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NOVEL USES OF CORRELATION NETWORKS AND CONSENSUS

NODE-COMMUNITIES FOR BIOMEDICAL DATA ANALYSIS

Abstract

The correlation between random variables has been routinely used for analyzing

biomedical datasets in life sciences research. These studies are significant for finding

biological patterns, disease prognosis, and treatment. We explore novel uses of correla-

tion networks and consensus methods for identifying the node-communities to improve

the accuracy of data mining problems, such as finding communities/modules with maxi-

mized modularity, retrieving feature-rich subspace of data, identifying tumour subtypes

in patients, etc. We study the application of consensus methods in correlation networks

in two different biomedical data problems. In the first study, using a brain functional

connectivity network (FCN), which is a correlation network, the modularly organized

brain regions of resting-state functional magnetic resonance imaging (fMRI) data are

obtained. Extracting modular brain regions allows practitioners to study spontaneous

brain activity. In the second problem, a heterogeneous correlation network model is

constructed from multi-omic features of cancer data, and a feature-rich integrative sub-

space of data is retrieved, which serves as an application for predicting cancer-specific

patient subtypes. Finding significant genes and subtypes of the diseases is vital for the

early prognosis of the disease, personalized treatment; therefore, the improved survival

probability of the patient.

In brain FCN, the correlations are computed among the regions of interest (ROIs)

derived from a specific parcellation technique. We perform case studies of FCN of

the human brain at resting state, with different sizes/resolutions and parcellation at-

lases (AAL, Schaefer) for finding the modular organization of the FCN. Identifying
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modules of brain FCN using a sparsified correlation matrix and using network-theory

procedures is a well-researched approach. However, these procedures include loss of

correlation information due to sparsification. In general, there is still no consensus in

the research community on finding the right threshold value for edge filtering in FCNs.

The novelty of our work lies in using a complete (full) functional connectivity network,

for functional segregation of the network. We perform an extensive analysis of the

use of exploratory factor analysis (EFA) for community detection in FCN by exploit-

ing the semantics of the correlation matrix. To effectively use EFA, we implement a

novel consensus-based algorithm using a multiscale approach, considering the number

of factors nF as a scale. We use an ensemble of experiments and extensive quantita-

tive analysis and its outcomes to identify the optimal set of scales for efficient node-

partitioning. Using the multiscale approach, we transform the correlation network to a

‘co-association’ network. The transformed network sparsifies the dense (full) network,

where edges represent the likeliness of nodes clustering together. The multiscale ap-

proach and consensus community detection procedures help identify modularity maxi-

mized communities and cliques within communities, hierarchical modular organization

of communities, and exhibit hemispheric symmetry of nodes in communities. Our re-

sults of consensus (node-) communities and cliques have been found to be relevant for

the brain activity in its resting state, thus concluding the effectiveness of EFA.

In multi-omics studies of cancer data, integrative analysis of multi-omics data is es-

sential for biomedical applications, as it is required for a comprehensive understanding

of biological function. Integrating multi-omics data serves multiple purposes, such as,

an integrated data model, dimensionality reduction of omic features, patient clustering,

etc. However, there is a gap in combining some of the widely used integrative analyses

to build more powerful tools. In this work, we propose a multi-level integration algo-

rithm to identify a representative integrative subspace and use it for cancer subtype pre-

diction. The breast and lung cancer multi-omics data of DNA methylation (genome) and
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mRNA expression (transcriptome) features from ‘The Cancer Genome Atlas (TCGA)’

database is used in this study. The choice of cancer phenotypes is to investigate our

workflow on one of the most widely studied cancer subtypes, i.e., breast cancer data,

and one of the least studied cancer subtypes, i.e., lung cancer data. The three integrative

approaches we implement on multi-omics features are, (1) multivariate multiple (linear)

regression of the features from a cohort of patients/samples, (2) bipartite graph between

different features, and (3) fusion of sample similarity networks across the features. We

use a type of multilayer network, called heterogeneous network, as a data model to tran-

sition between a network-free (NF) regression model and a network-based (NB) fusion

model, which uses correlation networks. Our proposed heterogeneous correlation net-

work model, HCNM, is central to our algorithm for gene-ranking, integrative-subspace

identification, and tumor-specific subtypes prediction. The genes of our representative

integrative subspace have been enriched with gene-ontology and found to exhibit sig-

nificant gene-disease association (GDA) scores. The subspace in genes which is less

than 10% of the total gene-set of each genomic feature in both phenotypes is used with

NB fusion integrative model to predict sample subtypes. As the identified integrative

subspace data of multi-omics is less prone to noise, bias, and outliers, our experiments

show that the subtypes in our results agree with benchmark studies of breast and lung

cancer data, and also exhibit better classification between poor and good survival of

patient cohorts.
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CHAPTER 1

INTRODUCTION

In biomedical research, correlation analysis is used to understand the relationship

between the independent variables/risk factors/predictor variables, with dependent vari-

able/disease outcome. Correlation measure between two variables provides statistical

evidence of their strength/association. Sir Francis Galton [7], in his work “Co-relations

and their measurement, chiefly from Anthropometric Data” had first proposed the no-

tion of correlation, which is later mathematically described by Karl Pearson [8]. The

biomedical data problems have been extensively studied for several decades using net-

works. The network is represented as a graph (G) with vertices (V) and edges (E),

where edges signify the strength/association between the vertices. The graph theory

was first introduced by Leonhard Euler in 1735 while solving the Königsberg bridge

problem [9, 10]. For the last two decades, graph theory along with statistical mechan-

ics, have paved the way to network science, which is applied in complex systems such

as cellular networks, neural networks, social networks, trade networks, ecological net-

works, communication networks, biological networks, etc [11]. In our work, we use

correlations between the vertices as edges to study some biomedical problems.

There exist various biomedical problems that consider correlation and network-

based analysis. For example, Epigenomics correlation study to learn hyper and hy-

pomethylated CpG islands that help to study reproductomics [12], to learn drug-disease
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associations using gene expression data [13–15], to understand perinatal and neonatal

adversaries using the features such as maternal age and parity [16, 17], to study heart

stroke severity using EHR data [18, 19], to learn the associations between lung can-

cer and cigarette smoking habit [20, 21]. Correlation networks serve to give a broad

overview of an organism’s state, be it on the metabolic level, the proteomic level, the

transcript level, or a combination of these [22].

Researchers often have an idea of what sort of relationship they are looking at,

such as a linear relationship or a step-function response to a perturbation in time se-

ries data, etc. These relationships are computed using several methods, e.g., Pearson’s

correlation, mutual information, phase coherence, partial correlation, granger causal-

ity, coherence, Spearman’s rank correlation, median-based correlation measures, max-

imal information criteria (MIC), Kendall rank correlation, etc. Most often, in biology,

Pearson’s correlation measure is used. The normalization/standardization procedure of

data prepossessing operation makes the variables normally distributed, making it feasi-

ble to use Pearson’s correlation coefficient. Pearson’s correlation measure expects few

prerequisites such as linearity (the straight-line relationship between each of the two

variables), normality (variables with a bell-shaped curve distribution), homoscedastic-

ity (the data is equally distributed about the regression line), and outlier verification.

Non-normally distributed data may include outlier values that necessitate the usage of

Spearman’s correlation coefficient [23]. In summary, correlation coefficients are used

to assess the strength between the pairs of variables/vertices/nodes.

In biomedical and healthcare scientific study, neurobiological research and cancer

research is at the top of the list. In this doctoral work, by examining correlation-based

networks, we address some of the open problems in these two domains, a) finding

functional segregation of the brain functional connectivity network at resting state and

b) identifying the significant subspace of multi-omics cancer data that aid in finding

subtypes in cancer. The former is derived from functional magnetic resonance imaging
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(fMRI) data, and the latter is multi-omics data of subjects of a specific cancer type

downloaded from The Cancer Genomic Atlas (TCGA) database1.

1.1 Motivation

Our motivation in this study is to use correlation networks of biology and improve

the accuracy of data mining problems by applying consensus community detection pro-

cedure. We study the application of consensus methods in correlation networks, a) in

brain Functional Connectivity Networks (FCN), and b) as heterogeneous multi-omics

networks of cancer subjects.

In brain FCN, the motivation is to, i) determine modularly organized brain re-

gions (communities), leading to understanding spontaneous connections of resting-state

fMRI data, and ii) find functional segregation of the correlation matrix. Functional

segregation refers to clique or communities or motifs or the number of triangles of

a network, explaining the extent to which a network can form into separate compo-

nents [24]. Functional segregation is synonymous to a community in the network-

science that refers to neuronal processing carried out among communities. The commu-

nities/modules/node-groupings are defined by dense intra-community connections and

sparse inter-community connections. A clique is a completely connected network with

a tight-knit of nodes, where every node has links between every pair of nodes. This line

of study has been around for 2-3 decades [25–27]. The research community is work-

ing on fine-tuning the methods for studying complex problems in the presence of brain

disorders, such as Alzheimer’s, autism, epilepsy, Parkinson’s, obsessive compulsory

disorder, modular organization changes in the brain with age etc [28–34].

Finding significant cancer-specific genes and subtypes of cancer is vital for the early

prognosis of the disease, personalized treatment; therefore, it improves the survival
1https://portal.gdc.cancer.gov/
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probability of the patient. For the second study, using high dimensional multi-omics

cancer data and by employing multi-level integrative algorithms, we aim to find, i) a

representative integrative subspace with feature-rich genes that are less prone to biases,

noise, and outliers, and ii) subtypes of patients using the subspace of multi-omics data.

We investigate our workflow on one of the most widely studied cancer subtypes, i.e.,

breast cancer, and one of the least studied cancer subtypes, i.e., lung cancer data.

1.2 Contribution

Functional Segregation in Brain FCN: The brain FCN communities are well stud-

ied using network theory measures on the sparsified/discretized/thresholded network

[35–37]. The threshold value used for edge filtering, if not chosen optimally, may lead

to loss of information. Hence, with the sparsified network, the semantics of the cor-

relation network is not utilized thoroughly to infer appropriate knowledge. In general,

there is no consensus on the science behind the choice of thresholds [36]. We address

this problem by considering the full/complete correlation network for finding modu-

larly organized brain regions. We propose using a weighted, completely connected, and

undirected correlation network and applying Exploratory Factor Analysis (EFA) to find

the node-partitions in the FCN. Charles Spearman [38] first proposed factor analysis; in

the domain of psychology study. EFA works with an assumption that there exists an un-

derlying structure among the variables. If the correlation values between the variables

are not significant, then EFA fails to identify groups of variables, owing to the absence

of structure among the variables. EFA expects an input parameter, namely, the number

of factors, nF , for its implementation. However, there is no ground truth for a defi-

nite number of node-partitions in FCN. Hence, we decide not to rely on a single value

of nF for EFA. We define the value of nF as the scale for EFA, and propose to apply

EFA for multiple scales. A single-scale EFA, in general, suffers from the issues such as
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replicability of node-partitioning [39], and the generalizability of the workflow [40]. To

address these issues and add to the exploratory and experimental characteristics of EFA,

we find a range of nF and perform EFA with multiple scales, as shown in Figure FC1.1.

The node-partitioning is represented using a co-association matrix Dk, for the kth scale.

We choose a set of values of nF to compute EFA and the communities/node-groupings

are aggregated to generate a final co-association matrix, D, using consensus voting of

the Dk at k = 1,2, . . . ,N scales. Thus, we transform a weighted fully connected FCN

(correlation matrix) to a representative co-association matrix. The D is symmetric, with

the values in the range of 0 to 1, 0 for the nodes that did not group together in any of

the node-partitionings obtained in any of the chosen scales, and 1 for nodes that always



6

belonged in the same community through all the node-partitionings. Thus, we use D

as an adjacency matrix of our transformed network [41]. Generalized Louvain (gen-

Louvain) [1] community detection algorithm is then implemented on the transformed

network to find the consensus-based communities and cliques of FCN. The proposed

workflow of finding functional segregation by identifying communities and cliques of

FCN using the multiscale EFA method is depicted in Figure FC1.1

Multi-level Integrative Study of Multi-omics Cancer Data: In multi-omics studies

of cancer data, integrative analysis of multi-omics data is essential for biomedical appli-

cations, as it is required for a comprehensive understanding of biological function. For

cancer studies pertaining to outcome prediction, multi-omics information has been rou-

tinely integrated at the data level to obtain transformed data models, such as, regression

and network models [42–44]. The available high-throughput omic data causes a “small

n, large p” or “short-fat data” problem. This enforces the need to find the representative

subspace of multi-omics features [43,45]. Multilayer networks (MLN) are less studied

in biology, whereas network analysis of a single layer is widely investigated for pro-

tein interactions, metabolic associations, gene co-expressions, pathways in regulatory,

etc. In this work, we propose a workflow to address these problems using multi-level

integrative procedures and heterogeneous networks of multi-omics cancer data (Fig-

ure FC1.2). The heterogeneous networks are a special class of multilayer networks, that

consist of intra-layer and inter-layer graphs, the latter being bipartite graphs [46,47]. In

order to achieve a multi-level integration of the multi-omics data through existing in-

tegrative methods, namely regression model, which is a network-free method (I1 in

Figure FC1.2) and network-based fusion method (I3 in Figure FC1.2), we propose a

data model that will transition one method to another, referred to as the Heterogeneous

Correlation Network Model (HCNM) (I2 in Figure FC1.2). We work with DNA methy-

lation and mRNA expression data of TCGA and generate intra-layer graphs that are

heterogeneous correlation networks for each omic feature (Figure FC1.2). The commu-
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nities of genes in each intra-layer graph are identified. The genes within a community

are known to have high modularity value and, therefore, a high likelihood for similar

behavior or influence on diseases. We use three characteristically different community

detection procedures and identify the final set of ranked genes using consensus voting of

all three models. The ranked genes are used to generate an inter-layer cross-correlations

graph. The representative integrative subspace of multi-omics is derived by ranking the

gene-pairs of the inter-layer graph. The patient subtypes in cancer are studied with the

final identified feature-rich integrative subspace and by applying network-based fusion

integrative procedures. Overall, we find representative integrative subspace, and cancer

subtypes, by multi-level integration of multi-omics data. We imply three occurrences of

multi-omics integration in our algorithm: I1 when using a multivariate multiple (linear)

regression (MMR) model, I2 for selecting genes to compute the inter-layer graph using

cross-correlations, and I3 for network fusion of similarity networks of samples/patients.

We propose a three-level integration algorithm driven by HCNM for gene-ranking, inte-

grative subspace identification, and cancer subtype prediction.
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1.3 Organization of the Thesis

• Chapter 1 provides the introduction of this thesis, motivation, and proposed work-

flows that uses correlation networks of biomedical data.

• Chapter 2, the first part, briefly summarizes the brain connectome and different

connectivity measures considered in the literature for non-invasive brain modali-

ties such as MRI, electroencephalography (EEG), magnetoencephalography (MEG),

positron emission tomography (PET), single-photon emission computerized to-

mography (SPECT), etc. It presents a brief literature survey of correlation mea-

sures used to construct brain functional connectivity networks.

The second part of this chapter briefs on gene association studies of high through-

put sequencing data. It also presents the relevant literature of genomic studies

considering multi-omics associations, integrated multi-omics studies, and multi-

layer networks generated using omics data.

• In Chapter 3, we introduce the resting-state brain FCN. We describe the details

such as choice of data, construction of the network, etc. We find modular brain

regions utilizing complete/full network using EFA method and compare our re-

sults with the state-of-the-art methods.

• Chapter 4 describes the multiscale consensus method to find modularity maxi-

mized communities and tight-bound cliques in the resting-state brain FCN.

• In Chapter 5, we introduce multi-omics of cancer data. We propose to use a

two-level integrative model: i) a network-free (NF) regression model, and ii) an

HCNM. We address the ‘small n large p’ problem of multi-omics by utilizing the

multi-level integrative procedure followed by gene-pair ranking, which results in

a representative integrative subspace.
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• In Chapter 6, we utilize the representative integrative subspace of multi-omics

data, and employ a network-based (NB) integrative model to find the subtypes of

patients of two cancer profiles a) the most widely studied subtypes, i.e., breast

cancer, and b) the least studied subtypes, i.e., lung cancer.

• In Chapter 7, we introduce the extended applications of our studies.

(i). Study of patterns in resting-state FCN, before and after treatment of an

obsessive-compulsive disorder (OCD) subject.

(ii). A graph layout ‘RadTrix’ to visualize an unbalanced bipartite graph.

