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1. INTRODUCTION AND STATEMENT OF RESULTS

The following result is well known in the theory of the distribution of zeros

of polynomials.
THEOREM A (Enestrom-Kakeya). Ifp(2)= Z ajzf is a polynomial of degree
j=0

n such that

A2 Qy-120n-2.--20) >ap>0,

then all its zeros lie in |z| < 1.

There already exist in literature [1-15], certain generalizations and refinements
of Enestrom-Kakeya theorem. Joyal et al. [13] obtained the following generaliza-
tion, by considering the coefficients to be real, instead of being only positive.

THEOREM B. If

4,20y 120n-22...202201 20g,

n
then the polynomial p(z)= X a;z’ has all its zeros in the disc

i=0

Aziz and Mohammad [1] obtained the following generalization of Theorem A.

n
THEOREM C. Let p(z)= £ a;z’ be a polynomial of degree n, with positive
j=0
coefficients. If t, >, >0 can be found such that

a,r,rg+a,,'_](r1 -t)—-a,220, r=1,2,...n+1, (a-1=ay+1=0),

then all zeros of p(z) lie in |z| <t;.

We have obtained a generalization of Theorem C, by following the direction
of generalization of Theorem A to Theorem B and also a refinement of Theorem
C. More precisely, we have proved

n a
THEOREM 1. Let pz)= Z a;z’ (ao#0), be a polynomial of degree n, with
j=0 '
real coefficients such that for certain non-negative real numbers ty, b
(tl g2 and 1 # 0),
a,tl.'.2+a,._|(£|~—t2)—a,_220, (?’=].,2,.”,ﬂ.+l), (l.l)

a=a,+1=0. (1.2)
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Then p(z) has all its zeros in

o — 20 lag|t,
: |a()|f1.f2 ntl r{‘l f"
min <zl <m 1
BN N — |z| < max o . (13)

Thinking again in terms of Theorem B, but indirectly, with its following
generalization obtained by Gardner and Govil [6],

n
THEOREM D. Ler p(z) = I a;z’ be a polynomial of degree n. If Re aj =0y

=0
and Im a;j=P; for j=0, 1,2, ..., n, and for some k and r and for some t (> 0),
R St gt 2t 2. 2%, (1.4)
and
Boi <282, . SPB. 2B 2 2B, (1.5)

then p(z) has all its zeros in R < |z| £ R,, where
Ry = min {(t|ao| /(2(t*0u + t'B,) = (cto + Bo) = 1"(Ctn + By — [@a])), 1)

Rzzmax{(ianJI"“—r"_l(aO+BO)*t(CL,,+B,,)+(!2+ D" 4 oy

n=-r- ik ; r=1 4
HTTIBHE-D( I g 3 00
a1 j=1
n=1 n-1

- -j=1 Syt
+1-19( Z e I VPR e, 10 ),
j—-k+] j=i’+1

we have obtained, by making inequalities in (1.4) and (1.5), getting reversed at

p indices and q indices respectively, the following generalization of Theorem
D:

n
THEOREM 2. Let p(z)= X a,z’, be a polynomial of degree n. If Re a;=q
j=0 :

Im a;=; j = ]
1 a; Bj, for j=0,1,2,....,n and for certain non-negative integers
kiky oo vkyir ..., rq and for certain t >0

<toy <...<thg, >kt ky ky+ 1

QoS0 <. Sefoy 200" oy, 4 2. 2000, < oy L <L (1.6)
<P <. <tB, >t r rtl

Bo <1B, <r'p, 2t Pt i P, <t” B,zﬂg,u‘ k)

(with inequalities getting reversed at p indices ky, ky, . . . ky in (1.6) and t"o,

. + . 3 - ’ ' o
being the last term in (1.6), and similarly, inequalities getting reversed at q indices
iy 12 ws1g in (1.7) and "B, being the last term in (1.7)), then all zeros of
p(z) lie in

R] < IZ[ SRz,
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where

a2 2 2
t|a t|a t7|a
R]=fr1in[ ‘ Dl,r]= | 0|= 1,01

M, M, M
M, 1

R, = max i
la,| " t

M, =M,
’ P k
M{=—{og+(-1Y " lot" + = (-D)oyt™)
u=1

- {BD+(dl)q+1Bnrn+ ;:' (_i}‘Br_\.fr"} +]a”l!n.

s=1
P
My = [—0gt™ 4 (=1P ot + (124 1) B (=D oyt
u=1
P kupy =1
+ir=1) 2 (DY I
u=0

m=k,+1

(X.mln_m_l }]

q
C Bt 4+ ()T Bt (24 1) B (DB
=1

r

el
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0
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ko=ry=0,
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]

Finally, in this paper, we prove two more results, (each, a generalization of
Enestrom-Kakeya theorem), with first one being somewhat similar to Theorem 2

and second one being somewhat similar to Theorem D.

