Journal of the Indian Math. Soc. Vol. 72, Nos. 1-4 (2005), 147-156

CERTAIN GENERALIZATIONS OF ENESTRÖM-KAKEYA

A. CHATTOPADHYAY, S. DAS, V.K. JAIN and H. KONWAR

(Received: September 29, 2004)

According to well known Eneström-Kakeya theorem, the polynomial $p(z) = \sum_{j=0}^{n} a_j z^j$ has all its zeros in $|z| \le 1$, provided $a_n \geq a_{n-1} \geq \ldots \geq a_1 \geq a_0 > 0.$

We have obtained certain generalizations of this theorem for the polynomial $p(z) = \sum_{j=0}^{n} a_j z^j$, (Re $a_j = \alpha_j$, Im $a_j = \beta_j$), with coefficients such that

(i) a_j 's $(0 \le j \le n)$ are real and for certain non-negative real numbers

(i)
$$a_j$$
's $(0 \le j \le n)$ are real and $t_1, t_2 \ (t_1 \ge t_2 \& t_1 \ne 0)$ $t_1, t_2 \ (t_1 \ge t_2 \& t_1 \ne 0, t_1, t_2 + a_{r-1}(t_1 - t_2) - a_{r-2} \ge 0$ $(r = 1, 2, ..., n+1)$ $t_1, t_2 \ (t_1 \ge t_2 \& t_1 \ne 0, t_1, t_2, ..., n+1)$

(ii) For certain non-negative integers $k_1, k_2, \ldots, k_p; r_1, r_2, \ldots, r_q$ and

(ii) For certain non-negative integers
$$k_1, k_2$$
.

for certain $t > 0$

$$\alpha_0 \le t\alpha_1 \le \ldots \le t^{k_1}\alpha_{k_1} \ge t^{k_1+1}\alpha_{k_1+1} \ge \ldots \ge t^{k_2}\alpha_{k_2} \le t^{k_2+1}\alpha_{k_2+1} \le \ldots$$
(1)

$$\alpha_{0} \le t\alpha_{1} \le \dots \le t^{k_{1}}\alpha_{k_{1}} \ge t^{k_{1}} + \alpha_{k_{1}+1} \ge \dots \ge t^{r_{2}}\beta_{r_{2}} \le t^{r_{2}+1}\beta_{r_{2}+1} \le \dots$$

$$\beta_{0} \le t\beta_{1} \le \dots \le t^{r_{1}}\beta_{r_{1}} \ge t^{r_{1}+1}\beta_{r_{1}+1} \ge \dots \ge t^{r_{2}}\beta_{r_{2}} \le t^{r_{2}+1}\beta_{r_{2}+1} \le \dots$$
(2)

(with inequalities, getting reversed at p indices k_1, k_2, \ldots, k_p , in (1) and $t^n \alpha_n$, being the last term in (1), and similarly, inequalities getting reversed at q indices r_1, r_2, \ldots, r_q in (2) and $t^n \beta_n$, being the last term in (2)).

 $|\arg a_j - \beta| \le \alpha \le \pi/2 \quad (j = 0, 1, \dots, n)$ (iii) For certain real β

and for certain non-negative integers k_1, k_2, \dots, k_p and for certain t > 0

and for certain non-negative integers
$$k_1, k_2, \dots, k_p$$
 and for certain t (or and for certain non-negative integers k_1, k_2, \dots, k_p and for certain t (or and for certain t (or an integer) $a_0 | \leq t |a_1| \leq \dots \leq t^{k_1} |a_{k_1}| \geq t^{k_1+1} |a_{k_1+1}| \geq \dots \geq t^{k_2} |a_{k_2}| \leq t^{k_2+1} |a_{k_2+1}|$

$$|a_0| \leq t |a_1| \leq \dots \leq t^{k_1} |a_{k_1}| \geq t^{k_1+1} |a_{k_1+1}| \geq \dots \geq t^{k_2} |a_{k_2}| \leq t^{k_2+1} |a_{k_2+1}|$$