• Chapter 8 summarizes this thesis with our findings, limitations, and provides the

scope of future work.
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CHAPTER 2

CORRELATION NETWORKS OF BIOMEDICAL DATA

Biomedical data are measurements gathered from human subjects to study healthy

state or illnesses in the body. Statistically analyzing such datasets gives valuable in-

formation of patterns observed in a cohort or sub-population with respect to a specific

health condition, such as cancer, or in a control group of healthy subjects. Network

science provides powerful tools to study statistical relationships between entities in the

biomedical datasets, of which correlation is widely studied. In this thesis, we consider

correlation studies conducted in brain connectome and multi-omics data in oncology,

using relevant biomedical data collected of specific cohorts.

2.1 Brain Connectome

Brain connectivity studies comprise static, dynamic, or causal connections based on

their anatomical, functional, or effective connections, respectively. Last two to three

decades, non-invasive and in vivo studies are popular and are most widely used due to

increased neuroimaging modalities such as EEG, MEG, fMRI, PET, and SPECT. Also,

the emerged discipline, ‘neuroinformatics,’ gave enormous scope for brain connectivity

studies. The “connectome” is a human brain that is treated as a connection matrix (ad-

jacency matrix) [48], with rows and columns comprising elements and corresponding

interconnections represent the strength of connectivity. The brain connectivity analy-
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sis is of three different types, a) structural connectivity (SC), b) functional connectivity

(FC), and c) effective connectivity (EC).

• SC is studied using anatomical/physical connections. The connectivity refers to

the presence of white matter, fiber tracts that are physically interconnecting dif-

ferent brain regions. These anatomical connections are commonly studied using

diffusion magnetic resonance imaging [49–51]. The structural connections are

persistent on short time scales, spanning a few seconds and minutes, and brain

plasticity changes are observed when examining longer time-span recordings.

• FC is inferred from correlations between nodes (defined for the network [52])

based on the blood-oxygenation level-dependent (BOLD) signals of fMRI imag-

ing or electrical activity of EEG or magnetic activity of MEG and, etc., sig-

nals [53, 54] obtained while the subject is at a resting state or performing any

cognitive task. The connectivity matrix of functional networks could be computed

using several methods [55], e.g., correlation, mutual information, covariance, co-

herence, etc.

The focus of this thesis is correlation networks, and our case studies are derived

from resting-state (rs-fMRI) data using Pearson’s correlation coefficient. While

EEG depends on the number of electrodes, the measurements need not cover the

entire brain volume. We tested the network of the entire volume, which covers

both MEG and fMRI, where we have used fMRI, as FCNs are widely studied.

• EC is the study of causal dynamics that consider the effect of one neuronal system

influence on another neuronal system [27,56] and is measured using MRI, EEG, or

MEG signals. EC gives the directed causal relationships, e.g., Granger causality

among distributed responses. As the ‘cause and effect’ details are studied here,

the connectivity matrix gives a directed network.

These three connectivity matrices can be analyzed as networks. Both SC and FC form
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an undirected network, whereas EC is a directed network due to the causal relationship

between the elements. The SC network is relatively stable compared to FC and EC.

Both FC and EC are mostly studied for spontaneous dynamic connections at rest/no-

task or performing any cognitive activities. Both EC and FC supplement the knowl-

edge of human brain anatomical connections [54]. Though FC and EC networks are

derived using different definitions, the same imaging modalities can be used for both

studies [27]. In this thesis, we study brain FCNs derived from rs-fMRI data and the

connectivities are computed using Pearson’s correlation measure.

2.1.1 Functional Connectivity Networks

The elements that can be treated as nodes in the FCN can be viewed at different

brain resolution levels. At a ‘macroscopic scale’, the anatomically distinct regions, i.e.,

parcels of remote brain regions are considered as nodes. At a ‘mesoscopic scale’, the

neuronal population level is treated as nodes, and at a ‘microscopic scale’, each neuron

is considered a node. For constructing the connectivity network, the definition of node

plays a critical role. Nodes can be of voxels [57], considering each voxel of imaging

data as a node or anatomical brain parcellations [58,59] or cytoarchitectonic information

based [60]. Stanley et al. [52], in their work, have concluded that, to uncover the novel

brain properties, nodes of voxel-based are preferred over anatomical atlas when em-

ploying functional activation meta-analytic approaches. The choice of nodes is highly

task-specific, and anatomical brain areas can be examined at various resolutions owing

to the brain hierarchical modular organization [61]. Korhonen et al. [62], have con-

cluded that the anatomical brain areas that are presumed to be functionally similar are

not consistent and the choice of nodes must be carefully decided, as nodes consistency

scores varied widely in their experiments. The links or strength of connectivity be-

tween these nodes of any scale are computed based on the problem at hand and the

relationships between the nodes. In this thesis, we study the resting-state brain connec-
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tivity network derived from rs-fMRI data at macroscale and functional connectivities

are measured using Pearson’s correlation.

Brain functional connectivity network is highly studied under three broad cate-

gories [63, 64]: a) Functional segregation, which refers to the extent a network can

be segregated/divided to form triangles or cliques or communities. b) Functional in-

tegration, which is a global measure and is used to study the flow and exchange of

information among the communities by measuring the path lengths of the connectivity

networks. c) Functional influence, refers to an individual node or edge contribution to

the flow of information in the network and is studied by measuring the centrality scores

and finding hub nodes.

Our work focuses on macro-scale functional connectivities, to study the non-overlapping

communities, i.e., functional segregation of the network derived from rs-fMRI (also

known as task-free fMRI (TF-fMRI)) data. Functional segregation implies “neuronal

processing” carried out in modules containing functionally related brain regions. The

regions of interest (ROIs), i.e., nodes of the FCN, exhibit higher interconnection edge

density among functionally related regions. This trend allows the FCN to have a signif-

icant clustering coefficient (CC). A higher value of CC of a network means, the node’s

neighbours are neighbours to each other [65], and FCN has exhibited small-world char-

acteristics [66,67]. Rubinov et al. [63] have discussed about modularity in networks as a

measure of functional segregation. Modularity is a measure to learn the extent a network

can partition into non-overlapping communities. While several studies have performed

clustering directly on the preprocessed fMRI image data, such as in [68], many have

been performed on the network constructed from correlation matrices, e.g. [69].

A large body of work has been focused on analyzing the FCN as a graph or as a

network [35]. The nodes of these networks are regions in the brain from a specific

parcellation method, e.g., Automated Anatomical Labeling (AAL) [58], Dosenbach at-
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las (DOS) [70]. Arslan et al. [71] have compared various parcellations that are of, a)

anatomical based, b) connectivity-driven, and c) random parcellations. In their work, it

has been observed that the task-free or resting-state fMRI data displays better agreement

with connectivity-driven parcellations compared to random parcellations and anatom-

ical parcellation methods. The edges between the nodes for functional connectivity

are computed based on relationships between different brain regions, which encode the

connectivity between the nodes, e.g., correlation, mutual information, phase coherence,

partial correlation, spectral coherence, etc. [35, 72]. For example, the network datasets

provided in [2, 69] are computed as correlation matrices. Functional connectivity is in-

ferred from correlations between nodes based on the blood-oxygenation level dependent

(BOLD) signals in fMRI imaging [53, 54].

(i) Node-links of FCN at different thresholds of correla�on values (T)

 

(ii) Communi�es in edge-filtered networks at different thresholds

T=0.4, C=5,

V=90, E=411

T=0.45, C=6,
V=90, E=325

T=0.5, C=7,
V=90, E=231

  

 

T = 0.40, C = 5

T = 0.45, C = 6

T = 0.50, C = 7

Figure FC2.1: Network visualization of AAL-90 nodes functional connectivity [2] of fMRI
scans from Beijing Normal University in the 1000 Functional Connectome Project [3], at dif-
ferent thresholds of correlation values, T. The number of vertices V indicates the entire network
is considered here, while the number of edges, E, decreases and the number of communities,
C (extracted using Louvain community detection), increases with the T value. (i) Shows the
node-link diagram, (ii) shows the same network with stacked circles with the circular layout of
nodes in each community. The edge widths are proportional to the correlation value.
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In the conventional workflow of functional network analysis [35–37], the connec-

tivity matrices1 are subjected to edge-reduction using graph filtering, i.e., filtering out

edges below a chosen threshold of edge weight, or outside of a chosen interval(s) of

edge weights in the network. The edge-filtered weighted matrices are either used di-

rectly as weighted graphs or binarized to give unweighted graphs. Subsequent to graph

filtering, the workflow usually progresses with network science-centric and/or graph-

theoretic approaches. While thresholding facilitates the reduction of edge density of

the network by retaining only significant edges, there also exists the downside that the

choice of threshold influences the network topology and the subsequent analysis of

strongly connected components [35]. We can observe this in figure FC2.1 as slight

changes in thresholds can give different network topologies2. The qualitative analysis

using Figure FC2.1 with the force-directed graph layout and circular layout of the com-

munities depicts dense inter-community links at threshold 0.4. But, as we increase the

threshold, both intra- and inter-community links begin to become sparse, and the FCN

segregates to multiple subgraphs leading to over-fragmentation. Hence, it is hard to

decide on finding an optimal threshold. Moreover, there is no consensus on the science

behind the choice of thresholds [36]. Hence there is a need to study the brain FCN

without sparsification.

Studying functional segregation of connectivity networks has had strong interest

from the research community, as this allows to learn the spontaneous dynamic pat-

terns in the human brain. Here, network segregation can be inferred from communi-

ties/clusters/modules/subgraphs of nodes that exhibit high intra-edge density. Power

et al. [73] used rs-fMRI data, with correlations as functional connectivity measure and

Infomap [74] algorithm for finding sub-graphs. In this work, the functional segregation

of the network is studied as sub-graphs that are in greater agreement with the known
1Connectivity matrix of a network is also the adjacency matrix of the graph data structure storing the network

data. Similarly, the nodes and links in the network correspond to the vertices and edges of its graph, respectively.
2The FCN used here is cross-correlations (Pearson’s) among AAL anatomical atlas of 90 nodes, where data is

acquired from rs-fMRI modality from healthy right-handed subjects of 18 to 26 years age group.
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functional human brain networks. Meunier et al. [61] studied hierarchical modularity

in the human brain, where rs-fMRI data is used, and functional connectivity is inferred

by wavelet correlations. In this work, the FCN that is thresholded and binarized is sub-

jected to graph-theoretical analysis to verify the hierarchical modularity in the human

brain FCNs. Partial correlations between the ROIs of task-based fMRI data are used

in [75], where simple finger movement activity/task of the subjects are studied using

Bayesian analysis and observed the hemispheric symmetry among the nodes of cortical

motor regions. The MRI scans of each subject of this study are the club of both ‘rest’,

and ‘activation’ (task) states alternatively. Apart from correlation measures for generat-

ing FCN, few other measures such as coherence [76] or multivariate mutual information

(MI) [77] or multivariate Granger causality (G-causality) [78] are used. Mutual infor-

mation or coherence is majorly employed where negative values are of concern for brain

functional connectivity analysis. In relation to FCN, “Resting State Networks” (RSNs)

can be considered as a sub-network of the FCN. De Luca et al. [57] have used proba-

bilistic independent component analysis (PICA), which finds the independent compo-

nents in the fMRI images, where the components being statistically independent spatial

maps, correspond to different activation patterns. Sporns [79] surveyed various commu-

nity detection procedures focused on finding modules of brain connectivity networks.

The methods include modularity maximization, distance-based procedures, simulated

annealing, divisive algorithms, spectral decomposition, stochastic block models, greedy

algorithms, Infomap, overlapping communities, and independent component analysis

(ICA). Though there are various functional connectivity measures, studies often use

Pearson cross-correlations for functional connectivity measures [79, 80].

The spontaneous dynamic changes in functional connectivities in healthy controls

are regularly supported to study different neurobiological diseases. Jones et al. [28],

in their work, have used task-free fMRI data of a large population (892 subjects), who

are of advanced age group (70-90+ years) but are cognitively normal (CN). The FCN
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is generated with 68 nodes/ROIs derived using ICA, and the links of the network are

Pearson’s correlation coefficients. Using full network (unthresholded) and network-

theory based measures of brain connectivity toolbox (BCT) [63], the modular brain

organization is first studied in the CN group, and the patterns in Alzheimer’s disease

(AD) cohort of 28 subjects are verified. Significant differences in anterior and posterior

default mode networks, i.e., aDMN and pDMN are observed. Similar studies are carried

out between case-control networks and by examining the spontaneous dynamic changes

of functional connectivity in the brain. Significant patterns and differences are noted in

neurological diseases such as schizophrenia [29, 30], obsessive compulsory disorder

(OCD) [31], attention-deficit/hyperactivity disorder(ADHD) [28], Alzheimer’s [28, 32,

33], parkinsonian syndrome [34], etc.

Overall, in this thesis, we study brain functional connectivity networks derived from

rs-fMRI data. In our work, the macro-scale functional connectivities are measured

using Pearson’s correlation. The complete/full FCN is used to examine the functional

segregation by finding non-overlapping communities and cliques within communities

of the functional connectivity network.

2.2 Multi-omic Associations for Cancer Data Analysis

Cancer is due to the uncontrolled and abnormal proliferation of cells in the organ-

ism’s body. The recent development of high throughput sequencing (HTS) technologies

and next-generation sequencing (NGS) platforms, offering researchers an enormous op-

portunity to study cancer data at genomic, epigenomic, transcriptomic, and proteomic

levels, and as well as integrated genomic analysis. Finding cancer-related genomic ab-

normalities is much needed for the early prognosis of the disease and treatment.
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2.2.1 Correlation Analysis of Cancer Genomic Data

The cancer genomic3 data is made available through comprehensive sequencing of

genomes of initiatives such as The Cancer Genome Atlas (TCGA), the International

Cancer Genome Consortium (ICGC) [82], and Pan-Cancer Analysis of Whole Genomes

(PCAWG) [83]4, etc. TCGA is supported by the National Cancer Institute and the Na-

tional Human Genome Research Institute, which had brought together researchers from

various fields of many institutions. TCGA data portal comprises a set of 20,000 samples

from 33 different cancer types. A large amount of data (over 2.5 petabytes) that is of

different genome levels such as DNA methylation, gene expression, protein expression,

DNA copy number variation, miRNA expression, and somatic mutation are available

publicly at the TCGA data portal. ICGC Data Portal is with 22,330 donors molecular

data from 86 different cancer projects (including few TCGA projects) involving 22 can-

cer primary sites. Most of the data collected at TCGA and ICGC projects is of ‘whole

exome sequencing’ (WES), whereas PCAWG is focused on ‘whole genome sequenc-

ing’ (WGS) data obtained from TCGA and ICGC of various cancer profiles. In this

thesis, we focus on studying cancer data that is retrieved from the TCGA data portal.

In cancer data analysis, different correlation measures are used to study the effects

of omic features, for example, to study the role of DNA methylations that regulate

the expression value of oncogenes. In general, DNA methylation plays a significant

role in blocking transcription factors from binding, leading to a decrease in gene ex-

pression value [84]. The associations between DNA methylations and gene expression

data of prostate adenocarcinoma are studied using correlation analysis and found novel

cancer biomarkers and hub oncogenes that are critical for prostate cancer [85]. Sim-

ilarly, Spainhour et al. [86] have used TCGA data for 33 different cancer types, and
3The word ‘genomic’ of an organism refers to, study of genes, their influence, interrelations, and functions [81].
4The data portals used to query, download and visualize the cancer data of TCGA, ICGC and PCAWG are

i) https://portal.gdc.cancer.gov/, ii) https://dcc.icgc.org/, iii) https://docs.icgc.org/pcawg/
respectively.

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://docs.icgc.org/pcawg/
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have argued that, methylation and gene expression correlation (Pearson’s) patterns are

mostly tissue independent, and the role of DNA methylation is not confined to the si-

lencing of gene expression. In few other works, methylation and gene expression cor-

relations are studied to identify crucial genes in severe oligozoospermia disease [87],

breast cancer [88], bipolar disorder, and schizophrenia [89], etc. Apart from Pear-

son’s correlations, studies also used measures such as weighted correlation network

analysis (WGCNA) [90–92], partial correlation [93–95], multivariate multiple (linear)

regression (MMR) [24, 41], etc., to investigate the gene-gene associations of methyla-

tion and gene expressions of various disease datasets. The correlation/association stud-

ies are not limited to methylations and mRNA expressions (messenger RNA). Studies

also consider associations between miRNAs (microRNA) and mRNAs to predict the

mRNA genes targetted by miRNAs, for a specific biological context. A known phe-

nomenon to observe here is the down-regulation effect of miRNAs on its targets, i.e.,

if the expression of particular miRNA increases, then that of its target mRNAs de-

creases. Aziz et al. [96] have used regularized regression to construct miRNA and gene

expressions network. Similarly, Muniategui et al. [97] have proposed Target Lasso (Ta-

Lasso) regression analysis, Iterson et al. [98] and Lee et al. [99] have used integrated

approaches to study miRNA–mRNA associations. There also has been work in using

cross-correlations between different omics features for gene-gene interaction networks.