ety
THEOREM 3. Let p(z2)= X a;z’ be a polynomial of degree n, with complex

=0

coefficients such that

larga;-B|<o<n2, j=0,1,...,n,
for ceratin real B and for certain non-negative integers ky, ko, .
certain t >0 -

k g akyatil key +1
lao| Stlay| S ... SO a |24 oy 1] 2. 2 e0 e | S 197 ag,40] S
(with inequalities getting reversed at p indices ky, ky, .
being the last term in (1.8)). Then all zeros of p(z) lie in

R'_:,ﬁ |Z| 'SR4,

.., ky and for

.. (1.8)

< kyin (1.8) and t"|ay|,
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where

2 2 5
t
R:{:;nj”[_—._la_d.tjzf ‘aﬂlzr |a0|

Ms Mo M,
M

Ry = max| ,l ;
lag| " t

Mg,:fM;,

’ p .
My=—{2coso X (—l)m]akm!r;‘"%]agl +(=1Y* | a,|t")
m=1
n=1 -
+2sina '20 laj|t! + (= |ag| + |a,|t") sin o+ |a,|t",
e
2 P anl_l
My=-[cosa {(1*~1) = (-1)"*' 2
m=0

s=k,+1

PACSRES)

P
2 o
+{t -+ k) 2](—1)"'|akmlr" Ky 1+|ao]r”_1(1+t2)
m=

+ (=1 an| +sino { = (tlaj| +|aj-o|)t" 7} + |ag|t" !,
j=1

k0=0vkp+l =n.
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hn
THEOREM 4. Let p(z) = Z a7, (Re aj=q;, Im aj=B, for j=0,1,2

j=0
. » ), be a polynomial of degree n such that, Jfor certain real B,

larg a;— B| < o < /2, Jorj=t, 2.000m
and for certain t (> 0) and k (0 < k<n)
Siloy] <05t s
|o| < #]ayy | oyl 28 oy | 2. .. 21"y,

Then all zeros of p(z) lie in

Rj s izl < RIS!
where
Rs _ lao] .
M;
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. j
Ms=1t"""(|a,| = o) — ]| + _letIBj|“]Bj—1“‘
j=

n .
+2sina (1" T ||+ 2 oy,

j=1
3 n=1 i
" Vag + 6" o]~ 1|0 | + (1 =17 E oyl T
o k=0
n _ = n 2t 9T N
+Z irlBj|—|[3}-_Il|:"‘*’+25ina(r' _Eliajaj_ll o
j=1 i=
k=1 "
" agl — 1" Vo] -t + (2= 1) oyle"
j=1
& n-1 sy ;
M={ +(1+O)" Mol + (1 -t T Joy|e"™ ,1€ksn-1,
-
- i J 2 : 1/2,n—j
+ 3 |t B| - Bj- ]| + 2 sin o (e .21'|“j“j—1| ")
i=1 i=
n=1 T
"+ Vag| = 1 Voo 1] + (P = 1) 2 Joyle" T
o < k=n
n . |
N > 1:1[3!-!—|ﬁj_1]1t“'1+25ina(r”z I211ajaj_1|'”:" )
j=1 i=

2. LEMMAS
For the proofs of the theorems, we require the following lemmas.
LEMMA 1. Let f(z) be a polynomial of degree n, with
M(r) = max |f(2)|, (r>0).

lzl=r
Then
4 B
Equality is attained only if the polynomial is of the form o
This lemma is due to Polya and Szegd [16, Part III: Problem no. 269].

O<r<n.

LEMMA 2. Ifa;and a;-, are two complex numbers with
larg aj - B| < <2,
larg aj- - B| S a < W2,

for certain real B, then

Bl
la;—aj-1|2 < (|| = aj-1])* cos” a+ (|ay| +|a;-1])" sin” 0.
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This lemma is due to Govil and Rahman [9, Proof of Theorem 2].
LEMMA 3. Under the same hypothesis, as in Lemma 2,
laj—a;- 1| <|la;| = |aj- ]| cos o + (|aj| + | a;-]) sin o

Proof of Lemma 3: It folows easily from Lemma 2.
LEMMA 4. Under the same hypothesis, as is Lemma 2,

2 2 .

laj = aj-1|"< (|laj| = |a;-1])" + 4]aja; | sin’ at.

This lemma is due to Jain [10, Proof of Theorem 2].

