
of groups in graphs [29]. Node-link diagrams and integrated (linked) views have been widely used for visualizing hierarchical
structures in networks [24], [25], [30], and for multivariate networks [28], [14], [17]. Bastian et al. [2] have proposed Gephi,
a popular network visualization tool, which shows connected components and communities using node-link diagram.
Community Detection in Complex Networks:: Modularity-based Louvain CD [7] and graph-theoretic based Tarjan’s al-
gorithms [27] are popularly used for extracting communities and strongly connected components in networks, respectively.
Algorithms for hierarchical CD in multiplex networks, for finding crisp communities, use modularity across layers/slices as
a guiding principle [5], [18], to determine the best community formation. While these algorithms have composited layers in
the multiplex network at the node-level, we propose to perform the same at a coarser level of granularity, i.e. we composite
communities, or subnetworks; to make it more scalable for interactive visualizations. de Domenico et al. [10] have proposed
the use of modular flows between nodes across layers to identify overlapping communities in multilayer networks. We use a
similar concept, except that de Domenico et al. have proposed modular flows across several layers in communities, whereas
ours pertain to “modular flows” in aggregated nodes (as used in NodeTrix) across layers in multiplex networks. There have
been several studies on visual analytics of multiplex networks such as, Renoust et al. [21] and Rossi and Magnani [23], that
have discussed the limitations of extending simplex network visualizations to multiplex ones. They have worked with each
network “slice” or layer having its own independent graph layout. As opposed to their work which focuses on visual analytics of
dynamics across layers using node-link diagrams predominantly, our work is on CD across layers using a hybrid visualization.
Our visualization is however biased towards the SWN layer, owing to which we do not compute layouts for other layers.
Matrix Seriation:: Seriation is a process of reordering rows or columns in a matrix to identify pertinent patterns of clustering.
Visual assessment of clustering tendency (VAT) algorithm [6] computes the minimum spanning tree of the dissimilarity graph
to give ordering of nodes, and upon reordering, the clusters show the pattern of square blocks along the diagonal of the
matrix. Parveen et al. [20] have demonstrated that similarity matrices, after automatic seriation using VAT algorithm, can
provide effective matrix visualization of SWNs. We direct the readers to surveys of matrix reordering methods for different
domains [16] and for network visualization [4].

III. FOCUS+CONTEXT APPROACH AND DATA MODEL

We propose a focus+context paradigm to probe communities in a subnetwork of interest within the multiplex network.
Since we are interested in studying multiple layers of the complex network, our paradigm must be integrated with a HDM.
Our rationale is that the focus, which is a subnetwork, will allow us to study localized trends of the network. At the same time,
the focus has to be studied in the presence of context, for which we use the rest of the network. In our work, we propose to
use a subnetwork (N (k)) in a specific layer (L k) as the focus (F (N (k))); thus, the remaining network becomes the context
(U (N (k))). The vertex and edge sets for the focus (VF and EF ) and context (VU and EU ) are:

VF = V (F (N (k))) = V (N (k));
EF = E(F (N (k))) = E(N (k))∪{e(u,v)|(u ∈VF ∧ v ∈VU ∧ e(u,v) ∈ E k)∨

(u ∈VU ∧ v ∈VF ∧ e(u,v) ∈ E k)};

VU = V (U (N (k))) = V (M )\VF); EU = E(U (N (k))) = E k \EF . (1)

In order to find a subnetwork of interest, we propose to perform CD in the concerned layer L k, thus getting Mk non-
overlapping communities C k

0 , . . . ,C
k
Mk−1; and then, use one of the communities as a subnetwork of interest. Thus, one such

community is treated as the focus, and the remaining network becomes the context. Thus, VF ,EF ,VU ,EU in Equation 1 can
now be written as: V (F (N (k,C k

j ))), E(F (N (k,C k
j ))), V (U (N (k,C k

j ))) and E(U (N (k,C k
j ))), respectively.
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(a) (b)

Fig. 1: (a) Schematic of our HDM for multiplex network with three layers, the structural layer (Layer 1) and two functional
layers (Layers 2 and 3). Of the communities C1, C2, C3 in Layer 1, the intra- and inter-community edges of the focus (i.e.
C2) can be taken from Layer 2 [blue dashed lines]; and those of the context from Layer 3 [green dashed lines]. (b) GUI
layout of NTM shows the main view [red], widget for expanding the control panel [blue] and the staging area [green]. A
subnetwork of IV dataset (233 nodes, 569 edges, 12 different communities/ANs), with the co-authorship layer in both ANs and
links is displayed in the main view. Images of the focus/AN [cyan] from the main view are saved in its staging area; showing
(left-to-right) unseriated co-authorship layer, VAT-seriated co-authorship layer, and VAT-seriated author-topic similarity layer.