For cancer studies, integrating multi-omics data enables in recognizing biologically

significant interpretations that facilitate enriched cancer outcome predictions [42, 44,

100]. Integrative multi-omics based studies are well-known in recent years [43,101]. In-

tegrative association studies between disease-genotypes, e.g., DNA methylation, miR-

NAs, copy number variations (CNV) and mRNA expression levels, with respect to

disease-phenotypes, e.g., different cancer profiles, are important for making sense of

genomic datasets. Kim et al. [102] have addressed the need for integrating multi-omics

data, which leads to specific cancer outcome prediction. Ding et al. [103] have used
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visual analytics of stratification of patient data in TCGA to integrate multi-omics data.

The gene-gene associations either of single- or multi-omic are treated as networks

and studied further using network-theory measures. Networks are crucial for under-

standing various phenomena in biology, as these networks have the distinction of the

feasibility of validation using alternative yet standard methods in the domain. Barabási

et al. [104] have stressed on the systems-based network analysis for understanding in-

terconnections between human diseases. Today, genome-wide studies provide rich data

for identifying these interdependencies, which are captured best, using networks. Gosak

et al. [105] have reviewed the use of multilayer networks (MLN) as an effective model

of complex interactions in biological datasets, e.g., the interdependencies between dis-

eases using separate phenotype and genotype layers. De Domenico [106] has further

reinforced the need for MLN in multi-omics data to discover new insights into the evo-

lution of the disease. However, the lack of a “consistent, replicable, and reproducible”

MLN model remains an open challenge in multi-omics [105, 106].

While there has been work in specific integrative analysis, there has been a limited

effort in combining some of the existing analyses to build effective data science work-

flows. In this thesis, we use the multi-omics data of cancer profiles downloaded from

the TCGA data portal. We study the genes and their associations using a heterogeneous

correlation network model, which is a type of multilayer network. We use this model

to bring together different existing integrative approaches.
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Part I

Brain Functional Connectivity

Correlation Networks
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CHAPTER 3

MODULARITY MAXIMIZED COMMUNITIES IN BRAIN

USING FACTOR ANALYSIS

The communities/modules in brain FCN are sub-networks of the brain with dense

intra-community connections and sparse inter-community connections. Nodes of the

network in each module help understand the functional behavior and dynamic connec-

tions of the resting-state functional brain network. Multiple studies have shown the

presence of modules in the brains of different organisms. For example, the Caenorhab-

ditis elegans (C. elegans) which is the only species with 302 identified neurons and a

respective neuron map [107]. Several network-centric methods, including the modified

modularity maximization approach for hierarchical community detection [108], and the

stochastic block modeling [109], have been effectively used to extract the community

structure in the C. elegans’ brain connectome.

The functional segregation of the brain network is synonymous to a community in

the network-science that refers to neuronal processing carried out among communi-

ties. Segregation refers to cliques or communities or motifs or the number of triangles

of a network, which can explain the extent a network can form into separate compo-

nents [24]. We use a brain FCN that contains pairwise correlations of the nodes, where

the nodes are anatomically derived parcels of the brain at a macroscopic scale. Here, we

express how we can exploit the semantics of the adjacency matrix and use matrix-based
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Figure FC3.1: Workflow for comparing various community-detection/node-partitioning tech-
niques that use a combination of methods that utilizes a full and sparsified brain functional
connectivity network.

approaches for brain functional network analysis. Our approach is different from widely

used network-based procedures that require network sparsification, which is achieved

by applying a threshold value on the edge weights. In the traditional workflow of func-

tional connectivity network analysis [36,37], the connectivity matrices are subjected to

sparsification, i.e., filtering edges using a chosen value of the edge-weight threshold.

These edge-filtered, weighted matrices are either used directly as weighted networks or

binarized to provide unweighted networks. The thresholding process has been debated

in the literature [35], as the choice of threshold value influences the network topology

(Figure FC2.1). The filtering process discards weaker edges irrespective of their rel-

evance for functional connectome. Hence, in this study, we use a complete network

which is an FCN and EFA procedure, to functional segregate the network.

In this chapter, we find the modularly organized brain communities1 in the FCN

using EFA, compare our results with the state-of-the-art methods, and also compare

with the results of relevant literature [110]. We propose a case study to compare these

methods, as depicted in Figure FC3.1.

The following sections of this chapter describe: i) our proposed method for func-

tional segregation (Section 3.1), ii) FCN generation (Section 3.2), iii) edge filtering pro-
1We use the terms communities, node-groupings, node-partitions, clusters, modules interchangeably.
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cedure (Section 3.3), iv) community-detection/Node-partition methods (Section 3.4),

and v) comparison of the node partitions (Section 3.5).

3.1 Proposed Approach for Functional Segregation

For computing brain functional segregation of the resting-state, weighted, fully con-

nected, and undirected FCN, we propose to use EFA. Charles Spearman [38] first pro-

posed factor analysis; in the domain of psychology study. Spearman demonstrated that

there exists a reason or common factor called ‘general intelligence’ for the grades in

school subjects such as maths, history, etc. EFA is predominantly used to study the

structure of the variables. EFA can be of R-type or Q-type analysis of a correlation

matrix [111, 112]. The R-type factor analysis finds the latent structure of the variables,

whereas the Q-type factor analysis uses a subject-wise correlation matrix and is used to

cluster subjects in a population. While Q-type analysis has been used for community

detection [113], R-type factor analysis is apt for functional segregation of the FCN with

maximized modularity. EFA is an exploratory and experimental method used to find

the underlying structure of the data [112]. Section 3.4.1 elaborates the details of EFA.

3.2 FCN generation

Datasets for Case Study: The resting-state functional connectome dataset, i.e., fMRI

scans of the healthy right-handed volunteers of young adults of age group 18-26 years,

is used to generate FCN. MRI is the most popularly used modality for human brain stud-

ies. Modeling the MRI data as functional connectivity networks culminates in network-

scientific analysis [35, 64, 114]. The dataset is from Beijing Normal University, from

the 1000 Functional Connectome Project [3]. The dataset is of 198 subjects of right

gender-balanced (122 female volunteers). Data acquisition is made with the Siemens
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3T scanner, and data preprocessing is done using SPM5 (Statistical Parametric Map-

ping) and DPARSF [2]. The fMRI scans of each subject are captured while the subject

is in resting-state with an eyes-closed (EC) condition yet being awake. The Automated

Anatomical Labeling (AAL) parcellation atlas [58] of 90 ROIs of the brain cerebrum

is used to define the nodes of the network. Note that the ROIs of the cerebellum of the

brain are excluded in this FCN generation. In this work, the network is addressed as

AAL90 , referring to the parcellation method and its number of nodes.

Functional Connectome Generation: For each subject data in the cohort, an FCN us-

ing fMRI data is generated from the extracted mean time courses (BOLD signal) of the

nodes/ROIs. Pairwise, Pearson’s correlation among all the nodes gives an undirected,

weighted, and completely connected FCN. Fisher’s r-to-z transformation is applied on

each correlation network and derived z-score matrices. The final ‘correlation matrix’

is generated by aggregating individual FCN matrices, which is an adjacency matrix.

AAL90 is an adjacency matrix of size 90, that uses a 90-node AAL parcellation. The

final AAL90 FCN is subjected to different community detection algorithms for the com-

parative analysis of functional segregation.

The methods Louvain (LM) and Infomap (IM) of our comparison test-bed are not

applied on full FCN; hence we find an optimal edge-weight threshold value to sparsify

the network. The rest of the methods, i.e., Exploratory Factor Analysis (EFA), Hier-

archical consensus clustering (HC), and Hierarchical clustering (h-clust) are operated

on full FCN, but these methods expect an input parameter that specify the number of

clusters (k) to be derived from the given network. Hence we need to find an optimal

threshold value to filter the network and the optimal number of communities that can

produce the communities with the maximized modularity.
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Figure FC3.2: Finding edge threshold for AAL90 network. The figure depicts: (i) violin plot
of node degree distribution at different thresholds of edge-weight and the elbow graph to find
the optimal threshold (T ) value, (ii) the number of nodes vs. number of edges plot for different
thresholds, and (iii) the number of nodes of giant components at each edge threshold using
percolation analysis.

3.3 Edge-Filtering Networks

Most network-science based FC studies had considered edge-filtering as a prepro-

cessing procedure. The cut-off value for edge reduction can be realized by observing

the network properties such as nodes degree distribution, edge distribution, etc., at each

increasing value of edge-weights.

To sparsify the FCN and to implement Louvain and Infomap community detection

methods, the threshold value is identified by studying: (a) the network node degree dis-

tribution using an elbow curve (Figure FC3.2 (i)), (b) by observing the number of nodes

vs. the number of edges at each edge-weight threshold (Figure FC3.2 (ii)), and (c) by

verifying the number of nodes of largest connected components as we remove edges in

decreasing order of edge-weights using percolation analysis [115] (Figure FC3.2 (iii)).

In percolation analysis, an edge-weight value is considered a final cut-off value, when

at values higher than that edge-weight, the network tends to break down into a larger

number of smaller subnetworks. Figure FC3.2 (ii) shows a sharp drop in the edges

until a threshold of 0.45, beyond which the number of nodes reduces. Similarly, in Fig-

ure FC3.2 (iii), the number of nodes of the giant connected component was constant un-
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til a threshold value of 0.5; beyond this value, the nodes start decreasing as the network

starts fragmenting into multiple connected components. The node degree distribution in

Figure FC3.2 (i) indicates a range of values, i.e., 0.4, 0.45, and 0.5. Hence, in this study,

for AAL90 FCN, we consider edge-weight threshold values as τ = {0.4,0.45,0.5}.

3.4 Community-detection/Node-partition Methods

This section first elaborates our proposed functional segregation procedure, i.e.,

EFA, followed by a few carefully chosen state-of-the-art community detection algo-

rithms that are used to compare EFA results.

3.4.1 Exploratory Factor Analysis (EFA) for Node-Partitioning

We partition the FCN by identifying factors corresponding to node-partitions in the

network. The factor analysis works with an assumption that there exists an underly-

ing structure among the variables. If the correlation values between the variables are

not significant, then EFA fails to identify groups of variables, owing to the absence of

structure among the variables. If these groups are located, they exhibit homogeneous

distribution [111]. The nodes of the FCN are treated as random variables, thus, allow-

ing the use of EFA to group nodes. Functional segregation refers to the modules of a

network with nodes that are functionally related and tightly connected due to homoge-

neous edge distribution. Here, we use EFA to determine the functional segregation of

the FCNs, i.e., to locate the strongly inter-linked nodes [41].

Factors in EFA can be computed using either component factor analysis or common

factor analysis method, based on the type of variance considered among the variables.

The variance of any variable can be divided into three parts, i.e., common variance, spe-

cific or unique variance, and error variance [111]. Component factor analysis methods



28

use the total variance of the variable, e.g., the principal component method. In compar-

ison, methods such as principal axis factoring and maximum likelihood use common

factor analysis, where only common variance among the variables are considered to

identify an underlying structure that leads to differentiate factors. The unique and error

variances are not associated with correlation values among the variables but are due to

unreliability while collecting data or measurement error.

Here, we use the maximum likelihood estimation (MLE) method to identify factors.

MLE is highly recommended amongst all FA extraction methods [116], as it provides

relatively more information about the factors, and it is the best-suited method when data

is normally distributed. A [p×m] matrix is the factor loading matrix is computed using

MLE for p observable variables and m reduced latent, unobservable variables that share

similar variance.

Factor loadings are the correlations of variables with the factors. To attribute labels

and for the right interpretation of the factors, orthogonal or oblique rotation methods

are used in factor analysis. The rotation procedure can decrease the ambiguity in the

solution and aid in labeling the factors. Multiplication of the loadings with an orthog-

onal matrix, which is equivalent to a rotation (i.e., a linear transformation), does not

change the covariance matrix that is regenerated from the transformed loadings [117].

This transformation does not modify the communalities. Communality is the measure

used in EFA to determine how well the node correlates with others, based on the num-

ber of factors used. Communality greater than 0.4 is desirable for all variables for any

number of factors in EFA [118, 119]. One way to find a consistent set of factors using

factor loadings (rows of [p×m] matrix) is to find an appropriate rotation that can al-

low the interpretation of factors and also maximize the communalities using a “simpler

structure” [120]. Popularly used rotation methods are varimax rotation, an orthogonal,

and an oblimin rotation, non-orthogonal.
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Our four-step algorithm for using EFA on the FCN involves: (1) checking the fea-

sibility for implementing EFA on the corresponding correlation matrix, (2) estimating

nF , (3) implementing EFA using MLE with both rotation methods, and (4) retaining

node-grouping from communality-maximizing rotation method. Elaborated details of

EFA are provided in Appendix A.

Eligibility of Correlation Matrix for EFA: For finding factors of a correlation matrix,

the primary eligibility criterion is that the correlation matrix has to be positive definite

to ensure non-singularity. However, it must be noted that a few of the EFA methods and

implementations relax the criterion to the property of positive semi-definiteness. The

Kaiser-Meyer-Olkin’s (KMO) test is an important test on the correlation matrix to check

if its measure of sampling adequacy (MSA) is not less than 0.7 [121]. MSA is a measure

to verify the variables linear dependency, as FA anticipates the variables dependency.

The correlation matrix with MSA less than 0.5 is not eligible for EFA [121,122]. In our

work, the AAL90 correlation matrix is positive semidefinite and has an MSA of 0.78.

Thus, the AAL90 FCN is eligible to node-partition using EFA.
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Figure FC3.3: (i) Scree plot to represent the number of factors nF identified using parallel anal-
ysis. (ii) Distribution of communality scores for EFA using maximum likelihood and varimax
rotation method at each factor nF .

Estimation of Number of Factors (nF ): We use variance- or eigenvalue-based meth-

ods to estimate the number of factors (nF ) for EFA. A few of the widely used procedures

for determining nF are the Scree test and Parallel Analysis [123]. The choice of nF can
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also be made using prior knowledge of the existing studies on a similar set of random

variables [111].

For our case-study data, i.e., AAL90, the optimal number of factors according to

the parallel analysis scree plot (nst
F ) is nine, (Figure FC3.3 (i)). But, there is no rule

of thumb to approve or reject any of the values for nF in EFA. Hence, we have veri-

fied a) the number of communities the community-detection methods Louvain (nlc
F ) and

Infomap (nim
F ) produced at the optimal edge-thresholded network (Section 3.3), and b)

Number of modules (npr
F ) found in a prior study that had considered a similar dataset

and parcellation method, which is investigated by He et al. [4].

The number of communities derived on sparsified FCN by Louvain and Infomap

methods at 0.5 edge-thresholded network is nlc
F = 7 (Figure FC2.1), nim

F = 12 respec-

tively. But, we have observed that IM had produced over-fragmented sub-networks,

i.e., nim
F = 12 at τ = 0.5. Hence we restrict to apply a threshold of τ = 0.45 for method

IM, which produces nim
F = 9. The number of modules derived in prior studies is npr

F = 5,

and using parallel analysis, scree test is nst
F = 9. Using the extrema from these values,

the determined interval for implementing EFA is [5, 9]. Examining the factors for the

range of the interval adds to the exploratory and experimental characteristics of EFA.

Hence we find factors of the full FCN for various node-partitions/factors starting from

5 factors to 9 factors.

Factor Loadings for Node-Partitions: When a factor is to be correlated with a vari-

able, the strength of this relationship is captured by its factor loading fs. Conventionally,

retaining this relationship is based on satisfying the condition fs > 0.3 [118]. When the

condition is not satisfied, the variable does not correlate with any of the computed fac-

tors. When the variable is not correlated with any factor, it forms a singleton partition,

resulting in an overly fragmented FCN, which is not desirable. Hence, to ensure the

inclusivity of all nodes in the FCN in the node-partitions, we relax this criterion to
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fs > 0, as implemented in our previous work [41]. Also, as a factor retention criterion

(FRC) [40], we use only the factors with at least one node correlated with the factor.

EFA Implementation Parameters:

Table TC3.1: Communality scores of community-3 nodes of AAL90 network for nF = 5. Note
that for ease of representation, we have provided the scores of a single community.