$$|a_0| \leq t |a_1| \leq \dots \leq t^{k_1} |a_{k_1}| \geq t^{k_1+1} |a_{k_1+1}| \geq \dots \geq t^{k_2} |a_{k_2}| \leq t^{k_2+1} |a_{k_2+1}|$$

$$|a_0| \leq t |a_1| \leq \dots \leq t^{k_1} |a_{k_1}| \geq t^{k_1+1} |a_{k_1+1}| \geq \dots \geq t^{k_2} |a_{k_2}| \leq t^{k_2+1} |a_{k_2+1}|$$

$$|a_0| \leq t |a_1| \leq \dots \leq t^{k_1} |a_{k_1}| \geq t^{k_1+1} |a_{k_1+1}| \geq \dots \geq t^{k_2} |a_{k_2}| \leq t^{k_2+1} |a_{k_2+1}|$$

$$|a_0| \leq t |a_1| \leq \dots \leq t^{k_1} |a_{k_1}| \geq t^{k_1+1} |a_{k_1+1}| \geq \dots \leq t^{k_2} |a_{k_2}| \leq t^{k_2+1} |a_{k_2+1}|$$

$$|a_0| \leq t |a_1| \leq \dots \leq t^{k_1} |a_{k_1}| \geq t^{k_1+1} |a_{k_1+1}| \geq \dots \leq t^{k_2} |a_{k_2}| \leq t^{k_2} |a_{$$

(with inequalities getting reversed at p indices k_1, k_2, \ldots, k_p , in (3) and $t^{n}|a_{n}|$, being the last term in (3))

 $|\arg a_j - \beta| \le \alpha \le \pi/2 \quad (j = 0, 1, \dots, n)$ (iv) for certain real β ,

and for certain t > 0 and $k (0 \le k \le n)$

$$|\arg a_j - p| \le \alpha \le t$$
For certain $t > 0$ and $k (0 \le k \le n)$

$$|\alpha_n| \le t^{n-1} |\alpha_{n-1}| \le \dots \le t^k |\alpha_k| \ge t^{k-1} |\alpha_{k-1}| \ge \dots \ge |\alpha_0|$$

$$|\alpha_n| \le t^{n-1} |\alpha_{n-1}| \le \dots \le t^k |\alpha_k| \ge t^{k-1} |\alpha_k| \ge t$$
Regular Mathematic

1. INTRODUCTION AND STATEMENT OF RESULTS

The following result is well known in the theory of the distribution of zeros of polynomials.

THEOREM A (Eneström-Kakeya). If $p(z) = \sum_{j=0}^{n} a_j z^j$ is a polynomial of degree n such that

$$a_n \ge a_{n-1} \ge a_{n-2} \dots \ge a_1 \ge a_0 > 0$$
,

then all its zeros lie in $|z| \le 1$

There already exist in literature [1-15], certain generalizations and refinements of Eneström-Kakeya theorem. Joyal *et al.* [13] obtained the following generalization, by considering the coefficients to be real, instead of being only positive.

THEOREM B. If

$$a_n \ge a_{n-1} \ge a_{n-2} \ge \ldots \ge a_2 \ge a_1 \ge a_0$$
,

then the polynomial $p(z) = \sum_{j=0}^{n} a_j z^j$ has all its zeros in the disc

$$|z| \le \frac{a_n - a_0 + |a_0|}{|a_n|}.$$

Aziz and Mohammad [1] obtained the following generalization of Theorem A.

THEOREM C. Let $p(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n, with positive coefficients. If $t_1 > t_2 \ge 0$ can be found such that

$$a_r t_1 t_2 + a_{r-1}(t_1 - t_2) - a_{r-2} \ge 0$$
, $r = 1, 2, \dots, n+1$, $(a_{-1} = a_{n+1} = 0)$, then all zeros of $p(z)$ lie in $|z| \le t_1$.