Using the aforementioned construction of focus, the communities and the focus+context paradigm lie in the same layer, and
hence, this pertains to analysis of a single-layer network. What if we use the community in one layer to define the focus,
which is further studied across multiple layers in a multiplex network ?

There is a subtle difference between our usage of terms, “community” and “focus”. The edge set of the former consists of the intra-
community edges exclusively; whereas that of the latter (EF , as used in Equation 1) is the set of all edges (both intra-community
edges and inter-community), for which at least one of the vertices belong to the community.

Heterogeneous Data Model:: For a multiplex network, we propose the construction of a composited single-layer network
Mmod , which is an aggregate of multiple network layers. Our proposed algorithm, of O(|V (M )|) complexity, aggregates a
maximum of three layers of M , taken at a time, in a three-step process (Figure 1(a)). Firstly, we perform CD in layer L i

to find subnetwork of interest C i
j . Secondly, using the vertex set VF = V (C i

j) in layer L k we construct focus, F (N (k,C i
j)).
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Thirdly, we define context, U (N (u,C i
j)), using vertex set, VU = V (M )\VF , but edge set from a third layer L u. Since, we

are able to reconstruct a single “composite” layer using multiple layers, we call this construction a heterogeneous data model.
Thus, rewriting Equation 1 for multiple layers:

EF = E(F (N (k,C i
j))) = E(N (k))∪{e(u,v)|(u ∈VF ∧ v ∈VU ∧ e(u,v) ∈ E k)∨

(u ∈VU ∧ v ∈VF ∧ e(u,v) ∈ E k)};
EU = E(U (N (u,C i

j))) = E u \{e(u,v)|(u ∈VF)∨ (v ∈VF)} (2)

Our rationale is that we can switch between different layers in the focus and context and study localized patterns, such as in
CD, persistent across the layers.

Since, in our case, the structural layer exhibits the small-world property and contains “locally dense” subnetworks, we
perform CD in L 0. The sparse links between these communities in L 0 also indicate that the communities internally are
well-connected, which implies analysis of each of these communities can be performed mostly independently. Hence, owing to
the better defined community formation in L 0, our analysis and graph layout are more biased to it than to the other layers. We
use one such community in L 0 as the focus. We find: VF = V (C 0

j ); VU = V (M )\VF ; EF = E(F (N (k,C 0
j ))); and EU =

E(U (N (u,C 0
j ))). This model can be generically used for two-layer multiplex network, where one of the two layers can be

treated as L u, as done in our case-study.

IV. NODETRIX-MULTIPLEX: A VISUAL ANALYTIC FRAMEWORK

We propose NodeTrix-Multiplex (NTM), which is a visual analytic framework built on the concepts and visualization
layout used in NodeTrix [12]. NTM is a human-in-the-loop framework, which enables users to visually explore and find strong
communities which percolates across layers of a multiplex SWN. It is integrated with our HDM, which uses focus+context
paradigm and a seriation algorithm. It enables the user to understand the dynamics of community formation in different layers
by drilling down a subnetwork of interest. The choice of using NodeTrix over node-link diagrams, e.g. in Gephi [2], is due
to clear separability of the matrix visualization of focus from the context, in the former (Figure 2). This separability helps in
visualization of composited network layer, using different layers for CD, the focus, and the context (Figure 1(a)).
GUI Layout and User Interactions:: The proposed layout of GUI for NTM (Figure 1(b)) consists of three components: main
view, staging area, and control panel. The hybrid visualization of the focus+context is shown in the main view, where the
user can choose a focus. The user can interact with the focus and context simultaneously or exclusively with either. In the
staging area the user can save images of the focus and view them in different zoom levels. In the control panel, the user
has the controls to choose the layer for focus/ context visualization, threshold for ε-neighborhood for similarity graph (i.e., if
a similarity layer is present in the network), color scheme for colormapping of matrices, and seriation. These operations are
for the focus and its context, which can be applied simultaneously or exclusively to either, using locking of focus. Separate
choices of layer for the focus and the context support the HDM (Section III) and VAT seriation for the focus (Section II).