Node Name
Communalities Scores
Oblimin Varimax

CAL.L 0.7014 0.702
CAL.R 0.7144 0.7305
CUN.L 0.4511 0.4654
CUN.R 0.4654 0.4744
LING.L 0.7752 0.7904
LING.R 0.7871 0.7841
SOG.L 0.5548 0.5897
SOG.R 0.5719 0.5919
MOG.L 0.5982 0.627
MOG.R 0.4903 0.4839
IOG.L 0.4462 0.4704
IOG.R 0.3579 0.3649
FFG.L 0.6359 0.6015
FFG.R 0.6384 0.6275

Between oblimin and varimax rotation methods, the varimax rotation method is

chosen, as it shows better communalities scores (h2) than the oblimin rotation (Ta-

ble TC3.1). A good communality score for the variables is recommended as it describes

the common variance of the variables, where unique or specific variance u2 = (1−h2).

Conventionally, communality scores in EFA are used to eliminate variables from the

study for dimensionality reduction. Variables with communality score in EFA h2 < 0.2

are eliminated for postprocessing [124]. There are several thresholds of communalities

score recommended in the literature for retaining variables, e.g. h2 = 0.4 [118, 119],

and h2 = 0.5 [111]. For our experiments, Figure FC3.3 (ii) shows the distribution of

communalities scores at each selected nF of EFA. We observe that the communality

scores are significant, and the median value at each scale is greater than 0.4.
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We conclude that EFA with the maximum likelihood method and with varimax rota-

tion produces acceptable error terms and communality scores of the FCN. We study the

factors using EFA for the whole interval, I = [5, 9].

3.4.2 State-of-the-Art Community Detection Methods

As depicted in Figure FC3.1, Louvain (LM), Infomap (IM), Hierarchical clustering

(h-clust), and Hierarchical consensus clustering (HC) methods are used for finding

clusters in the FCN. There are several classes of community detection algorithms [113,

125], of which modularity optimization algorithms will be directly applicable.

The use of modularity as a measure of functional segregation and for finding the

modular structure of the brain has been well-studied [63]. Louvain community detec-

tion [126] is a widely used algorithm, which has been used in [61] for computing modu-

larity in the thresholded unweighted graph of the functional connectivity matrix. Simi-

larly, LM has been extended for the weighted graph, using a threshold window [127]. In

a similar vein, the information-based algorithm, IM [74], is also applicable for thresh-

olded weighted and unweighted networks. Both the methods, LM and IM, are graph-

based algorithms and are used for finding communities on the filtered network.

LM utilizes an iterative procedure that considers a greedy optimization process to

find the modules with the maximized modularity score (Q) [126]. The method first con-

siders each node of a network as a community, and over multiple iterations, the neigh-

boring nodes are grouped as a community by verifying the Q value. The maximized Q

value is achieved when intra-cluster edge density is higher than the inter-cluster edge

density, signifying dense intra-community and sparse inter-community edges.

IM is an information-theoretical method, which is the fastest, most frequently used,

and accurate method for identifying communities [125] and is often used in FCN. The

root principle of IM is; a random walker is likely to dwell and make more hops inside
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a community than across the communities. Random walker’s state of the path can be

described using Huffman coding in two phases. The first phase separates the network

communities, and the second phase allots the nodes to the encoded communities. With

this intuition, IM finds accurate communities in the network. Both LM and IM exploit

the network topology and find an appropriate segmentation of the network that results in

dense subnetworks. Thus, these methods are semantically different from EFA, h-clust,

and HC, which use a full (complete) network for finding communities.

h-clust a data mining clustering procedure, is used to extract hierarchical clusters;

owing to the brain hierarchical modular organization [61]. We have implemented h-

clust on FCN by considering, single, complete, average, and ward linkage methods of

the hierarchical clustering algorithm.

HC is also a hierarchical clustering procedure that is applied on a consensus matrix.

HC uses a two-step process to find communities in the brain networks. As a first step,

the generalized Louvain community detection (genLouvain) [128] method with fixed or

varying resolution parameter (γ) is used for n iterations, and the second step uses the

hierarchical clustering method to find clusters on aggregated results of genLouvain. In

our work, we have used genLouvain with a fixed resolution, i.e., γ = 1 for 100 runs

and the used HC with α = 0.1 (90%) [129], the value of α decides the co-clustering

tendency of two nodes of a network, i.e., checking if the two nodes of a cluster are

grouped together by a random chance or by their natural clustering tendency. For both

h-clust and HC, the tree-cut of the generated dendrogram of FCN decides the number

of clusters to examine in the network.

We compare the node-partitions (nP) obtained using EFA with the communities/-

clusters determined using LM, IM, h-clust, and HC procedures [110].
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3.5 Comparison of EFA with State-of-the-Art Methods

Using AAL90 data, we build a test-bed for a comparative analysis of brain node-

partitioning. For comparative study, the modularity score (Q) is used for quantitative

analysis, and Sankey diagrams [130] are used for qualitative analysis.

Modularity (Q): The modularity is a network measure that is proposed by Newman

and Girvan [131] and then extended to weighted networks [132]. The measure Q is de-

rived using mixing parameter (µ) measurement [133]. Q measures the node-partitions

score using their intra-community edge-density and the expected such edge-density in a

random network. The expected edges in the random network preserve the same node de-

gree distribution as the existing network, but the links between the nodes are connected

randomly. The fraction of edges of the nodes that belong to the same community is

given as,
∑i j Ai jδ

(
ci,c j

)
∑i j Ai j

(Eqn 3.1)

where ∑i j Ai j is equal to 2m, i.e., the total number of edges in the undirected graph, ci

is the community of the node i and δ function is 1 if ci = c j, otherwise δ function is 0.

The fraction of expected edges is, kik j/2m, ki is the degree of node i. The modularity

value Q is:

Q =
1

2m ∑
i j

[
Ai j−

kik j

2m

]
δ
(
ci,c j

)
(Eqn 3.2)

For a network, the value of Q indicates the goodness of the communities division. The

value of Q zero or less signifies that the intra-community edges are less than one can

expect by a random chance. A positive Q value around 0.3 and above indicates clarity

in partitioning [132].

The Q value is observed high in all methods when the network is segmented into

five partitions (Figure FC3.4 (i)); this also supports the five modules of prior work

npr
F [4], which had considered a similar dataset and parcellation method. The modularity
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Figure FC3.4: (i) A comparative plot of modularity (Q) scores shows the highest Q value for
all methods when the network is partitioned into five communities. (ii) Visual representation
of node-grouping of EFA with nF = 5 on the brain surface. The spatial centroid coordinates
of nodes are used to display modules in the ‘axial view’ of the brain, top side view (left), and
bottom side view (right). The plot is generated using a MATLAB tool named ‘BrainNet Viewer’
(BNV) [2].

score of LM is the highest and of EFA is comparable to LM. The highest Q value of

the Louvain method can be attributed to its greedy optimization process. The node-

groupings of EFA at nF = 5 are visualized on the brain surface, axial view (Figure FC3.4

(ii)). The nodes of each community display modular organization by grouping the nodes

in such a manner, where a node’s neighbors are neighbors to each other. Along with the

modular organization of nodes, hemispheric symmetry is also observed in Figure FC3.4

(ii), i.e., the right and left spatial coordinates of brain regions/nodes are co-clustered in

the same community.

The correspondence of communities between the methods LM, IM, EFA, HC, and h-

clust is studied using Sankey plots. With the preferred range of edge-weight threshold

values of τ = {0.4, 0.45, 0.5} (Figure FC3.2), methods LM and IM had resulted in

{5, 6, 7} and {7, 9, 12} communities respectively. To check the agreement between the

nodes when compared with the five modules of ‘prior study’ (PR) by He et al. [4], the

five communities of method LM with τ = 0.4 are used. Similarly, the nine communities

of the method IM at τ = 0.45 are compared with the node-groupings of EFA identified

using the scree test (Figure FC3.3), i.e., with nF = 9.
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(ii) IM and EFA (9 Communi�es)  
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Figure FC3.5: The blue vertical bar refers to node-Ids. The node-groupings are compared
between (i) LM at τ = 0.4, EFA with nF = 5 and h-clust using average-linkage method, with
nP = 5. (ii) IM at τ = 0.45, EFA with nF = 9 and nF = 5. A detailed explanation of naming
conventions used on the Sankey plot is provided in footnote2.
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Figure FC3.5 (i)2 is the comparison of nodes correspondence of LM with T = 0.4

with EFA for nF = 5. We have observed almost similar node-groupings among the com-

munities; 83 out of 90 nodes were grouped similarly in both the methods. Here the edge-

crossings, i.e., mismatched nodes correspondence is observed in EFA for a single node

at AF4 and six nodes at AF5. A similar proportion of mismatched correspondence is ob-

served between EFA and h-clust methods. For h-clust, the nodes correspondence with

EFA is verified for single, complete, ward, and average-linkage methods. The highest

matching percentage is observed with the average-linkage method. In Figure FC3.5 (i),

the depicted h-clust are resulted by employing the average-linkage method. Though the

matching percentage of h-clust with EFA is 86.67%, except for AH2 cluster, the rest all

are noticed with edge-crossings that depict differing node-mappings with EFA.

As the method IM at τ = 0.45 and EFA with scree test produces the same number of

node-partitions, we have compared their nodes correspondence (Figure FC3.5 (ii)). We

have observed high edge crossings in Figure FC3.5 (ii) between the nine communities in

IM and nine factors in EFA, indicating failure in the correspondence of node-groupings.

Interestingly, the lesser edge crossings are noticed between EFA with ‘five factors’, i.e.,

nF = 5 and ‘nine factors’, i.e., nF = 9. This reveals the hierarchical modular organiza-

tion of the FCN, which is also a property of the brain connectivity network. The given

FCN of AAL90 data, the brain connectivity network exhibited hierarchical modularity

when nF in EFA is increased progressively (Figure FC3.7(i)).

The comparison of node-groupings against PR [4] using Sankey plots is shown in

Figure FC3.6 (i) to (iv). The findings are: (i) lesser edge-crossings and mismatched

node-groupings are noticed with EFA, and the opposite is noticed with the method h-

clust. (ii) Nodes correspondence matching percentages with PR, is 90.00%, 88.89%,
2For Sankey plots, i.e., in Figures FC3.5, FC3.6, and FC3.7, the XY naming convention is used, where X is {A, B,

C, D}, that corresponds to {5, 6, 7, 9} node-communities. The value of Y is {L, I, F, H, HC, He}, which corresponds
to {LM, IM, EFA, h-clust, HC, PR}, respectively. For example, DI7 represents the seventh community out of nine
communities (D = 9) identified using the method IM (I). The automated code to implement the Sankey plots is
available at GitHub repository, https://github.com/vrrani/SankeyPlot.

https://github.com/vrrani/SankeyPlot
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Figure FC3.6: Comparative visualization of nodes correspondence between prior study mod-
ules (PR) [4] and node-groupings of our selected approaches. Comparison against PR to (i).
EFA with nF = 5 and LM at T = 0.4, (ii). h-clust and HC, at nP = 5, (iii). EFA with nF = 9
and IM at T = 0.45, (iv). h-clust and HC at nP = 9. The naming convention of the communities
is given in footnote2.
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Figure FC3.7: Sankey plot for hierarchical modularity from five to nine modules using the
method (i). EFA, (ii). h-clust, and (iii). HC. The naming convention of the communities is
given in footnote2.

85.56%, and 83.34%, for EFA, LM, HC, and h-clust, respectively. (iii) On visual in-

spection of Sankey plots, the least edge-crossings were observed for EFA-PR-LM (Fig-

ure FC3.6 (i)) and HC-PR-h-clust, for nP = 9 (Figure FC3.6 (iv)). On closer observation

of the latter plot, we have observed that the size distribution between HC-PR-h-clust is

not matched

Within the range of interval [5, 9] for nP, by providing appropriate tree-cut, due

to the default nature of hierarchical community detection methods, we observe a clear

hierarchy with the h-clust and HC methods Figure FC3.7 (ii). However, interestingly

we observe the hierarchical organization of node-groupings with EFA when we run the

method for varying number of factors nF in the range of [5, 9] as shown in Figure FC3.7

(i). In the Figure FC3.7 (i), module AF1 is subdivided into module BF1 and BF6

to group the nodes into 6 factors from 5 factors; similarly, module BF4 divides into

modules, CF4 and CF7, to group nodes of 6 factors to 7 factors, and a similar pattern
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of transition is observed from 7 to 9 factors. Though h-clust, and HC (Figure FC3.7 (ii)

and (iii)) depicts the hierarchical organization of communities, these methods show low

matching percentage scores with PR and also failed to exhibit modular organization and

hemispheric symmetry of nodes.

3.6 Conclusions

Overall, we conclude that when derived the optimal number of communities of the

network, both the methods LM and EFA perform equivalently. In this case, EFA with

five factors and LM at τ = 0.4, i.e., with five communities, behaves similarly and com-

plies with PR. Additionally, EFA also exhibits bilateral symmetry, maximized modu-

larity, and hierarchical modular organization. The novelty of our work lies in using

EFA for community detection, which is traditionally used for correlation analysis in

statistical applications. Here, we avoid sparsification or binarization of the network and

use a fully connected network for functional segregation, i.e., identifying functionally

significant communities.

Limitations: EFA expects an input parameter, namely, the number of factors, nF , for

its implementation. Here, nF corresponds to the number of node-partitions in FCN.

However, there is no ground truth for a definite number of node-partitions in FCN.

Moreover, the hierarchical brain organization provides several valid counts, depending

on the level we choose. Also, in general, EFA suffers from the issues such as replica-

bility of node-partitioning [39], and the generalizability of the algorithm [40].

Hence to address these limitations of EFA, we define the value of nF as the scale,

and propose to apply EFA for multiple scales to get optimal node-groupings [41]. In

Chapter 4, we address the limitations of EFA by using a multiscale consensus method to

find modularity maximized communities and tight-bound cliques within communities.
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For the effective use of EFA for FCN analysis, we implement a novel consensus-

based algorithm using a multiscale approach (Figure FC1.1), with the number of factors

nF as a scale (Step-A). The consensus mechanism is used for transforming the network

(Step-B), where we perform community detection and cliques on the transformed net-

work (Step-C).

In the multiscale consensus approach, we define the value of nF as the scale for

EFA, and propose to apply EFA for multiple scales. The node-partitioning is repre-

sented using a co-association matrix Dk, for the kth scale. We choose a set of values of

nF to compute EFA, and the communities/node-groupings are aggregated to generate a

final co-association matrix, D, using consensus voting of the Dk at k = 1,2, . . . ,N scales.

Thus, we transform a weighted, fully connected FCN (correlation matrix) to a represen-

tative co-association matrix. D is symmetric, with the values in the range of 0 to 1, 0 for

the nodes that did not group together in any of the node-partitionings obtained in any of

the chosen scales, and 1 for nodes that always belonged in the same community through

all the node-partitionings. Thus, we use D as an adjacency matrix of our transformed

network [41]. Generalized Louvain (genLouvain) [1] community detection algorithm

is then implemented on the transformed network, to find the consensus-based commu-

nities and cliques. Our work is different from the state-of-the-art consensus methods to

find the communities in the networks [134–136], owing to the use of EFA.

In this Chapter, we describe the following steps that are used to study the brain FCN:

1. Network Transformation (Section 4.1) has three sequential steps.

(a) Input data preparation: This step involves collecting rs-fMRI data, process-

ing data for our case study, aggregating subject-wise correlation matrices,

and creating a weighted, undirected, fully connected FCN (Section 4.1.1).

(b) Multiscale co-association matrix computation: We first explain how node-

partitioning is done using EFA with a predefined scale, i.e., number of factors
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nF (Section 4.1.2). We then identify different values of nF for implementing

EFA at multiple scales (Section 4.1.3), and implement node-partitioning at

each of the N scales, nk
F , for k = 1,2, . . . ,N. The node-partitioning at the kth

scale is represented using a co-association matrix Dk. We, thus, determine N

such co-association matrices.

(c) Transformed network generation: We aggregate the co-association matrices

at multiple scales using consensus voting to generate a representative co-

association matrix, which is the adjacency matrix of a transformed network

(Section 4.1.4).

2. Communities and Cliques in Transformed Network: Finding groups of nodes

in the transformed network, in the form of communities and cliques (Section 4.2).

3. Optimal Selection of Scales: Finding appropriate scales for the multiscale im-

plementation is critical in our methodology. Hence, we study how the choice of

scales impacts our results by measuring the efficiency of its outcome, i.e., com-

munities. We use appropriate efficiency metrics for deciding the optimal selection

of scales, as explained in Section 4.3.