We have obtained a generalization of Theorem C, by following the direction of generalization of Theorem A to Theorem B and also a refinement of Theorem C. More precisely, we have proved

THEOREM 1. Let $p(z) = \sum_{j=0}^{n} a_j z^j$ $(a_0 \neq 0)$, be a polynomial of degree n, with real coefficients such that for certain non-negative real numbers t_1, t_2 $(t_1 \geq t_2 \text{ and } t_1 \neq 0)$,

$$a_r t_1 t_2 + a_{r-1} (t_1 - t_2) - a_{r-2} \ge 0, \quad (r = 1, 2, \dots, n+1),$$
 (1.1)

$$a_{-1} = a_{n+1} = 0. (1.2)$$

Then p(z) has all its zeros in

$$\min \left\{ \frac{|a_0|t_1t_2}{|a_0|t_1^{n+1} + a_nt_1^{n+1} - a_0t_2}, t_1 \right\} \le |z| \le \max \left\{ \frac{a_nt_1 - \frac{a_0t_2}{t_1^n} + \frac{|a_0|t_2}{t_1^n}}{|a_n|}, t_1 \right\}. (1.3)$$

Thinking again in terms of Theorem B, but indirectly, with its following generalization obtained by Gardner and Govil [6],

THEOREM D. Let $p(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n. If $Re \ a_j = \alpha_j$ and $Im \ a_j = \beta_j$ for $j = 0, 1, 2, \ldots, n$, and for some k and r and for some $t \ (>0)$,

$$\alpha_0 \le t\alpha_1 \le t^2 \alpha_2 \le \ldots \le t^k \alpha_k \ge t^{k+1} \alpha_{k+1} \ge \ldots \ge t^2 \alpha_n, \tag{1.4}$$

and

$$\beta_0 \le t\beta_1 \le t^2\beta_2 \le \ldots \le t^r\beta_r \ge t^{r+1}\beta_{r+1} \ge \ldots \ge t^n\beta_n,\tag{1.5}$$

then p(z) has all its zeros in $R_1 \le |z| \le R_2$, where

$$R_{1} = \min \left\{ (t|a_{0}|/(2(t^{k}\alpha_{k} + t^{r}\beta_{r}) - (\alpha_{0} + \beta_{0}) - t^{n}(\alpha_{n} + \beta_{n} - |a_{n}|)), t \right\}$$

$$R_{2} = \max \left\{ (|a_{0}|t^{n+1} - t^{n-1}(\alpha_{0} + \beta_{0}) - t(\alpha_{n} + \beta_{n}) + (t^{2} + 1)(t^{n-k-1}\alpha_{k} + t^{n-r-1}\beta_{r}) + (t^{2} - 1)(\sum_{j=1}^{k-1} t^{n-j-1}\alpha_{j} + \sum_{j=1}^{r-1} t^{n-j-1}\beta_{j}) + (1 - t^{2})(\sum_{j=k+1}^{n-1} t^{n-j-1}\alpha_{j} + \sum_{j=r+1}^{n-1} t^{n-j-1}\beta_{j}))/|a_{n}|, 1/t \right\},$$

we have obtained, by making inequalities in (1.4) and (1.5), getting reversed at p indices and q indices respectively, the following generalization of Theorem D:

THEOREM 2. Let $p(z) = \sum_{j=0}^{n} a_n z^j$, be a polynomial of degree n. If $Re \ a_j = \alpha_j$, Im $a_j = \beta_j$, for $j = 0, 1, 2, \ldots, n$ and for certain non-negative integers $k_1, k_2, \ldots, k_p; r_1, r_2, \ldots, r_q$ and for certain t > 0

$$\alpha_0 \le t\alpha_1 \le \ldots \le t^{k_1} \alpha_{k_1} \ge t^{k_1+1} \alpha_{k_1+1} \ge \ldots \ge t^{k_2} \alpha_{k_2} \le t^{k_2+1} \alpha_{k_2+1} \le \ldots, (1.6)$$

$$\beta_0 \le t\beta_1 \le \ldots \le t^{r_1}\beta_{r_1} \ge t^{r_1+1}\beta_{r_1+1} \ge \ldots \ge t^{r_2}\beta_{r_2} \le t^{r_2+1}\beta_{r_2+1} \le \ldots, \quad (1.7)$$