LEMMA 5. If @ (Reaj=0y, Imaj=P) and a;_; (Reaj-,=0;_y,
Ima;_ =P;_) are the two complex numbers with

larg aj— B| < < m/2,
larg a;_ - B| << w2,

for certain real B, then
laj—a;- 1] <loy] = loy- 1| + (1B = |Bj-11I+21a; - @y | sin .
Proof of Lemma 5: We have
(la) = aj-11)*= (Joy| = oy 1 [)* + (IB| = |B;-1])?
+2(]oyoy - | + IBBs-1]-laja;- 1)
< (loy| = oy 1 )*+ (IB;] - By 1])>%
which, by Lemma 4, implies
la;—a;-1|* < (Joy| = oy -1 )+ (|B;| - |Bj-11)* + 4ajq;_ | sin® a.
and Lemma 5 follows.

3. PROOFS OF THE THEOREMS
Proof of Theorem 1. We consider the polynomial

Fz) = (+2)(t - 2) p(2) (3.1)
==a, 2" 2+ (@t~ 1)~ a, )" + (astitr+an- (1~ 1) ~a,-2)2" +. ..
+(ahta +ay(ty — 1) — ag)z® + (a1tty + ag(ty — 1))z + agh ty. (3.2)
Further, let
G() =" *F(1/z) (3.3)

==an +(ay(ty — 1) —a,_1)z
i (anflfz + a, .. 1(1] il rz) —ay _2)22 Bt oy ok (aztlxz + al(q s t?,) = ag)Z"
+(atty + aot; - )" + agh "2, (3.4)

=Y(2) + agh 1,2 * 2, say. (3.5)
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We now have on |z| = 1/,

1
[W(2)|<]an| + (@nlts = 22)—@n-1) 5

1
+ (antit2 + a5 - 1(f —tz)“ﬂn—z);+---
i

1
+(ahiz + ar(t = !z)‘ac}%ﬂamfzi-ao(h - 1)) o (by (1.1) and (1.2))
3|

[P
_—_|an|+an-—a{}t?+l »

and therefore, by Lemma 1, we have, for |z| 2 1/t

I n+l,n+1
Iw(z)ls[tanlwn-ao t,,H]IZI no,
1

which, by (3.5), helps us to write

I n+ln+l >
|c<z>|z|a01x1:z|z|"”—[1anl+an—ao,;,+,]|z| 0, fel> U

>0,

laaltf "+ttt —agty 1
|z| > max 7 "H

Hence F(z) and therefore p(z) has no zeros in

lao| 11tz
mi tit (3.6)
< n v #1
L {|a,,lr['+]+a,,tf'+]—aur2 :

Again, by (3.4), we have

G(z) = —an + §(2), say. 3.7
We now have on |z| = 1/f
) t
|0(z)| < @, — a0 ::] +|ao| rnil (by (1.1) and (1.2)) (3.8)
h 1

which, by Schwarz’s lemma, helps us to write

t 1
I¢(z)lﬁ[arao tﬂi T+ |aol e lz|ty, |z| < U,
1 1

and therefore, by (3.7), we have
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0 )
|G(2)| 2]a,| “[(-‘., - a el + |ag| r”_+TJ lzlt;, |z| < iy
I I

>0,
if
|z] < min la,| -
; a —aoi+[ag|~i,rl
n r;lf | rln+]
Hence F(z) and therefore p(z) has no zeros in
(5
4, = do n+1 +Ia0| n+1
Jl I
|z] > max L1
|a,|

Theorem | now follows, by using (3.7).

Proof of Theorem 2: 1t is similar to the proof of the result [6, Theorem], with
two changes:

n 5
() Z |eoy—o;_ |’ being broken into (p+ 1) sums (corresponding to p
j=1

integers ky, ks, . . ., k,). instead of two sums (corresponding to one integer k),

n
(i) Z [|¢B;—B;_;|¢’ being broken into (g+ 1) sums (corresponding to g
j=1

integers ry, ro, . .. . Iy), instead of two sums (corresponding to one integer r),

and so we omit the details.

Proof of Theorem 3: 1t is also similar to the proof of the result [6, Theorem],
with two changes:

(i) inequality (obtainable by Lemma 3)
lta;—a;_ 1| < (|t|a;] - |a; - 1l]) cos o+ (¢]a;] + |a; 4 |) sin a,
instead of the inequality

l1a; —a; | < |10~ 0y | +|eB; = B, -,

n
(ii) _Zl| tlaj|=|a;_ ||’ being broken into (p+ 1) sums (corresponding to p
J=_'
integers &y, ks, . . ., k), instead of two sums (corresponding to one integer k),
and so we omit the details,

Proof of Theorem 4: 1t is also similar to the proof of result [6, Theorem],
with two changes:
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(i) inequality (obtainable by Lemma 5)

|taj— aj— 1| < |tloy] = [0 1 || + || Bl = |Bj— 11| + 26| aja;- 1] sin

instead of the inequality

|ta; - a;_ 1| < |toy = 01| + [B; = B;- 1,

(ii) no break up of Z |3|Bji‘[Bj—1||fj
i=1

and so we omit the details.
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