Key Differences between NodeTrix and NTM::
1) NodeTrix is exclusively for studying all ANs in a single-layer SWN homogeneously; whereas our goal is to study local trends in

the the multiplex SWN heterogeneously. Our heterogeneous study implies studying an AN in settings different from those of other
nodes/ ANs in the network.

2) Owing to the difference in the motivation, NodeTrix uses user-guided agglomeration to create ANs, whereas we use Louvain CD
algorithm [7] to automatically extract strong communities in the structural layer. The communities are represented as ANs in NTM.

3) NodeTrix uses user-guided seriation for finding patterns in matrices, whereas we use automatic seriation algorithm, such as VAT
algorithm [6].

4) NodeTrix visualizes unweighted adjacency matrix, whereas NTM uses weighted adjacency matrices, for CD, and their complements,
i.e. distance matrices, for visualization. The latter is done to comply with the visualization used in VAT algorithm. The difference is
that the diagonal cells of AN have value one in NodeTrix (colored white) and value zero in NTM (colored black).

5) The visualization tasks are different – the tasks in both NodeTrix and NTM are to identify communities (T1), central actors (T2), and
roles and positions (T3); and NTM additionally has to analyze CD across layers. NTM accomplishes T1 without visual interaction.
For T2 and T3, VAT seriation of ANs in NTM highlights the cross, block, and intermediate pattern, as in [12]. The additional unique
tasks for NTM are: (T4) find a set of nodes in a community which show clustering tendency across different layers, using the focus,
and (T5) find inter-community relationships which could be strong in layers different from the one used for CD, using focus+context.

Figure2 1 shows the layout of the GUI. In the main view, the user can move matrices of the aggregated nodes, which updates
the links between the ANs. The operations, which are facilitated through the control panel of NTM, are implemented on both
the focus as well as the context. Additionally, depending on the user’s needs, these operations can be implemented separately,
for which we introduce the notion of “locking” the focus, to preserve it from the modifications made to the context. Thus,

2All images in this paper look best when zoomed in.
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Fig. 2: A subnetwork (233 nodes, 569 edges, and 12 ANs/communities) in the IV co-authorship network dataset shows the
foci, F1 and F2, in the author-topic similarity graph (functional layer) and context in the co-authorship layer (structural layer).
Yellow highlights show central actors in the community/AN. The inter-community edges are shown in both functional [dotted
lines, showing 22 edges with similarity score > 0.7] and structural [solid lines] layers.

Fig. 3: An aggregated node showing a community in structural layer of IV dataset, after VAT seriation shows clusters recurring
in both structural and functional layers [green, blue, orange]. The yellow highlights show central actors.

the user can choose a focus and activate it, and by locking it, the user activates the context. A blue lock icon in the top left
corner of the matrix indicates active or locked state, respectively. A focus can be activated by clicking in the region of the
AN. When a focus is deactivated, the user can choose another AN as focus. Extending the layout in NodeTrix to render the
focus, we additionally render inter-community links from the AN representing the focus. These inter-community links exist
in the layer, which is used for visualizing the focus; while we also render (inter-community) links between ANs in the layer
used for visualizing the context.
Software Implementation:: NTM has been implemented using Python v2.7 for data preprocessing, Flask framework, and
D3.js [9] for visualization. D3.js enables us to perform progressive rendering of sparse links when moving the ANs.