4. Significance of Consensus Communities and Cliques: Using the identified op-

timal scale, we obtain consensus communities, and cliques and study them for

their biological significance (Section 4.4).

4.1 Network Transformation

Here, we describe our proposed methodology for network transformation.
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4.1.1 Input data preparation and FCN generation

We have run experiments on datasets of FCN of the human brain in a resting state,

with different sizes, and using different parcellation atlases (AAL, Schaefer). In Chapter-

3, we had performed a single case study on 90-nodes FCN using AAL atlas, which we

expand here to include datasets with the state-of-the-art Schaefer parcellation, with 200-

nodes and 400-nodes FCNs. We include an FCN with 400 nodes in our case study to

explore the cortical brain areas at high resolution, as explained in their work by Essen

et al. [137] and Schaefer et al. [59]. Hence, we have used two different fMRI datasets.

The first dataset gives SCH400 and SCH200, which are networks using parcellations de-

termined by Schaefer et al. [59], and the second one, AAL90, which is a network with

AAL parcellation atlas [58]. This selection of FCNs enables us to study the influence

of both ‘network size’ and ‘parcellation atlas’ in our results.

Schaefer’s parcellation dataset gives an eyes-open (EO) resting-state functional con-

nectome from the enhanced Nathan Kline Institute-Rockland Sample (NKI-RS)1 [138].

This data is available for open access using the Amazon S3 web services bucket. Multi-

band and multiplexed echo-planar imaging (EPI) [139, 140] is used to acquire fMRI

data. The datasets were preprocessed to correct for slice timing, nonlinear distortion,

and motion using fMRIPrep v1.1.8 [141]. The data was bandpass filtered (0.008-0.08

Hz), linearly detrended, and nuisance regressed using a 36+ parameter strategy [142].

A preprocessed time series for each subject is generated by averaging the data within

each node (ROI) and fitted to each subject’s anatomy [143]. This data is of 109 subjects

(56 female and 53 male) of the age group, 18-26 years, and the FCNs confirm to 17 ref-

erence networks [6]. The same AAL parcellation data used in Chapter-3 (Section 3.2)

is used in this Chapter on the multiscale consensus workflow. All three datasets, i.e.,

SCH400, SCH200, and AAL90 are from resting-state fMRI modality, of healthy right-
1http://fcon_1000.projects.nitrc.org/indi/enhanced/

http://fcon_1000.projects.nitrc.org/indi/enhanced/
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handed controls, with the right gender-balance and strictly following the age group of

18-26 years. The studies [6, 144, 145] show decreased segregation and modularity with

age. Hence, considering young adult subjects for FCN functional segregation is very

necessary to learn the patterns in the brain.

Functional Connectivity Network Generation: The FCN from all the datasets of

our interest are generated using mean time courses (BOLD signal) of the nodes in the

ROIs given by the corresponding parcellation technique. Pairwise, Pearson’s correlation

among all the nodes gives an undirected, weighted, and completely connected FCN. We

generate a final correlation matrix by aggregating individual FCN matrices, which is an

adjacency matrix. SCH200 is an adjacency matrix of size 200, SCH400 is of size 400,

and AAL90 is of size 90.

4.1.2 EFA and Co-association Matrix

We partition the FCN by identifying factors corresponding to node-partitions in

the network. The complete details of factor analysis are presented in Chapter-3, Sec-

tion 3.4.1. The four-step algorithm described in Chapter-3 is upgraded to a five-step

model to apply EFA on FCN using a multiscale approach: (1) checking the feasibility

of implementing EFA on the corresponding correlation matrix, (2) estimating nF , (3)

implementing EFA using MLE with both rotation methods, (4) retaining node-grouping

from communality-maximizing rotation method, and (5) generating a co-association

matrix from the node-grouping.

As a first step to implementing EFA, the eligibility criterion is verified. All three

correlation matrices, i.e., SCH400, SCH200, and AAL90 are, positive semidefinite and

are with the measure of sampling adequacy (MSA) of 0.97, 0.96, and 0.78, respectively.

Thus, these FCNs are qualified for node-partitioning using EFA. We follow the same

FRC as explained in Chapter-3, i.e., to use only the factors which have at least one node
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correlated with the factor and to ensure the inclusivity of all nodes in the FCN in the

node-partitions, we considered all factor loading with fs > 0. Steps 1-4 are the same as

explained in Chapter-3 (Section 3.4.1).

Co-association Matrix: The node-partitioning is represented as a co-association ma-

trix, which is used for consensus gathering. The co-association matrix is symmetric

with the FCN nodes in rows and columns in the same permutation order, and the matrix

element is a binary truth value for the nodes in the corresponding row and column be-

longing to the same partition, P. Thus, the co-association matrix for a scale, nk
F , where

Pk
i and Pk

j are the node-partitions/factors of EFA, containing nodes i and j is:

Dk
i j =


1 if Pk

i = Pk
j ,

0 otherwise.
(Eqn 4.1)

4.1.3 Multiscale EFA

We implement EFA at multiple scales to generate different sets of node-partitions,

and then take a consensus of their corresponding co-association matrices to determine

the functional segregation of the dataset. Our goal is to find the most efficient set of

nF as scales, thus improving the generalizability and replicability of the results. We

measure the efficiency using metrics explained in Section 4.3. In order to find a set

of scales nF , we use a continuous interval of integral values and, as a trivial choice, a

singleton, i.e., a single scale.

4.1.3.1 Continuous Interval for nF :

Finding a continuous interval of nF is a trivial way of finding multiple scales for

our approach. This interval I, which consists of only positive integers, is expected to
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be a property of the FCN. I consists of all the possible values of the number of node-

partitions, nP, that the FCN can have. In our work, we have considered nF consistently

from (a) a priori knowledge (npr
F ), (b) using parallel analysis (npa

F ), (c) scree test (nst
F ),

and (d) using graph-theoretic community detection methods Louvain [126] (nlc
F ), and In-

fomap [146] (nim
F ). The FCN is a completely connected network, and it is a requirement

not to filter the network to apply EFA. However, finding nlc
F and nim

F using community

detection methods require filtering the network to reduce the edge density in FCN. We

use percolation analysis [115] to find an appropriate threshold value to filter and spar-

sify the networks and then apply Louvain and Infomap community detection methods

to identify nlc
F and nim

F . Note that Louvain and Infomap community detection methods

are used exclusively to find the number of communities to provide values for determin-

ing the bounds of the interval for nF . Hence, the outcomes of these methods are not

used subsequently in determining the final consensus nP.

Overall, we use npr
F , npa

F , nst
F , nlc

F and nim
F to determine the lower and higher bound

values for the continuous interval for nF . We have proposed this approach for finding

multiple scales in our work [41].
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Figure FC4.1: Finding edge cutoff value to sparsify the network using percolation analysis, (i)
SCH400 nodes network, the cutoff value is 0.28 (ii) SCH400 nodes network, the cutoff value is
0.32 (iii) AAL90 nodes network, the cutoff value is 0.5.

To implement Louvain and Infomap community detection methods to sparsify the

FCN, we have used percolation analysis. The threshold for network sparsification is
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selected by verifying the number of nodes of the largest connected components as we

remove edges in decreasing order of edge-weights using percolation analysis. In per-

colation analysis, an edge-weight value is considered as a threshold, when at values

higher than the edge-weight, the network tends to break down into a larger number of

smaller subnetworks. Our results show that the optimal threshold for the SCH400 net-

work is 0.28 that retains 7360 edges; for the SCH200 network, it is 0.32, retaining 1901

edges; and for the AAL90 network, it is 0.5, retaining 231 edges (Figure FC4.1). That

implies edge filtering retains only 4.6%, 4.7%, and 2.9% of the edges in the completely

connected network in SCH400, SCH200, and AAL90, respectively. As shown in Fig-

ure FC4.1, at the cutoff values below the optimal one, the network stays as a single

connected component, and beyond the optimal value, the giant connected components

(GCC’s) of the network start disintegrating into the sub and sub-sub components, and

the number of connected components increases.

Table TC4.1: Multiscale interval selection using values for nF from different sources for the
selected datasets.

npr
F npa

F , nst
F nlc

F nim
F Selected Interval I

SCH400 {7, 17} [6] 19 6 10 [7, 19]
SCH200 {7, 17} [6] 13 5 11 [7, 17]
AAL90 {5} [4, 147] 9 7 12 [5, 12]

To determine the continuous interval I for finding multiple scales, we have collected

the nF . Table TC4.1 lists these nF values for our selected datasets, where a list of values

for npr
F is included. Both parallel analysis and scree test have given the same values for

each of the selected datasets. Using the extrema from these values, we determine the

multiscale interval I for SCH400, SCH200, and AAL90 to be [7, 19], [7, 17], and [5, 12],

respectively.
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4.1.3.2 Goodness of fit for EFA

We first check the goodness of fit for factors found in each integer values in I by

examining the root mean square residual (RMSR) and the root mean square error of

approximation (RMSEA) values for the correlation matrices for our selected FCNs.

Table TC4.2: Root mean square residual (RMSR) and root mean square error of approximation
(RMSEA) values for nF values in the interval I selected for the datasets.

#Factors SCH400 SCH200 AAL90
RMSR RMSEA RMSR RMSEA RMSR RMSEA

5 NA NA NA NA 0.09 0.04
6 NA NA NA NA 0.07 0.03
7 0.05 0.00 0.05 0.00 0.06 0.00
8 0.05 0.00 0.05 0.00 0.05 0.00
9 0.04 0.00 0.04 0.00 0.05 0.00
10 0.04 0.00 0.04 0.00 0.04 0.00
11 0.04 0.00 0.04 0.00 0.04 0.00
12 0.03 0.00 0.03 0.00 0.03 0.00
13 0.03 0.00 0.03 0.00 NA NA
14 0.03 0.00 0.03 0.00 NA NA
15 0.03 0.00 0.03 0.00 NA NA
16 0.03 0.00 0.03 0.00 NA NA
17 0.02 0.00 0.02 0.00 NA NA
18 0.02 0.00 NA NA NA NA
19 0.02 0.00 NA NA NA NA

RMSR is the correlation matrix mean residual measurement; the values RMSR<

0.05 or RMSR≈ 0.00 are recommended as then the derived factors describe the corre-

lation structure at low RMSR values. The RMSR values for selected nF values for our

chosen datasets are given in Table TC4.2. The RMSEA< 0.05 is considered to be a

model with good fitness [148, 149]. In our experiments, RMSEA has been found to be

0.0 for all selected nF across all datasets, except for AAL90, RMSEA= 0.04 for nF = 5,

and RMSEA= 0.03 for nF = 6. Since RMSEA values are favorable for all cases of nF

in the datasets, where RMSR values are marginally greater than the threshold 0.05, we

continue to use all scales for our experiments; thus, retaining all scales in the selected

intervals.
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4.1.3.3 Choice of Rotation Method for EFA
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Figure FC4.2: Distribution of communality scores for EFA using maximum likelihood and
varimax rotation method at nF given in the interval I. (i) SCH400 for I = [7, 19], (ii) SCH200 for
I = [7, 17], and (iii) AAL90 for I = [5, 12]. Graphs in the inset show the mean and median
communality scores for values of nF ∈ I.

As described in Section 3.4.1 (EFA Implementation Parameters), we have compared

the communality scores among the varimax and oblimin rotation methods and used

varimax as its merits over oblimin method. For our experiments, Figure FC4.2 shows

the distribution of communalities scores at each scale, i.e., nF of EFA. We observe that

for all FCNs, the communality scores are significant, and the median value at each scale

is greater than 0.4. We conclude that EFA with the maximum likelihood method and

with varimax rotation produces acceptable error terms and communality scores in the

correlation matrices for the FCNs.

4.1.3.4 Sub-interval from Ensemble Experiments

Since there are several choices for multiple scales, we run an ensemble of multiscale

EFA to identify the optimal set of multiple scales for node-partitioning. We select

the optimal set of multiple scales using a data-driven ranking scheme based on the

efficiency metrics (Section 4.3). As a first cut, we use sub-intervals in I as a selection of
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scales to generate the ensemble, while the exhaustive set can include a random selection

of scales within I. When we use the continuous interval, I = [lb, ub] for different scales

to be used for multiscale EFA, with bounds lb and ub, we get nSI valid sub-intervals,

such that nSI =
(ub−lb+1

2

)
, using valid combinations of the bounds. For instance, for

SCH200, nSI =
(17−7+1

2

)
= 55.

To determine the optimal set of scales, these different sub-intervals allowable within

I are run as an ensemble of experiments. We further aggregate D for a set of possible

sub-intervals in nSI (Section 4.1.4), for a multiscale approach with consensus voting.

We, thus, get node-partitioning or communities for each dataset from the implemen-

tation of generalized Louvain community detection on the transformed network, rep-

resented by aggregated D, for each experimental run. Since Louvain community de-

tection gives randomized node-partitioning, we run genLouvain method 1000 times for

each experimental run. Once we run an ensemble set of experiments, we determine the

optimal sub-interval that maximizes the efficiency of the node-partitioning, measured

using normalized mutual information (NMI), modularity score (Q), Silhouette score

(S), and Dunn index (DI), as explained in Section 4.3. Thus, multiscale implementation

with ensemble runs provides the exploratory and experimental characteristics of EFA

application in FCN analysis.

4.1.4 Transformed Network Generation

Fred et al. [150–152] have discussed how the individual clustering results of an

ensemble are combined to create a co-association matrix by voting the nodes that are

grouping together. Similarly, we aggregate the N co-association matrices from running

EFA for N different scales by a consensus voting process. The consensus results are

known to produce more stable node-partitions/factors/groups/communities [134, 135].

Our voting process aggregates by averaging the co-association matrices from all the
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scales. Thus, we effectively compute an [n× n] consensus matrix D, which gives the

likelihood of two nodes in the FCN that co-associate across different scales.

Di j =

N
∑

k=1
Dk

i j

N
(Eqn 4.2)

Here, the number of scales, N, is specifically the continuous interval range, e.g., I =

[7,17] has 11 scales. D can now be treated as the adjacency matrix of a newly trans-

formed network, NT , of the FCN.

4.2 Communities and Cliques in Transformed Network

We first find communities in NT , and then identify cliques within the communities

to analyze the network and further study the biological significance of our consensus

communities and cliques.

Consensus Communities of the FCN: We perform a community detection on the rep-

resentative matrix, i.e., the transformed network, NT , using Generalized Louvain (gen-

Louvain) algorithm. GenLouvain is a variant of the Louvain method [1], which works

on a modularity matrix and is used to find final consensus communities. Louvain com-

munity detection method [126] has been used widely for finding communities in a net-

work. Louvain is a greedy optimization method that works on adjacency matrix to find

communities using modularity measures. The modularity measure with a resolution

parameter that is used for optimization in genLouvain method is [153]:

Q(~c,γ) =
1

2m

n

∑
i, j=1

(
Ai j− γ

kik j

2m

)
δ
(
ci,c j

)
, (Eqn 4.3)

where A is an adjacency matrix, γ is a resolution parameter that plays a major role in

finding communities, and ki = ∑ j Ai j, and 2m = ∑i ki.
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The consensus matrix conventionally densifies a sparse network [134]; however, in

our work, D sparsifies a dense (full) network, i.e., FCN.

Consensus Cliques of the FCN: After binarizing the consensus communities in the

transformed networks, we get connected components, which are subnetworks with edge

weight Di j = 1. We observe that these connected components are cliques, the FCN

which correlate strongly to the same factor demonstrate cliqueness, which is a signifi-

cant result of our work.

Alternative to the method of finding cliques within the communities, we can find

them directly as connected components in the edge-filtered transformed network, where

we retain only edges with an edge weight 1.0.

We observe that the cliques identified in our work could not have been found di-

rectly from the FCN as the correlations between nodes in the cliques are not necessarily

strong. Each clique, thus, is a combination of strongly as well as weakly correlated

node-pairs. Our methodology shows that these weak edges are significant, as they

are part of cliques. Thus, the conventional procedure of thresholding/filtering an FCN

would discard such cliques in the community as weak correlation edges get filtered out.

4.3 Efficiency Metrics to Find Optimal Sub-interval Selection

We have used an ensemble using different possible sub-intervals of the selected

continuous interval, I, for a set of multiple scales. We use the following four measures

to evaluate the partitioning from each experimental run: normalized mutual information

(NMI), modularity score (Q), Silhouette score (S), and Dunn index (DI). The choice

of these metrics is based on their performance in measuring the efficiency of node-

partitioning. We expect more efficient node-partitioning to have a higher modularity

score, and confirm with the prior knowledge, i.e., 5 modules of [4] for AAL90, and 17
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networks of [6] for SCH400, and SCH200 datasets.