(with inequalities getting reversed at p indices k_1, k_2, \ldots, k_p in (1.6) and $t^n \alpha_n$, being the last term in (1.6), and similarly, inequalities getting reversed at q indices r_1, r_2, \ldots, r_q in (1.7) and $t^n \beta_n$ being the last term in (1.7)), then all zeros of p(z) lie in

$$R_1 \le |z| \le R_2,$$

where

$$R_{1} = min\left(\frac{t^{2}|a_{0}|}{M_{1}}, t\right) = \frac{t^{2}|a_{0}|}{M_{1}} = \frac{t^{2}|a_{0}|}{M_{1}'}$$

$$R_{2} = max\left(\frac{M_{2}}{|a_{n}|}, \frac{1}{t}\right),$$

$$M_{1} = tM'_{1},$$

$$M'_{1} = -\left\{\alpha_{0} + (-1)^{p+1}\alpha_{n}t^{n} + \sum_{u=1}^{p} (-1)^{u}\alpha_{k_{u}}t^{k_{u}}\right\}$$

$$-\left\{\beta_{0} + (-1)^{q+1}\beta_{n}t^{n} + \sum_{s=1}^{q} (-1)^{s}\beta_{r_{s}}t^{r_{s}}\right\} + |a_{n}|t^{n},$$

$$M_{2} = [-\alpha_{0}t^{n-1} + (-1)^{p+1}\alpha_{n}t + (t^{2} + 1)\sum_{u=1}^{p} (-1)^{u}\alpha_{k_{u}}t^{n-k_{u}-1}$$

$$+(t^{2} - 1)\sum_{u=0}^{p} \left\{(-1)^{u+1}\sum_{m=k_{u}+1}^{p} \alpha_{m}t^{n-m-1}\right\}]$$

$$-\left[\beta_{0}t^{n-1} + (-1)^{q+1}\beta_{n}t + (t^{2} + 1)\sum_{s=1}^{q} (-1)^{s}\beta_{r_{s}}t^{n-r_{s}-1}$$

$$+(t^{2} - 1)\sum_{s=0}^{q} \left\{(-1)^{s+1}\sum_{v=r_{s}+1}^{r_{s+1}-1} \beta_{v}t^{n-v-1}\right\} + |a_{0}|t^{n+1},$$

$$k_{0} = r_{0} = 0,$$

$$k_{p+1} = r_{q+1} = n.$$

Finally, in this paper, we prove two more results, (each, a generalization of Eneström-Kakeya theorem), with first one being somewhat similar to Theorem 2 and second one being somewhat similar to Theorem D.

THEOREM 3. Let $p(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n, with complex coefficients such that

$$|arg a_j - \beta| \le \alpha \le \pi/2, \quad j = 0, 1, \ldots, n,$$

for certain real β and for certain non-negative integers k_1, k_2, \ldots, k_p and for certain t > 0

$$|a_0| \le t|a_1| \le \ldots \le t^{k_1}|a_{k_1}| \ge t^{k_1+1}|a_{k_1+1}| \ge \ldots \ge t^{k_2}|a_{k_2}| \le t^{k_2+1}|a_{k_2+1}| \le \ldots$$
 (1.8)

(with inequalities getting reversed at p indices k_1, k_2, \ldots, k_p in (1.8) and $t^n |a_n|$, being the last term in (1.8)). Then all zeros of p(z) lie in

$$R_3 \leq |z| \leq R_4$$

where

$$R_{3} = \min\left(\frac{t^{2}|a_{0}|}{M_{3}}, t\right) = \frac{t^{2}|a_{0}|}{M_{0}} = \frac{t^{2}|a_{0}|}{M_{3}'}$$

$$R_{4} = \max\left(\frac{M_{4}}{|a_{0}|}, \frac{1}{t}\right),$$

$$M_{3} = tM_{3}',$$

$$M_{3}' = -\left\{2\cos\alpha\sum_{m=1}^{p} (-1)^{m}|a_{k_{m}}|t^{k_{m}} + |a_{0}| + (-1)^{p+1}|a_{n}|t^{n}\right\}$$