V. CASE-STUDY OF A MULTIPLEX COLLABORATION NETWORK

Our case study, Infovis (IV) co-authorship network [13] during (1995-2015) has 1235 nodes, 2705 edges, 150 communities
(detected using Louvain CD). The two layers in IV dataset are co-authorship (structural) and author-topic similarity [22]
(functional) graphs. The co-authorship layer (Figure 2) has links between authors if the authors have co-authored, and the
edge weight is the number of papers they have co-authored in the topic of Infovis during 1995-2015. The following metadata
for each paper is available in the IV dataset: title, authors, keywords, abstract, and references. We have used the metadata to
compute the author-topic similarity matrix, which is the adjacency matrix of a similarity graph. Similar to NodeTrix, tasks T2
and T3 can be accomplished from NTM, where the mostly colored row and column (yellow highlights in Figure 3) pertaining
to Ben Shneiderman and Jeff Heer, show them to be the central actor in the communities in foci F1 and F2, respectively.
Similarly, S. Carpendale, C. North, P. Hanrahan, J. Wood, J. Fekete, J. Dykes, and H. Hauser are central actors in their
respective communities/ANs.
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NTM helps us find clusters along the diagonal, given by VAT, which recur in multiple layers; e.g. blue, green, and orange
highlights in Figure 3 who group together in both the layers. Thus, the staging area (Figure 1(b)) helps in accomplishing task
T4. The semantics of such a cluster is that, co-authors in it publish in similar topics, even in papers other than their joint
papers. In such clusters in F1 and F2, which also contain the central actors (blue highlights in Figure 3), we observe that the
cluster in the structural layer are rendered darker than those in the functional layer, which indicates more accurate similarity
scores. On the contrary, the reverse observation in the orange (in F2) and green (in F1 and F2) highlights, where the cluster
in the functional layer is darker than its counterpart in the structural layer, indicates erroneous computation of the similarity
scores. We have found out that the error in author-topic similarity arises owing to the authors having only one paper in the
dataset. Author-topic similarity score is computed using a mixture of distributions associated with the authors in a multi-author
paper. A cluster, which is darker in the structural layer than the functional one, implies that the authors have co-authored
multiple papers together, owing to which the author-topic similarity scores are more accurate. e.g. {Shneiderman, Plaisant}
and {Heer, Agrawala} have authored {8, 4} and {17, 6} independently, and 2 and 5 papers jointly, and thus, have more accurate
author-topic similarity scores, 0.57 and 0.60, respectively. Thus, our visualization not only identifies clusters that recur across
layers, the aforementioned pattern can help ascertain the accuracy of the results. A corollary to T4 would be to find authors
who have not co-authored but have a high author-topic similarity score, which may indicate potential collaboration outside of
this network, e.g. {Heer, Stone}3. However, these aforementioned patterns are specific to the current scenario of co-authorship
and author-topic similarity layers, and should not be generalized. Nonetheless, NTM enables identification of such trends.

NTM is designed to study all aspects of the subnetwork, corresponding to the focus (which is in structural layer), in all
functional layers, for visual analytics; without assuming that the focus remains a community across all functional layers. e.g.,
links in the similarity layer, but between the AN’s in the SWN layer, give more information about the overlap of topics the
authors work with, thus accomplishing task T5 (Figure 2). Between ANs with Hauser and Shneiderman as central actors, links
{Ledermann, Aris} and {Doleisch, Aris} have been observed to exist due to common topics of plots and user interactions;
and {Hauser, Yalcin}, due to the topic of set visualizations. Similarly between ANs with Fekete and Shneiderman as central
actors, links {Henry, Woodruff} and {Ghoniem, Sabol} have been observed to indicate common topics ofmultiple views and
graph visualization, respectively.

Work-flow for Community Exploration:: Our work-flow for CD and exploration in a multiplex network, using NTM GUI, is
a four-step process (Figure 1). Firstly, we input a multiplex network, M , with N layers, and set the structural layer E 0. In our
implementation, we construct the multiplex network using author-topic similarity graph, which is the adjacency graph of a functional
layer. Similar to NodeTrix [12], NTM becomes slow for interactive response, when the entire network is loaded. For interactive
performance, in our case study, we have used Louvain CD (O(|V (M )| log(|V (M )|)) complexity) to identify communities on the
structural layer of the entire network, to find logical subnetworks of size upto 250 nodes, to be loaded on NTM. Here, we have used
the vertex set of three largest communities in the network as our subnetwork of interest. This step will, however, not be required
once NTM is scaled to handle loading of the entire network. Secondly, Louvain CD is performed on the structural layer of the
subnetwork, which is loaded on NTM, as a preprocessing step. In our specific case, performing Louvain CD on the entire network
and on the subnetwork yield different results; hence, we repeat running the algorithm on the subnetwork after it is loaded. Thirdly,
the user can interact with the tool, and pick an AN as a focus. Fourthly, the user can build multiple HDMs, and perform automatic
seriation on the AN, using VAT, to visualize possible clusters in each of the layers. For further analysis, different images of the
focus are saved and loaded in the staging area.