4.3.1 Efficiency Metrics

We define our selected efficiency metrics here.

Normalized Mutual Information (NMI): This is a widely used measure to compare

the node-partitions. It is a ratio of mutual information [154] between the partitions to

the individual entropy [155] values. The NMI, as defined by Fred and Jain [136] is:

NMI
(
~C1, ~C2

)
=

2 · I
(
~C1, ~C2

)
H
(
~C1

)
+H

(
~C2

) , (Eqn 4.4)

where I(~C1, ~C2) is the mutual information between the communities ~C1, and ~C2, and

H(~.) is the entropy of each community. As this is a normalized measure, we can com-

pare the node-partitions with a different number of communities.

Modularity (Q): Measures the node-partitions score using their intra-community edge-

density and the expected edge-density in a random network. The detailed description

of Q is given in Section 3.5 ( Eqn 3.1, Eqn 3.2).

Silhouette Score (S): Silhouette score is a measure for evaluation of clusters without

ground truth. The higher the Silhouette score better the defined clusters of the data. The

score is measured as [156]:

s =
(b−a)

max(a,b)
, (Eqn 4.5)

where a, b is the distance measure of intra- and inter-cluster edges, respectively. We

have used a dissimilarity matrix to measure S, the value close to 1 defines a better

cluster organization of nodes.

Dunn index (DI): Dunn index is widely used to quantify the clusters in the absence of
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ground truth. DI is a ratio of the smallest inter-cluster distance to the largest intra-cluster

distance [157]. DI is computed on a dissimilarity matrix, similar to S.

4.3.2 Optimal Sub-interval of Multiple Scales

We visualize the efficiency metrics for the ensemble of experiments using a dot ma-

trix. Each dot represents an experiment based on a specific sub-interval of scales. The

plot is implemented as an upper-left triangle to reflect the choice of lower and upper

bounds for each experiment. Thus, the diagonal reflects the single-scale implementa-

tion. The results of efficiency metrics for the different datasets are juxtaposed in Fig-

ure FC4.3, for identifying the experiment with optimal sub-interval for multiple scales.

We observe that multiple experiments give optimal results across the four metrics.

To quantitatively determine the most optimal sub-interval, we normalize the four

efficiency metrics, and score each experiment using the average, maximum, and median

of its normalized values. The choices of the statistical function to use for ranking have

been based on the scores we have obtained for the datasets of our interest. Hence, we

refer to this process as a data-driven ranking of the ensemble results. Here, we rank all

the experiments for a dataset based on the average, maximum, and median scores. We

then take the sum of ranks to identify the top-ranked experiment for each dataset. We

get the following optimal sub-interval [11, 18] for SCH400, [7, 10] for SCH200, and [5,

6] for AAL90. However, for AAL90, we observe that the selected scales have higher

RMSR (Table TC4.2) and RMSEA. Hence, we choose the next optimal sub-interval,

namely [5,11], as the most optimal sub-interval for AAL90.

From Figure FC4.3, we can reconfirm that sub-intervals [11, 18], [7, 10], and [5,

11] give the sets of multiple scales for SCH400, SCH200, and AAL90, respectively, for

which all the efficiency metrics are maximized, thus, giving the most optimal scale se-

lection for finding communities and cliques. Using these selected sub-intervals, we
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Figure FC4.3: The dot matrix is used for visually comparing the efficiency metrics of the
communities or node-partitioning obtained in each experimental run of the ensemble for each
dataset. The diagonal corresponds to the single-scale EFA, and the upper left-triangle format
indicates the choice of lower and upper bounds of the sub-interval I used for each experiment.
Both the size of the circle glyph and its color visually encode the value of the efficiency metric.
For finding an optimal outcome of consensus communities, we identify a sub-interval that maxi-
mizes all measures, i.e., NMI, Q, S, and DI. For SCH400, SCH200, and AAL90, [11, 18], [7, 10],
and [5, 11] are chosen as the optimal sub-intervals that maximizes all the metrics, respectively.
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demonstrate our final results of the multiscale consensus communities and cliques,

which are computed as explained in Section 4.2.

4.4 Multiscale Consensus Communities and Cliques

The consensus communities and cliques are the results of our proposed methodol-

ogy. Here, we report specific characteristics of our results.

-0.5 0.0 0.5 1.0

Pearson Correla�on

Figure FC4.4: Matrix visualization of consensus communities from multiscale EFA of
SCH400 network, identified using optimal sub-interval [11, 18], that gives seven consensus
communities, where nodes within communities are seriated based on brain regions are given
by Schaefer parcellation (Table TC4.3).
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4.4.1 Consensus Communities

The multiscale consensus communities in SCH400 and SCH200 are visualized using

seriated matrices in Figures FC4.4 and FC4.5, respectively, and those of AAL90 are

shown on the brain surface with an axial view in Figure FC4.6. We use IDs prefixed

with ‘C’ and ‘Cq’ for communities and cliques, respectively, hereafter.

Pearson Correla�on

-0.5 0.0 0.5 1.0

Figure FC4.5: Matrix visualization of consensus communities from multiscale EFA of
SCH200 network, identified using optimal sub-interval [7, 10], that gives seven consensus com-
munities, where nodes within communities are seriated based on Principal Component Analysis.

The matrix visualization requires seriation, i.e., reordering, of nodes to reveal block-

like structures along the diagonal, which are patterns for clusters. There are several

methods to do seriation [158]. We first seriate the nodes based on the community ID
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Auditory & Motor regionsDefault mode network Limbic & Subcor�cal regions Visual processing regions A�en�on processing regions

Figure FC4.6: Communities from multiscale EFA of AAL90 network, identified using the
optimal sub-interval [5, 11], that gives five consensus communities.

from our results. We choose a seriation method for seriating nodes within a community

that reveals the node-partitioning as block structures along the diagonal. We thus use

the ordering using principal component analysis (PCA) for SCH200 (Figure FC4.5),

and lexicographical ordering based on the brain regions in Schaefer parcellation [6] for

SCH400 (Figure FC4.4).

Table TC4.3 shows how well the multiscale consensus communities in SCH400 and

SCH200 match with the different regions of the brain identified as per the naming con-

vention used in Schaefer parcellation [6], the same which has been used for lexico-

graphical ordering for matrix seriation. We observe that each consensus community

predominantly contains large subnetworks belonging to multiple regions in Schaefer

parcellation. While in SCH200 FCN, each community has subnetworks belonging to

at most two regions, we observe that in SCH400 FCN, the fragmentation is more pro-

nounced and each community consists of subnetworks belonging to at most four re-

gions. This clearly shows that our consensus communities have communities within

themselves, indicating the future scope for finding hierarchical communities.

For AAL90 FCN, we compare our results with a similar dataset investigated by He

et al. [4] in Figure FC4.7. We use a novel summary visualization using a square to

indicate a node, five parallel axes to represent the five communities in Figure FC4.7

(i), a horizontal line representing the line of symmetry between the two lateral hemi-

spheres in Figure FC4.7 (ii), and in both, we use the color of the square to indicate
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Table TC4.3: The matching of our best results of communities (Cmm.), each with Nc nodes,
extracted using multiscale EFA with the eight reference subnetworks (Ref.Subnet.) [6] given
as number of matching nodes. The reference subnetworks, each with Nsn nodes, are obtained
from the naming convention of corresponding regions in Schaefer parcellation, namely Occipital
Lobe (OL), Default Mode Network (DMN), Executive Control Network (ECN), Dorsal Attention (DA),
Limbic System (LS), Somato Cortex (SC), Salience Attention (SA), Temporal Lobe (TL).

Ref.Subnet. → OL DMN ECN DA LS SC SA TL
Cmm. ↓

(i) SCH400, using optimal sub-interval [11, 18]
Nsn 47 79 61 52 24 70 51 16
C1 33 0 0 0 0 0 0 0
Nc=33
C2

0 0 0 12 1 67 0 0
Nc=80
C3

0 30 7 9 7 3 42 0
Nc=98
C4

0 7 8 0 0 0 0 0
Nc=15
C5

0 25 38 2 16 0 8 16
Nc=105
C6

0 17 2 0 0 0 0 0
Nc=19
C7 14 0 6 29 0 0 1 0
Nc=50

(ii) SCH200, using optimal sub-interval [7, 10]
Nsn 24 37 37 22 14 34 26 6
C1 21 1 0 0 1 0 0 0
Nc=23
C2

0 1 0 6 1 33 0 0
Nc=41
C3

1 4 10 16 2 0 0 3
Nc=36
C4

0 2 8 0 2 0 0 1
Nc=13
C5

2 6 6 0 0 0 0 0
Nc=14
C6

0 11 9 0 1 0 1 1
Nc=23
C7

0 12 4 0 7 1 25 1
Nc=50
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Figure FC4.7: An abstract summary visualization of comparing our results of five consensus
communities from multiscale EFA with optimal sub-interval [5,11], with the modules I-V from
a similarly parcellated dataset [4]. (i) Multiscale consensus (MC) communities in comparison
with modules I-V from prior results (PR), and also indicating the nodes in MC which are found
to be clique nodes. (ii) Identifying the extent of bilateral symmetry of nodes from both MC and
PR communities, where L and R correspond to the left and right hemispheres of the brain.

the community to which the node belongs. The darker shades indicate communities

in prior results (PR) [4], and the lighter shades, our results using multiscale consensus

communities (MC). We observe that only eight out of 90 nodes do not match, e.g., bi-

lateral SPG (superior parietal gyrus) in Module-1 of PR and bilateral DCG (Median

cingulate and paracingulate gyri) of Module-V are four nodes that do not match with

our results. Figure FC4.7 (i) and (ii) show the extent of the match in community com-

position and bilateral symmetry, respectively. We observe that the bilateral symmetry

is marginally higher in our results than in the prior results. Thus, our visualization con-

siders non-spatial and spatial matching of the results. The community C3 maps exactly

with Module-II in Figure FC4.7 (i), which corresponds to the occipital region. C3 is

thus consistent with prior work [4, 159]. Overall, we conclude that our results of the

communities bear closeness to published results in the relevant literature.
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4.4.2 Consensus Cliques

We observe that as we increase the number of scales in the multiscale implemen-

tation, the cliques get more compact. This is because, as we gather consensus from

more scales, the edges with weight Di j = 1 get sparser, thus generating more compact

cliques. Table TC4.4 gives the salient differences in the cliques we find when using

the optimal sub-interval and the entire continuous interval. Since cliques are tightly

and completely connected subnetwork, using the latter is applicable here. Table TC4.5

maps out the cliques present in each of the multiscale consensus communities in our se-

lected datasets. We observe that 63%, 55%, and 70% of the nodes in FCN of SCH400,

SCH200, and AAL90, respectively, are cliques, thus indicating a large enough subnet-

work in the FCN being cliquish. The number of nodes in cliques in a community is

roughly proportional to the community’s size. At the same time, large communities

have at most two large cliques and several fragmented cliques.

Table TC4.4: Comparison of the cliques obtained when using the optimal sub-interval and the
entire continuous interval.

SCH400

Optimal sub-interval [11, 18] – Entire interval [7, 19] –
305 nodes in 42 cliques of sizes 252 nodes in 44 cliques of sizes
{36, 36, 30, 21, 20, 16, 15, 12, 11, {36, 34, 30, 16, 14, 12,12, 7, 5, 5,
8, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2,
3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2} 2, 2, 2, 2, 2, 2, 2, 2, 2}
SCH200

Optimal sub-interval [7, 10] – Entire interval [7, 17] –
162 nodes in 30 cliques of sizes 110 nodes in 20 cliques of sizes
{28, 23, 20, 13, 8, 6, 6, 5, 4, 4, 4, {21, 17, 17, 11, 6, 5, 4, 3, 3, 3,

3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
2, 2, 2, 2, 2, 2, 2}

AAL90

Optimal sub-interval [5, 11] – Entire interval [5, 12] –
66 nodes in 11 cliques of sizes 63 nodes in 12 cliques of sizes
{16, 13, 7, 6, 6, 4, 4, 4, 2, 2, 2} {15, 9, 7, 6, 6, 4, 4, 4, 2, 2, 2, 2}

The multiscale consensus cliques on brain surface with axial view are shown for the
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three datasets in Figure FC4.8. Additionally, the matrix visualization of the completely

connected subnetworks in the cliques also give an understanding of fine-grained tightly-

packed modular organization of the brain, as shown for AAL90 in Figure FC4.9 (i).

4.4.3 Significance of Resultant Communities and Cliques

As discussed earlier, the resultant communities signify a group of subnetworks from

multiple specific, reference functional regions of the brain. This also indicates the scope

for another level of nested communities to separate the region-wise subnetworks from

our communities. We observe that as the network size reduces, our communities con-

tain subnetworks from a lesser number of functional regions. We observe that the com-

munities and cliques found in SCH400 and SCH200 have significant correspondences,

indicating the consistency of the outcomes of our algorithm.

To quantify the significance of the cliques, we compute the score of each clique. We

first consider factor loading (FL) values of each node pertaining to the respective clique.

In EFA, factor loadings are the correlations of the random variables with the factors. We

now compute the ratio of minimum to maximum FL values for each clique at each scale

of the multiscale EFA, and average the scores across the scales of the interval (I) to find

the final score of the cliques, thus giving a score, CqS. The CqS values are bounded in

[0,1]. The smaller the difference between FL min and max values, the greater the CqS,

thus, signifying all of the variables in that factor are correlated with similar FL values.

We have observed that most often, a two-node clique exhibited a CqS>= 0.9. For

example, for SCH200, the CqS> 0.9 for cliques Cq11, Cq12, Cq13, Cq14, and Cq19.

AAL90 nodes network resulted in 12 cliques with 63 nodes (Figures FC4.8 (i),

FC4.9 (i)). Cq9, Cq11, and Cq12 have some of the highest clique scores CqS, and con-

sist of subnetworks from the bilateral parahippocampus, thalamus, and middle-temporal

gyrus, respectively. The stimuli such as an image of the landscape make the parahip-
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Table TC4.5: Cliques within multiscale consensus communities (Cm), with Nc nodes and Ncq

cliques. Clique ID’s are given in italic font, and the number of nodes of the respective clique is
given in parenthesis; for example, Cq2(30) reads as Clique2 with 30 nodes.