$$+ 2\sin\alpha\sum_{j=0}^{n-1} |a_{j}|t^{j} + (-|a_{0}| + |a_{n}|t^{n})\sin\alpha + |a_{n}|t^{n},$$

$$M_{2} = -\left[\cos\alpha\left\{(t^{2} - 1)\sum_{m=0}^{p} ((-1)^{m+1}\sum_{s=k_{m}+1}^{k_{m+1}-1} |a_{s}|t^{n-s-1})\right\}$$

$$+ (t^{2} + 1)\sum_{m=1}^{p} (-1)^{m}|a_{k_{m}}|t^{n-k_{m}-1} + |a_{0}|t^{n-1}(1+t^{2})$$

$$+ (-1)^{p+1}|a_{n}|t] + \sin\alpha\left\{\sum_{j=1}^{n} (t|a_{j}| + |a_{j-1}|)t^{n-j}\right\} + |a_{0}|t^{n+1},$$

$$k_{0} = 0, k_{p+1} = n.$$

THEOREM 4. Let $p(z) = \sum_{j=0}^{n} a_j z^j$, (Re $a_j = \alpha_j$, Im $a_j = \beta_j$, for $j = 0, 1, 2, \ldots, n$), be a polynomial of degree n such that, for certain real β ,

$$|arg \ a_j - \beta| \le \alpha \le \pi/2$$
, for $j = 1, 2, \ldots, n$,

and for certain t > 0 and $k (0 < k \le n)$

$$|\alpha_0| \le t |\alpha_1| \le \ldots \le t^k |\alpha_k| \ge t^{k+1} |\alpha_{k+1}| \ge \ldots \ge t^n |\alpha_n|.$$

Then all zeros of p(z) lie in

$$R_5 \le |z| \le R_6$$

where

$$R_5 = \frac{t^2 |a_0|}{M_5},$$

$$R_6 = \max\left(\frac{M}{|a_n|}, \frac{1}{t}\right),$$

$$\begin{split} M_5 &= t^{n+1} (|a_n| - |\alpha_n|) - t |\alpha_0| + \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}||t^j| \\ &+ 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^j) + 2 t^{k+1} |\alpha_k|, \\ & \left\{ t^{n+1} |a_0| + t^{n-1} |\alpha_0| - t |\alpha_n| + (1-t^2) \sum\limits_{j=1}^{n-1} |\alpha_j| t^{n-j-1} \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}||t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}), \right\}, k = 0, \\ & \left\{ t^{n+1} |a_0| - t^{n-1} |\alpha_0| - t |\alpha_n| + (t^2 - 1) \sum\limits_{j=1}^{k-1} |\alpha_j| t^{n-j-1} \\ &+ (1+t^2) t^{n-k-1} |\alpha_k| + (1-t^2) \sum\limits_{j=k+1}^{n-1} |\alpha_j| t^{n-j-1} \\ &+ (1+t^2) t^{n-k-1} |\alpha_k| + (1-t^2) \sum\limits_{j=k+1}^{n-1} |\alpha_j| t^{n-j-1} \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &t^{n+1} |a_0| - t^{n-1} |\alpha_0| + t |\alpha_n| + (t^2 - 1) \sum\limits_{j=1}^{n-1} |\alpha_j| t^{n-j-1} \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sin \alpha \, (t^{1/2} \sum\limits_{j=1}^n |a_j a_{j-1}|^{1/2} t^{n-j}) \\ &+ \sum\limits_{j=1}^n |t| \beta_j| - |\beta_{j-1}|| t^{n-j} + 2 \sum\limits_{j=1}^n |t| \beta_j| -$$

2. LEMMAS

For the proofs of the theorems, we require the following lemmas.

LEMMA 1. Let f(z) be a polynomial of degree n, with

$$M(r) = \max_{|z|=r} |f(z)|, \quad (r > 0).$$

Then

$$\frac{M(r_1)}{r_1^n} \ge \frac{M(r_2)}{r_2^n}$$
, $0 < r_1 < r_2$.