Expert User Evaluation:: We have performed an expert user evaluation of the tool, which is built using NTM as a framework
and is available at http://nmultiplex.au-syd.mybluemix.net/ . The expert, who is a network science researcher, analyzed the
usefulness and usability of the tool. The expert mentioned that the use of focus+context visualization helps in focused analysis
of communities and hence, the HDM is useful. We have presented the visualizations of the HDM in an existing tool, Gephi
(Figure 4), and NTM (Figures 1 and 2), to the expert. The expert mentioned that the visualizations are better readable on
NTM than on Gephi. The expert commented that the HDM and the tool are useful for finding relevant nested communities,
which gives a mesoscopic network analysis. The ability to switch across different layers allows the user to get an overview of
the dynamics occurring in each layer. While the tool does not automate community analysis across the layers, the expert was
able to study each focus in detail using the tool. However, the tool is limited in answering specific questions within foci or
communities alone, and in its current state, the tool cannot perform a generic analysis of all communities. It also cannot give
comparisons of the “strength” of communities across layers. Nevertheless, overall evaluation has been encouraging.
Usability Evaluation:: The expert commented that the tool is predominantly easy to use, with the help of the interactive tutorial.
The interactivity is responsive, especially due to updates using progressive rendering. The expert liked the color combinations
for improving the visual experience. At the same time, the expert pointed out the limitations in the usability of the current
version, such as overloading of features on the right mouse button and non-intuitive user interaction for panning in the main
view. Currently, the right mouse button is used for selecting focus, popping up the browser menu, and dragging the focus; the

3Lin, Sharon, Julie Fortuna, Chinmay Kulkarni, Maureen Stone, and Jeffrey Heer. “Selecting Semantically]Resonant Colors for Data Visualization.” In
Computer Graphics Forum, vol. 32, no. 3pt4, pp. 401-410. Blackwell Publishing Ltd, 2013.
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Fig. 4: An equivalent of graph layout in Gephi of the subnetwork of interest, showing the communities in the structural layer,
detected using Louvain CD in different colors. Foci F1 and F2 in red and blue, in the structural layer in left, and in similarity
layer in the right. The latter shows the node-link diagram of the HDM.

scroll wheel is used for zooming in and out; and dragging the left and right mouse buttons has been used for panning. The
limitations can be alleviated with UI re-design of the tool.

VI. CONCLUSIONS

We have proposed and implemented a visual analytic framework, NTM, for probing a subnetwork of interest, chosen as a
focus, in a multiplex SWN. We have used a focus+context paradigm, our proposed HDM, visual analytic workflow and seriation
for clustering. We have constructed a multiplex network from a co-authorship network (structural layer) by computing author-
topic similarity graph as the functional layer. However, there are few limitations in our current approach. In this work, we
have focused on multiplex SWNs, owing to which the network topology of the structural layer is restrictive. At the same
time, in order to extend this work to different kinds of multiplex networks, without none of the layers exhibiting the small
world property, we need to consider an appropriate visual representation of the concerned network topology. NTM, being an
extension of NodeTrix, is effective as a hybrid visualization of node-link diagrams and matrix visualization, as the “globally
sparse” property of the SWNs reduces clutter and occlusion in the visualization. If the intercommunity links were not to be as
sparse as seen in the SWN topology, then the hybrid visualization gets very cluttered. We are currently working on improving
scalability in using multiplex networks with more than two layers. We are also investigating other graph layouts, without a
bias on SWN layer.

VII. ACKNOWLEDGEMENTS

This work has been partially supported by funding from NRDMS, Department of Science & Technology, Government of
India; RSA division of EMC2 India; and INCOIS, Ministry of Earth Sciences, Government of India. The authors are grateful
to Dr. T. K. Srikanth for his valuable contributions in improving the tool, and to the anonymous reviewers for comments in
improving the paper.

REFERENCES
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