Cm Set of Cliques – {ID (# Nodes)}
SCH400 SCH200 AAL90
Ncq = 44 Ncq = 20 Ncq = 12

with 252 nodes with 110 nodes with 63 nodes
C1 Nc = 33,Ncq = 1 Nc = 23,Ncq = 2 Nc = 18,Ncq = 2

with 30 nodes with 19 nodes with 8 nodes
{Cq2(30)} {Cq1(17), Cq11(2)} {Cq4(4), Cq5(4)}

C2 Nc = 80,Ncq = 9 Nc = 41,Ncq = 5 Nc = 19,Ncq = 4
with 60 nodes with 30 nodes with 15 nodes

{Cq3(36), Cq4(4), Cq5(5), {Cq2(21), Cq3(3), Cq12(2), {Cq6(9), Cq9(2),
Cq13(3), Cq15(4), Cq20(2), Cq14(2), Cq16(2)} Cq11(2), Cq12(2)}

34(2), 35(2), 38(2)}
C3 Nc = 98,Ncq = 9 Nc = 36,Ncq = 3 Nc = 15,Ncq = 2

with 57 nodes with 16 nodes with 12 nodes
{Cq7(34), Cq8(5), Cq10(4), {Cq4(11), Cq10(3), Cq18(2)} {Cq7(6), Cq8(6)}
Cq16(3), Cq18(3), Cq26(2),
Cq28(2), Cq30(2), Cq39(2)}

C4 Nc = 15,Ncq = 1 Nc = 13,Ncq = 3 Nc = 19,Ncq = 3
with 12 nodes with 7 nodes with 13 nodes
{Cq9(12)}, {Cq6(3), Cq15(2), Cq17(2)} {Cq1(4), Cq2(7),

Cq10(2)}
C5 Nc = 105,Ncq = 11 Nc = 14,Ncq = 2 Nc = 19,Ncq = 1

with 49 nodes with 9 nodes with 15 nodes
{Cq12(16), Cq17(14), {Cq7(4), Cq8(5)} {Cq3(15)}

Cq19(3), Cq23(2), Cq24(2),
Cq25(2), Cq27(2), Cq29(2),
Cq40(2), Cq41(2), Cq44(2)}

C6 Nc = 19,Ncq = 3 Nc = 23,Ncq = 3
with 11 nodes with 10 nodes

{Cq11(7), Cq42(2), {Cq9(6), Cq19(2), Cq20(2)}
Cq43(2)}

C7 Nc = 50,Ncq = 10 Nc = 50,Ncq = 2
with 33 nodes with 19 nodes

{Cq1(4), Cq6(12), Cq14(3), {Cq5(17), Cq13(2)}
Cq21(2), Cq22(2), Cq31(2),
Cq32(2), Cq33(2), Cq36(2),

Cq37(2)}
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Cq7 Cq3, Cq6, Cq10 (three-node cliques)

Cq3 Cq6, Cq17 Cq7Cq2

(ii) Consensus Cliques of SCH200

(iii) Consensus Cliques of SCH400

Cq8, Cq9 Cq11, Cq12, Cq13, Cq14, Cq15, Cq16, 
Cq17, Cq18, Cq19, Cq20 (two-node cliques)

Cq1 Cq2 Cq4 Cq5

Cq5, Cq8, Cq11 (five and seven-node cliques)  Cq1, Cq4, Cq10, Cq15 (four-node cliques)Cq12Cq9
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Visual processing regionsDefault mode network

Figure FC4.8: Visualization of the consensus cliques on the brain surface (axial view) (i)
AAL90 network with 63 nodes in 12 cliques using interval [5, 12] for multiscale EFA, (ii)
SCH200 network with 110 nodes in 20 cliques using interval [7, 17] for multiscale EFA, and
(iii) SCH400 network with 252 nodes in 44 cliques using interval [7, 19] for multiscale EFA, of
which (4+)-node cliques are shown here. Predominant regions are labeled here.
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(i) AAL90 Nodes Network

(ii) SCH200 Nodes Network (iii) SCH400 Nodes Network
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Figure FC4.9: Network visualization using seriated matrices of (i) 12 cliques with 63 nodes of
AAL90 using the interval [5, 12], (ii) 20 cliques with 110 nodes of SCH200 using the interval
[7, 17], and (iii) 44 cliques with 252 nodes of SCH400 using the interval [7, 19]; for multiscale
EFA.
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pocampus region highly active, but we notice this region is a clique in our study of

rs-fMRI data. This indicates active visual responses even when the subjects are in an

eyes-closed state while fMRI scans. All nodes of the thalamus featuring as a clique is

interesting, as this region serves as a process and relay station to sensory systems. The

middle-temporal gyrus is in the temporal lobe of the brain, and is known for visual per-

ception, speech, and semantic memory processing. All 12 nodes of the occipital lobe

that are the reason for vision and perception are included in Cq7 with bilateral calcarine,

cuneus, and lingual gyrus nodes, and Cq8 with bilateral superior, middle, and inferior

bilateral nodes. In the eyes-closed state, the occipital lobe regions across the subjects

express similar patterns, and hence they are observed as closely-knit networks in Cq7

and Cq8.

SCH200 network has 20 cliques with 110 nodes (Figures FC4.8 (ii), FC4.9 (ii)).

Cq11 is with bilateral VisCent ExStr 5 nodes of the occipital region, and Cq14 is with

bilateral DorsAttnB PostC 2 nodes of dorsal attention. Cq12, both the nodes belong

to the somatosensory cortex region, Cq13, and Cq19 though displayed high clique-

scores; each node belongs to different brain regions. Interestingly, though the clique-

score is < 0.9, in Cq1, Cq2, Cq3, Cq7, and Cq10, all nodes of these cliques belong to

the occipital lobe with bilateral symmetry, somatomotor cortex, somatosensory cortex,

executive control network, and temporal lobe, respectively. In Cq4, out of 11 nodes, 10

nodes are from dorsal attention regions; as our study is on resting-state scans, maybe

self-directed thoughts and awareness around the surroundings are significant among the

subjects, causing these regions to form a clique. SCH400 nodes network resulted in

44 cliques with 252 nodes (Figures FC4.8 (iii), FC4.9 (iii)) of which the cliques with

the scores CqS>= 0.9 are of total nine, two-nodes cliques. Three of these cliques are

from the default mode network, two are from the bilateral occipital lobe, two cliques

belong to the bilateral somato-cortex, one clique is of the bilateral temporal region, and

one clique is from the executive control network. As the dataset used for generating
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SCH400 and SCH200 nodes network is the same, we can observe similar clique patterns.

The Cq1 of SCH200 (Figures FC4.8 (ii)) and Cq2 of SCH400 (Figures FC4.8 (iii)) are

exclusive of occipital lobe nodes, similar to Cq7 and Cq8 of AAL90 (Figure FC4.8

(i)). Similarly, Cq2 and Cq3 of SCH200 and SCH400 networks are the bilateral somato

cortex nodes, Cq4 and Cq6 of SCH200 and SCH400 networks are the nodes of bilateral

dorsal attention.

Overall, the cliques from our algorithm show significant links or edges in the FCNs,

which cannot be otherwise identified using the correlation values. Figure FC4.9 shows

that cliques make significant block patterns along the diagonal, indicating the dominant

presence of high correlation values. At the same time, we observe that the edges do

not necessarily always correspond to high correlation values, e.g., Cq11 of AAL90.

Interestingly, edges of negative correlations are also captured in cliques, e.g., Cq5 and

Cq7 of SCH400 and SCH400 networks. The conventional edge filtering process used

for functional segregation fails to preserve these structures, and hence would not have

detected these cliques. Our cliques serve as a compact cover of significant edges for

functional segregation, where the significance is by virtue of co-association and not just

the correlation values.

4.5 Conclusions

Our motivation is to exploit the semantics of the correlation matrix to avoid the edge

filtering step, for finding salient node partitioning of the network. Hence, we use EFA,

which is orchestrated by using a consensus method, where EFA is run with multiple

values of the number of factors nF , used as a scale. Thus, we propose an algorithm

to find consensus communities and cliques using the EFA method with multiple scales

for various parcellation dimensions of fMRI data. The correctness of EFA is verified

using the RMSR, and RMSEA values and also noticed significant communality scores
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for varying scales of EFA. Finding the range interval and identifying the sub-interval to

find final communities adds to the exploratory nature of the factor analysis. We have

identified modularly organized communities in all three case studies, visualized the

same using matrix visualization with seriation and also on brain surface axial view using

spatial centroid coordinates. Interestingly, the cliques found in all case studies are the

closely-knit subnetworks that are observed across all scales; these ROIs always grouped

and formed cliques irrespective of the change of scale. The identified communities

and cliques are studied for their biological significance and compared with the relevant

prior studies. Owing to the smaller size of the network, the bilateral symmetry of ROIs

and comparison of consensus communities have been demonstrated for AAL90, and

the results are comparable with the prior studies. Exploring EFA with a range of scales

and identifying the appropriate sub-interval produces a maximized modularly organized

brain regions, i.e., communities. Our proposed algorithm is thus scalable to the size of

the FCN, and is generalizable to different parcellations used in constructing the FCN.

Overall, our method shows how a conventional correlation analysis, namely EFA, can

be effectively used with network-based approaches for functional brain studies.

Limitations: Since our algorithm uses EFA as a central step, there is a strict require-

ment of positive-definiteness for the correlation matrix of the FCN. While a correlation

matrix by definition must be positive-definite, it is not guaranteed owing to the complex

preprocessing methods implemented for converting fMRI data to the correlation matrix

and aggregating matrices across subjects. It is yet to be studied how a correlation matrix

additionally corrected to be positive definite would work with our algorithm.
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Part II

Multi-level Integrative Study of

Multi-omics Cancer Data
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CHAPTER 5

REPRESENTATIVE INTEGRATIVE SUBSPACE OF

MULTI-OMICS
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There have been recent efforts in comprehensive studies of “multidimensional”

omics data [46], which in oncology has been encouraged by the release of The Can-

cer Genomic Atlas (TCGA) dataset [160]. TCGA provides genomic, epigenomic,



72

transcriptomic, and proteomic data of various cancer profiles, facilitating researchers

to study significant cancer-causing genes and cancer subtypes using both single- and

multi-omic features. These comprehensive studies are conducted by integrating either

the data, its analytics, or both from these different omic features [46].

For cancer studies pertaining to outcome prediction, multi-omics information has

been routinely integrated at the data-level to obtain transformed data models, such as,

regression and network models. For instance, multivariate multiple linear regression of

multi-omics data has been used to construct gene-gene interaction (GGI) networks [42],

and directed random walks with multi-omic information has been used on pathway in-

formation [44]. Recently, the multi-omics information has been integrated to form a dis-

criminative dimensionality reduction tree [43], which is further used for outcome pre-

diction. Dimensionality reduction of omic features is generally mandated owing to their

unbalanced dimensionality, i.e., fewer samples and many more omic features [43, 45].

The available high-throughput omic data causes a “small n, large p” or “short-fat data”

problem. The network topology-based algorithms can alleviate this problem through

its gene ranking applications. Identifying these significant genes and using them as

representative features creates “low-dimensional subspaces” [161]. The representative

subspace is the subspace that best represents the full space for subtype classification.

In this work, we use methylation features and expression traits of breast and lung

cancer profiles of TCGA database. We apply our proposed multi-level integrative work-

flow to both the phenotypes (Figure FC1.2). Each of the state-of-the-art integrative

studies has its own benefits and shortcomings, and are mostly used in isolation. We also

observe that the integrative studies broadly fall under the category of data modeling or

transformation. We hypothesize that the semantics of some of these data models allows

them to be extendable, and also work with other integrative methods. We consider a

specific example of extending the use of an integrative regression model for finding

representative subspaces, followed by an appropriate network fusion method for pre-
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dicting cancer subtypes. The integrative regression model captures the interdependence

between two multi-omics features at the data-level [42], whereas the network fusion

integrates the analytics performed separately from different omic features (Chapter 6).

Thus, we demonstrate that such integrative methods can be plugged into the same work-

flow or implementation to improve the overall understanding of the high-dimensional

multi-omics data. In order to achieve a multi-level integration of the multi-omics data

through existing integrative methods, namely regression, and network fusion, we pro-

pose a data model that will transition one method to another, referred to as the Hetero-

geneous Correlation Network Model (HCNM). We propose a three-level integration algo-

rithm driven by HCNM for gene-ranking, integrative subspace identification, and cancer

subtype prediction (Figure FC1.1). Finding integrative subspaces is equivalent to fea-

ture selection as well as dimensionality reduction, and is a pertinent research problem

in the face of increased dimensionality in integrative studies [46].

Heterogeneous networks are a special class of multilayer networks, where the nodes

in each layer are different [46]. Heterogeneous networks have intra-layer and inter-layer

graphs, where the latter is a bipartite graph between nodes in different layers [47]. These

networks are predisposed to embed the multi-omics data by design, and thus provide

novel tools for integrative studies [46]. Our proposed data model is specifically a het-

erogeneous correlation network model. HCNM is similar to the heterogeneous network

model, iHNMMO [162] in terms of the use of regression and correlation. The difference

is that iHNMMO has normalized correlation network layers with regression coefficients

as inter-layer graph edge weights, whereas HCNM has a partial correlation layer, which is

an intra-layer, computed from the regression model, and cross-correlation coefficients

as inter-layer graph edge weights (Figure FC1.2).

Here, we propose a multi-step algorithm for the construction and use of HCNM to find

representative integrative subspace of multi-omics. The steps are: (1) integration using

multivariate multiple linear regression I1, (2) construction of correlation network layers
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for intra-layer graphs, (3) community detection by consensus, (4) ranking genes to be

integrated in an inter-layer graph I2, (5) computing inter-layer graph edge weights, thus

completing our HCNM, and (6) finding integrative subspace by ranking edges in inter-

layer graph.

The novelty of HCNM lies in embedding the interdependence of different omic fea-

tures in intra-layer edges, rather than inter-layer edges. Our contributions are in:

• Transforming a network-free multivariate multiple linear regression model to our

proposed heterogeneous correlation network model, HCNM,

• Using consensus voting in the intra-layer graphs of HCNM for ranking genes,

• Proposing an algorithm with multi-level integration of multi-omics data for gene-

subspace identification, and cancer subtype identification (Chapter 6).

The following sections describe the details of the data set and preprocessing proce-

dure (Section 5.1), followed by our multi-step process for finding representative inte-

grative subspace (Section 5.2), and the significance of the genes of identified subspace

(Section 5.3).

5.1 Data and Preprocessing

Our case study pertains to ‘breast invasive carcinoma’ (TCGA-BRCA) and ‘lung

squamous cell carcinoma’ (TCGA-LUSC) of the TCGA database. We have used an R,

Bioconductor package TCGAbiolinks [163] to download mRNA expression data from

Illumina HiSeq platform and DNA methylation data from the Illumina Human Methyla-

tion 450 platform. Along with omic data, the clinical data of all samples of each cancer

profile are collected from the TCGA database1.
1The dataset has been downloaded in December 2020.
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The three broad steps followed for preprocessing the data are a) outlier removal, b)

imputing missing values, and c) standardization of the data. We perform outlier removal

for each omic dataset by removing the features that satisfy one of these three conditions:

(1) its value across all samples is zero, (2) its missing values account for more than 25%

of the overall sample size, (3) its variance is in the lower 25% of the overall variance

of all features [100, 164]. For the retained omic features, we impute the missing values

using the median value of all samples. For each omic feature, we then standardize

the values using z-scores, such that (µ,σ) = (0,1). Finally, methylation probes are

mapped to genes; and if a probe is mapped to multiple genes, a least correlated feature

with the gene expression trait is considered [165]. Suppose the gene is not available in

expression data and multiple probes are associated with it. In that case, the methylation

feature with the maximum variance is considered and mapped to that gene.

Table TC5.1: The dataset dimension details before and after preprocessing.

Dataset Breast Cancer Lung Cancer

Samples
From TCGA 1,098 504
Preprocessing 718 319
Final Data 486 200

mRNA
From TCGA 19,947 19,947
Preprocessing 16,626 16,877
Final Data 16,626 16,877

DNA
Methylation

From TCGA 445,577 485,577
Preprocessing-Step1 395,669 395,958
Preprocessing-Step2 54,868 45,665
Preprocessing-Step3 41,190 32,703
Final Data 10,109 9,405

The samples of each cancer data are first filtered using clinical data. The omic

features samples are those with the tumor sample-type that is either ‘primary tumor’

or ‘metastatic’; the cases with the status, ‘solid tissue normal’ are not considered in

this study. The samples are filtered out if a patient’s vital status is ‘alive’, yet the sur-

vival days are less than the median of all subject’s overall survival days. The final

selected samples/patients are common subjects of both the omic features. The mRNA
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data is filtered by excluding the genes with more than 25% of zeros in expression values.

methylation features are first filtered based on missing values, i.e., methylation probes

with more than 25% of NAs or missing values are removed (Preprocessing-Step1, Ta-

ble TC5.1). The remaining NAs and missing values are replaced with the median of the

respective patient data. The methylation probes are further filtered if the variance is less

than 25% of the maximum variance of all probes (Preprocessing-Step2, Table TC5.1).

Finally, methylation probes are mapped to genes; and if a probe is mapped to multiple

genes, a least correlated gene with the expression trait is considered. Suppose the gene

is not available in expression data and multiple probes are associated with it. In that

case, the methylation feature with the maximum variance is considered and mapped

to that gene (Preprocessing-Step3, Table TC5.1). The final data dimensions of breast

cancer data are 486 samples, 16626 expression traits, 10109 methylation features, and

lung cancer data are with 200 samples, 16877 expression traits, and 9405 methylation

features. Both mRNA and DNA methylation features data are normalized, such that

each gene has zero mean and unit standard deviation.

5.2 Finding Integrative Subspace Using HCNM

Here, we construct the intra-layer graphs in HCNM, detect communities by consensus

in these layers, rank genes based on communities to construct the inter-layer graph, and

finally construct the inter-layer graph in HCNM. Using the inter-layer graph, we perform

a second iteration of ranking genes, to select highly ranked “significant” genes for find-

ing a representative subspace. We refer to this as an integrative subspace as it is the

union-set of subspaces in all omic feature spaces, which includes two integration steps:

I1 using regression to construct one of the intra-layer graphs, and I2 where genes are

selected using consensus communities and ranking procedure.

Step-1: Multivariate Multiple Regression (I1):
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We use the MMR model by treating DNA methylation data as features and expression

traits as outputs, for integrating selected methylation features and expression [42].

For m mRNA expression values and n methylation features, we have Y ∈ Rk×m and

X ∈ Rk×n, respectively, for k samples. The MMR model is written as

Y = X ·B+E, where B ∈ Rm×n and E ∈ Rm×k, (Eqn 5.1)

for the regression coefficient matrix B and residual error matrix E. We now have Y =

[y1,y2, . . . ,ym], corresponding to E = [ε1,ε2, . . . ,εm], with εi ∼ N(0,σ2), ∀i ∈ [1,m],

by the conventional linear regression model. Here, we implement MMR using Lasso

(Least absolute shrinkage and selection operator) [166] regression model.