Equality is attained only if the polynomial is of the form cz^n .

This lemma is due to Polya and Szegö [16, Part III: Problem no. 269].

LEMMA 2. If a_j and a_{j-1} are two complex numbers with

$$|arg \ a_j - \beta| \le \alpha \le \pi/2,$$

 $|arg \ a_{j-1} - \beta| \le \alpha \le \pi/2,$

for certain real B, then

$$|a_j - a_{j-1}|^2 \le (|a_j| - |a_{j-1}|)^2 \cos^2 \alpha + (|a_j| + |a_{j-1}|)^2 \sin^2 \alpha.$$

This lemma is due to Govil and Rahman [9, Proof of Theorem 2].

LEMMA 3. Under the same hypothesis, as in Lemma 2,

$$|a_j - a_{j-1}| \le ||a_j| - |a_{j-1}|| \cos \alpha + (|a_j| + |a_{j-1}|) \sin \alpha.$$

Proof of Lemma 3: It follows easily from Lemma 2.

LEMMA 4. Under the same hypothesis, as is Lemma 2,

$$|a_j - a_{j-1}|^2 \le (|a_j| - |a_{j-1}|)^2 + 4|a_j a_{j-1}| \sin^2 \alpha.$$

This lemma is due to Jain [10, Proof of Theorem 2].

LEMMA 5. If a_j (Re $a_j = \alpha_j$, Im $a_j = \beta_j$) and a_{j-1} (Re $a_{j-1} = \alpha_{j-1}$, Im $a_{j-1} = \beta_{j-1}$) are the two complex numbers with

$$|arg \ a_j - \beta| \le \alpha \le \pi/2,$$

 $|arg \ a_{j-1} - \beta| \le \alpha \le \pi/2,$

for certain real B, then

$$|a_j - a_{j-1}| \le ||\alpha_j| - |\alpha_{j-1}|| + ||\beta_j| - |\beta_{j-1}|| + 2|a_j \cdot a_{j-1}|^{1/2} \sin \alpha.$$

Proof of Lemma 5: We have

$$(|a_{j}| - |a_{j-1}|)^{2} = (|\alpha_{j}| - |\alpha_{j-1}|)^{2} + (|\beta_{j}| - |\beta_{j-1}|)^{2} + 2(|\alpha_{j}\alpha_{j-1}| + |\beta_{j}\beta_{j-1}| - |a_{j}a_{j-1}|)$$

$$\leq (|\alpha_{j}| - |\alpha_{j-1}|)^{2} + (|\beta_{j}| - |\beta_{j-1}|)^{2},$$

which, by Lemma 4, implies

$$|a_j - a_{j-1}|^2 \le (|\alpha_j| - |\alpha_{j-1}|)^2 + (|\beta_j| - |\beta_{j-1}|)^2 + 4|a_j a_{j-1}| \sin^2 \alpha$$
, and Lemma 5 follows.

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. We consider the polynomial

$$F(z) = (t_2 + z)(t_1 - z) p(z)$$

$$= -a_n z^{z+2} + (a_n(t_1 - t_2) - a_{n-1})z^{n-1} + (a_n t_1 t_2 + a_{n-1}(t_1 - t_2) - a_{n-2})z^n + \dots$$

$$+ (a_2 t_1 t_2 + a_1(t_1 - t_2) - a_0)z^2 + (a_1 t_1 t_2 + a_0(t_1 - t_2))z + a_0 t_1 t_2.$$
(3.2)

Further, let

$$G(z) = z^{n+2}F(1/z)$$

$$= -a_n + (a_n(t_1 - t_2) - a_{n-1})z$$

$$+ (a_nt_1t_2 + a_{n-1}(t_1 - t_2) - a_{n-2})z^2 + \dots + (a_2t_1t_2 + a_1(t_1 - t_2) - a_0)z^n$$

$$+ (a_1t_1t_2 + a_0(t_1 - t_2))z^{n+1} + a_0t_1t_2z^{n+2},$$

$$= \psi(z) + a_0t_1t_2z^{n+2},$$
 say. (3.5)

155

We now have on $|z| = 1/t_1$,

$$|\psi(z)| \le |a_n| + (a_n(t_1 - t_2) - a_{n-1}) \frac{1}{t_1}$$

$$+ (a_n t_1 t_2 + a_{n-1}(t_1 - t_2) - a_{n-2}) \frac{1}{t_1^2} + \dots$$

$$+ (a_2 t_1 t_2 + a_1(t_1 - t_2) - a_0) \frac{1}{t_1^n} + (a_1 t_1 t_2 + a_0(t_1 - t_2)) \frac{1}{t_1^{n+1}}$$
 (by (1.1) and (1.2))
$$= |a_n| + a_n - a_0 \frac{t_2}{t_1^{n+1}},$$

and therefore, by Lemma 1, we have, for $|z| \ge 1/t_1$

$$|\psi(z)| \le \left(|a_n| + a_n - a_0 \frac{t_2}{t_1^{n+1}}\right) |z|^{n+1} t_1^{n+1},$$

which, by (3.5), helps us to write

$$|G(z)| \ge |a_0|t_1t_2|z|^{n+2} - \left(|a_n| + a_n - a_0 \frac{t_2}{t_1^{n+1}}\right)|z|^{n+1}t_1^{n+1}, \quad |z| \ge 1/t_1$$

> 0,

if

$$|z| > \max \left\{ \frac{|a_n|t_1^{n+1} + a_nt_1^{n+1} - a_0t_2}{|a_0|t_1t_2}, \frac{1}{t_1} \right\}.$$

Hence F(z) and therefore p(z) has no zeros in

$$|z| < \min \left\{ \frac{|a_0|t_1 t_2}{|a_n|t_1^{n+1} + a_n t_1^{n+1} - a_0 t_2}, t_1 \right\}. \tag{3.6}$$

Again, by (3.4), we have

$$G(z) = -a_n + \phi(z), \text{ say.}$$
(3.7)

We now have on $|z| = 1/t_1$

$$|\phi(z)| \le a_n - a_0 \frac{t_2}{t_1^{n+1}} + |a_0| \frac{t_2}{t_1^{n+1}}$$
 (by (1.1) and (1.2)) (3.8)

which, by Schwarz's lemma, helps us to write

$$|\phi(z)| \le \left(a_n - a_0 \frac{t_2}{t_1^{n+1}} + |a_0| \frac{t_2}{t_1^{n+1}}\right) |z|t_1, \quad |z| \le 1/t_1,$$

and therefore, by (3.7), we have

$$|G(z)| \ge |a_n| - \left(a_n - a_0 \frac{t_2}{t_1^{n+1}} + |a_0| \frac{t_2}{t_1^{n+1}}\right) |z| t_1, \quad |z| \le 1/t_1$$

> 0,

if

$$|z| < \min \left\{ \frac{|a_n|}{a_n - a_0 \frac{t_2}{t_1^{n+1}} + |a_0| \frac{t_2}{t_1^{n+1}}}, \frac{1}{t_1} \right\}.$$

Hence F(z) and therefore p(z) has no zeros in

$$|z| > \max \left\{ \frac{a_n - a_0 \frac{t_2}{t_1^{n+1}} + |a_0| \frac{t_2}{t_1^{n+1}}}{|a_n|}, t_1 \right\}.$$

Theorem 1 now follows, by using (3.7).

Proof of Theorem 2: It is similar to the proof of the result [6, Theorem], with two changes:

- (i) $\sum_{j=1}^{n} |t\alpha_j \alpha_{j-1}| t^j$ being broken into (p+1) sums (corresponding to p integers k_1, k_2, \ldots, k_p), instead of two sums (corresponding to one integer k),
- (ii) $\sum_{j=1}^{n} |t\beta_j \beta_{j-1}| t^j$ being broken into (q+1) sums (corresponding to q integers r_1, r_2, \ldots, r_q), instead of two sums (corresponding to one integer r), and so we omit the details.

Proof of Theorem 3: It is also similar to the proof of the result [6, Theorem], with two changes:

(i) inequality (obtainable by Lemma 3)

$$|ta_j - a_{j-1}| \le (|t|a_j| - |a_{j-1}||) \cos \alpha + (t|a_j| + |a_{j-1}|) \sin \alpha,$$

instead of the inequality

$$|ta_j - a_{j-1}| \le |t\alpha_j - \alpha_{j-1}| + |t\beta_j - \beta_{j-1}|,$$

(ii) $\sum_{j=1}^{\infty} |t| a_j |-|a_{j-1}| |t^j|$ being broken into (p+1) sums (corresponding to p integers k_1, k_2, \ldots, k_p), instead of two sums (corresponding to one integer k), and so we omit the details.

Proof of Theorem 4: It is also similar to the proof of result [6, Theorem], with two changes:

(i) inequality (obtainable by Lemma 5)

$$|ta_j - a_{j-1}| \le |t|\alpha_j| - |\alpha_{j-1}|| + |t|\beta_j| - |\beta_{j-1}|| + 2t^{1/2}|a_j a_{j-1}|^{1/2} \sin \alpha$$
, instead of the inequality

$$|ta_j - a_{j-1}| \le |t\alpha_j - \alpha_{j-1}| + |t\beta_j - \beta_{j-1}|,$$

(ii) no break up of
$$\sum_{j=1}^{n} |t| \beta_j | - |\beta_{j-1}| |t^j|$$

and so we omit the details.

REFERENCES

- A. Aziz and Q.G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal. Appl., 75 (1980), 495–502.
- [2] ——, Zero-free regions for polynomials and some generalizations of Eneström-Kakeya theorem, Canad. Math. Bull., 27 (1984), 265–272.
- [3] G.T. Cango and O. Shisha, Zeros of polynomials and fractional order differences of their coefficients, J. Math. Anal. Appl., 7 (1963), 176–182.
- [4] K.K. Dewan and M. Bidkham, On the Eneström-Kakeya theorem, J. Math. Anal. Appl., 180 (1993), 29–36.
- [5] K.K. Dewan and N.K. Govil, On the Eneström-Kakeya theorem, J. Approx. Th., 42 (1984), 239–244.
- [6] R.B. Gardner and N.K. Govil, On the location of the zeros of a polynomial, J. Approx. Th., 78 (1994), 286–292.
- [7] N.K. Govil and V.K. Jain, On the Eneström-Kakeya theorem, Ann. Univ. Mariae Curie-Sklodowska, Lublin-Polonia, 27 (1973), 13–18.
- [8] —, On the Eneström-Kakeya theorem II, J. Approx. Th., 22 (1978), 1–10.
- [9] N.K. Govil and Q.I. Rahman, On the Eneström-Kakeya theorem, *Tohoku Math. J.*, 20 (1968), 126–136.
- [10] V.K. Jain, On the location of zeros of polynomials, Ann. Univ. Mariae Curie-Sklodowska, Lublin-Polonia, 30 (1976), 43–48.
- [11] ——, A generalization of Eneström-Kakeya theorem, Glas. Mat., 31(51) (1996), 109–113.
- [12] ——, On the zeros of a class of polynomials and related analytic functions, *Indian J. Pure Appl. Math.*, **28** (1997), 533–549.
- [13] A. Joyal, G. Labelle and Q.I. Rahman, On the location of zeros of polynomials, Canad. Math. Bull., 10 (1967), 53-63.
- [14] C. Karanicoloff, A theorem of Eneström-Kakeya type, Math. Lapok, 14 (1963), 133-136.
- [15] P.V. Krishnaiah, On Kakeya's theorem, J. London Math. Soc., 30 (1955), 314-319.
- [16] G. Polya and G. Szegő, Problems and Theorems in Analysis, Vol. 1, Springer-Verlag, Berlin-Heidelberg, 1972.

Mathematics Department,

I.I.T. Kharagpur-721 302, India