Step-2: Construction of Intra-layer Graphs in HCNM :

To transform a regression model to a network-based model, correlation networks are a

natural choice. Regression models have been used for computing partial correlation co-

efficients [167], which quantifies the correlation between the dependent variables, when

conditioning on the independent variables. The intra-layer graph for the independent

variable is computed using conventional correlation values.

Layer-1 (expression traits):- When a linear regression model is used, the nth-order par-

tial correlation, i.e., conditioned to n independent variables, can be computed as the total

linear (Pearson) correlation between the residual errors [167]. When Y is regressed on

X , the residual error e(Y ) represents the parts of Y that are uncorrelated with X .

e(Y ) = Y −
(

β̂
(Y )
0 +X β̂

(Y )
1

)
. (Eqn 5.2)

Thus, the partial correlation coefficient z of Y , when conditioning on X , is:

z{Y}= {ρ(εi,ε j)}= ρ

{
e(Y )
}
, where ρεi,ε j =

cov(εi,ε j)

σεiσε j

, (Eqn 5.3)
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and cov and σ refer to covariance and standard deviation, respectively. These computed

partial correlation coefficients are now weights of edges between m expression traits, in

Layer-1 of HCNM.

Layer-2 (DNA methylation data of genes):- Since we are computing the linear correla-

tion amongst the methylation features, we determine the biweight midcorrelation (bi-

cor) coefficients [90]. Bicor is widely used for computing correlation between genomic

features, as it is a median-based measure, making it less prone to outliers. Despite their

similarities, bicor is preferred over Pearson correlation in genomic applications, where

it is also widely used as a similarity measure.

For the methylation feature vectors of samples ‘s’, m = (m1,m2, ...ms) and n =

(n1,n2, ...ns), the ui and vi for all i = (1,2, ...s) are defined as [168]:

ui =
mi−med(m)
K∗MAD(m)

vi =
ni−med(n)
K∗MAD(n)

(Eqn 5.4)

Where med (~.) is a median of the vector and MAD (~.) is the median absolute devi-

ation. Lax [169] had used a measure named triefficiency to compare the methods,

Wilcox [168] used the same measure and empirically found K = 9. In this work, we

have used the same value for K. The weights wi for ~m and~n are defined as:

w(m)
i =

(
1−u2

i
)2 I (1−|ui|)

w(n)
i =

(
1− v2

i
)2 I (1−|vi|)

(Eqn 5.5)

The indicator function I(1− |ui|) is 1 if 1− |ui| > 0, and for all other cases indicator

function is 0, for the given m and n observations of samples (s), the bi-correlation is
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given as

m̃i =
(mi−med(m))w(m)

i√
∑

s
j=1

[
(m j−med(m))w(m)

j

]2

ñi =
(ni−med(n))w(n)

i√
∑

s
j=1

[
(n j−med(n))w(n)

j

]2

(Eqn 5.6)

bicor (m,n) =
s

∑
i=1

m̃iñi (Eqn 5.7)

These computed bicor coefficients are now weights of edges between n methylation

features, in Layer-2 of HCNM.

Step-3: Community Detection by Consensus:

Clusters of genes in GGI networks, identified using their coexpression values, are often

enriched with similar functional annotations [170]. Communities identified in these

networks give such gene clusters. Both Layer-1 and Layer-2 are completely connected

networks, which requires them to be sparsified for performing community detection

using popularly used methods, such as, walktrap [171], fast greedy optimization [172],

and Louvain community detection [126].

Graph Sparsification:- Wolfe et al. [173] have explained how the guilt-by-association

(GBA) heuristic implies that the weaker co-expressions or edges in a network are fre-

quently connected to the dissimilar functional clusters. Thus, these edges have to be

filtered out from the connected components of the network. These connected com-

ponents are also “locally dense, globally sparse” communities with strong inter- and

weak intra-community links. There exist several thresholding techniques for filtering

the edges of a graph [174], such as maximal clique, spectral clustering, p-value based

cutoff, high pass filter procedure, top 1% of correlations, percolation analysis (PA), etc.
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0.38

(ii) Finding Threshold - Lung Cancer - Layer-1(i) Finding Threshold - Breast Cancer - Layer-1
0.38

0.36

Figure FC5.1: A plot of the edge cutoff value against the network components using percolation
analysis, giving selected threshold for intra-layer graph, Layer-1, (i) τ = 0.36, for breast cancer,
and (ii) τ = 0.38, for lung cancer.

PA involves observing the connected components of the network while progres-

sively increasing the threshold for edge weights [115]. The threshold at which the giant

connected component begins to fragment is considered optimal to filter out edges that

retain the network as a single connected component. We use this threshold value τ

as an absolute value cutoff, implying filtering out edges with weights in the interval

[−τ,τ]. Hence, we first filter the edges based on p-value, and then based on τ from PA.

When using correlation networks, we retain only statistically significant edges, which

represent correlations with p-value< 0.05. Here, τ for Layer-1 and Layer-2 of breast

cancer data are 0.36 and 0.32, respectively, and τ of lung cancer networks for Layer-1

and Layer-2 are 0.38 and 0.36, respectively (Figure FC5.1). The count of genes after

sparsifying the network using PA is given in the Table TC5.2 (Column Step-3).

Communities:- “Locally dense, globally sparse” communities regularly occur in biolog-

ical networks, where hubs distributed in the dense subnetworks play specific biological

roles [175]. Depending on the semantics of community formation, intra-community

genes have a higher likelihood of similar roles in a specific disease [104]. In the ab-
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sence of ground truth for communities in the intra-layer graphs in our case study, we

find communities by consensus from selected widely used community detection tech-

niques, namely:

Walktrap Method: This method adopts the principle of ‘random walk’ [171]. It ex-

ploits the idea that a random walker tends to walk/stay in a dense neighborhood for a

longer time than in a sparse one. Identifying such a dense neighbourhood is the key

to community detection. The pairwise distance between nodes is computed as the like-

lihood of reaching from one node to another in n steps, and communities are formed

by merging clusters using Ward’s hierarchical clustering [176], while minimizing intra-

cluster distances. We use an optimal value of n = 4 for our implementation.

Fast Greedy Optimization Method: This method works similar to walktrap using a

hierarchical, agglomerative model. It is also similar to Newman’s modularity maxi-

mization method [177], but it is more suitable for large networks owing to its linear

running time. The greedy optimization helps to find communities with high intra- and

low inter-cluster edge densities.

Louvain Community Detection: Louvain is another fast, greedy optimization method

that uses modularity maximization to partition a network. The method follows two

phases: In the first phase, each node of the network is treated as a community, i.e.,

the number of nodes in a network is equal to the number of communities. The node

N1 is assigned to its neighbour communities/nodes, for example, N2, N5, N8,etc., and

modularity (Q) (Eqn 4.3) is measured; finally, node N1 is grouped with the node that

resulted in maximum modularity score. The process is repeated iteratively until no fur-

ther increase in modularity score is observed. In the second phase, each community

of the first phase is treated as a node where intra-links are nothing, but self-loops and

inter-links are represented as weighted edges between the communities. This is widely

used in genomic analysis.

Consensus Voting:- We have selected these methods based on the similarity of the se-
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mantics of their outputs by design. Thus, we expect to get similar results from these

methods, which can be aggregated for a final outcome by consensus. We arrive at a con-

sensus by voting if pairwise nodes, i.e., genes, are likely to be in a community. Thus,

the co-association votes are equivalent to the likelihood of genes i and j are in the same

community across the results from the selected methods. If Ci,C j are the communities

to which genes i, j belong in the method k, the co-association vote is:

D(k)
i j =


1 , if Ci =C j,

0 , otherwise
. (Eqn 5.8)

The aggregated co-association vote is the average across Nm community detection meth-

ods.

Di j =
1

Nm
.

Nm

∑
k=1

D(k)
i j . (Eqn 5.9)

Thus, the network represented by the co-association matrix, D, is the sparsified version

of the correlation network, for each intra-layer graph. We now find communities in

this transformed network using the genLouvain community detection algorithm [178].

GenLouvain is a variant of the Louvain community detection algorithm that additionally

uses a resolution parameter γ to detect communities using a modified modularity score

( Eqn 4.3).

Table TC5.2: The total genes at Step-3 after sparsification using PA, Step-4 after consensus-
voting and ranking the genes, and Step-6 after gene-pair ranking using inter-layer graph that
produces representative integrative subspace.

Subspace in Genes→ Step-3 Step-4 Step-6
Omic Features ↓

(i) Breast Cancer
mRNA 15756 3895 531
DNA methylation 9826 1882 339

(ii) Lung Cancer
mRNA 15786 3403 904
DNA methylation 9290 3061 785
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Table TC5.3: Total number of communities identified in Layer-1 and Layer-2.

Commu. Detection→ Walktrap Fast Greedy Louvain Consensus
Network Layer ↓

(i) Breast Cancer
Layer-1 2902 626 430 777
Layer-2 757 458 310 130

(ii) Lung Cancer
Layer-1 1690 481 333 1303
Layer-2 748 397 248 170

The number of communities found in each of the layers is given in Table TC5.3.

Note that the communities given in Table TC5.3 are without considering the single-

node/singleton clusters. Communities in each of the consensus matrix (D) are identified

by applying genLouvain community detection 100 times on co-association matrix and

by considering the community with maximum modularity score (Q).

Step-4: Ranking Genes for Inter-layer Graphs (I2):

We use consensus communities found using the genLouvain method (Table TC5.3),

and rank the genes based on their key roles in each intra-layer graph. The consensus

communities are treated in two categories: ‘Highly connected components’ (HCCs) and

‘Non-conformers components’ (NCCs). If the total number of nodes in a community

is greater than the average of nodes of all non-singleton communities, we consider that

community as an HCC; else, the community falls under the NCC category. The HCCs

found in the breast cancer data expression traits layer and methylation feature layer

is 79 (out of 777) and 42 (out of 130). Each HCC of each layer is collected from

the respective correlation layers and ranked the genes using their node degree, node

betweenness centrality, and eccentricity measures. The highest betweenness centrality

score implies that the node is part of the shortest path for most nodes in the network. The

node’s whose eccentricity is equal to the radius of the network is considered as a central

node of the network. We thus identify three sets of nodes in each community in each

intra-layer graph, (1) all central nodes in the network, (2) top 10% of highly ranked
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genes based on their node degree, and (3) top 10% of those based on betweenness

centrality. The union-set of these three sets gives us the significant genes in the layer.

Each layer’s NCCs are clubbed together and treated as an HCC, and then ranked the

genes. The total ranked genes of expression traits and methylation features for breast

cancer are 3895 and 1882, respectively, ranked genes of lung cancer are 3403 and 3061,

respectively (Table TC5.2, Column Step-4).

Step-5: Construction of Inter-layer Graph in HCNM :

The inter-layer graph is computed using Spearman’s rank correlation [179] between

the selected genes from Layer-1 and Layer-2. Unlike Pearson’s correlation measure,

this method is not a linear correlation measure, also it estimates the coefficient value

between the variables without any frequency distribution requirement [180] and is less

sensitive to outliers. We have used Spearman’s procedure, as we expect a monotonic

relationship between expression traits and methylation features. The Spearman corre-

lation between the variables is:

ρ = 1− 6∑d2
i

n(n2−1)
(Eqn 5.10)

Where di is the difference measure of the ranks of variables of n samples data.

The submatrix/bipartite-graph of breast cancer is of [3895×1882], and lung cancer

is [3403× 3061] (Table TC5.2, Column Step-4). We then further sparsify this graph

using a p-value and threshold from PA, as done for intra-layer graphs. We find τ = 0.2,

τ = 0.3 in our case study for breast and lung cancer inter-layer graphs, respectively.

This completes the construction of our proposed HCNM.

Step-6: representative Integrative Subspace:

To further reduce the number of significant genes to a representative set, we rank the

gene-pairs in the inter-layer graph based on their edge-betweenness centrality measure.



85

The top 10% of these pairs that had also participated in most of the shortest paths of

the network are finally selected. We find the integrative subspace of these selected

genes that are feature-rich and significant. Our representative integrative subspace now

has 531 expression traits and 339 DNA methylation data of genes for 486 samples for

breast cancer and 904 expression traits, and 785 DNA methylation data of genes for 200

samples for lung cancer data (Table TC5.2, Column Step-6).

5.3 Biological Significance of Subspace in Genes

DNA Methylation Gene Expression

Figure FC5.2: The identified significant ranked genes of breast cancer. The connected compo-
nents of the graph, with 3+ nodes, and of genes retained after edge (gene-pair) ranking, with
edges between expression traits (red circular glyphs) and DNA methylation (turquoise square
glyphs) data of genes, and the edge width indicates the edge betweenness score. Note - the gene
symbols can be read at 200% zoom-in of the document.

Our model demonstrated new and interesting characteristics of the identified genes

in subspace. We observe that the bipartite inter-layer graph creates several connected

components, forming like star-graphs of expression traits genes around methylation

features. Such graphs indicate that there is an association between several expression

traits to single methylation feature, as observed in star graphs with 3+ nodes in our case

study in Figure FC5.2. Interestingly we can also observe that all three-node connected

components are with methylation features as a central node, which can be attributed
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Table TC5.4: The top 10 enriched GO terms of the ranked genes.

GO Term NG PValue
(i) Breast Cancer

UP KEYWORDS Phosphoprotein 382 5.33E-08
UP KEYWORDS Alternative splicing 451 4.91E-05
GOTERM MF DIRECT GO:0005515∼protein binding 394 1.13E-04
INTERPRO IPR013164:Cadherin, N-terminal 11 1.93E-04
UP KEYWORDS Transit peptide 38 2.78E-04
GOTERM CC DIRECT GO:0005737∼cytoplasm 245 6.07E-04
UP SEQ FEATURE splice variant 339 7.29E-04
GOTERM CC DIRECT GO:0005829∼cytosol 164 8.24E-04
UP KEYWORDS Cytoplasm 218 0.001086
UP SEQ FEATURE domain:Cadherin 6 11 0.001183

(ii) Lung Cancer
UP KEYWORDS Phosphoprotein 710 1.92E-10
UP KEYWORDS Alternative splicing 869 6.40E-09
UP KEYWORDS Metal-binding 316 0.000142
UP SEQ FEATURE splice variant 635 0.000186
UP KEYWORDS Zinc 211 0.000441

BIOCARTA
Arrestin-dependent Recruitment of
Src Kinases in GPCR Signaling

8 0.000449

GOTERM BP DIRECT
GO:0006357∼regulation of transcription
from RNA polymerase II promoter

54 0.000572

UP KEYWORDS Zinc-finger 164 0.000721
GOTERM MF DIRECT GO:0008093∼cytoskeletal adaptor activity 7 0.000794

GOTERM MF DIRECT
GO:0022857∼transmembrane
transporter activity

12 0.000944

to methylation features that are regulating the gene expressions. We observe similar

patterns with the lung cancer ranked genes network.

Feeding these ranked genes (Table TC5.2, Column Step-6), i.e., 870 genes (531

expression traits + 339 methylation features) of breast cancer and 1689 genes (904

expression traits + 785 methylation features) of lung cancer of our integrative sub-

space into ‘Database for Annotation, Visualization and Integrated Discovery (DAVID)’

tool [181,182], we get the enriched gene ontology (GO) terms, with NG genes belonging

to each term, as listed in Table TC5.4. The subspace in genes in both the cancer profiles

had resulted in enriched gene ontology terms such as alternative splicing, splice vari-
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Table TC5.5: A few top genes associated with breast and lung cancer, ranked by their Gene-
Disease Association scores are obtained from the DisGeNET database.

Disease Disease ID Gene GDA Score
Breast Carcinoma C0678222 STAT3 0.4

MAPT 0.2
ATF2 0.08
TRAF2 0.07
NUMA1 0.03

Malignant Neoplasm of Breast C0006142 STAT3 0.4
ATF2 0.37
PPHLN1 0.3
UBR4 0.3
RFX2 0.3

Triple Negative Breast Neoplasms C3539878 STAT3 0.1
SPAG9 0.02
DAXX 0.01
CRTC1 0.01

Squamous Cell Carcinoma of Lung C0149782

TTN 0.31
ATR 0.3
GRAMD4 0.01
CLDN7 0.01
CACNA2D3 0.01
SRPK1 0.01
TTN 0.01
KMT2B 0.01
RGS3 0.01

Lung Diseases C0024115

ENG 0.31
MYLK 0.03
DHPS 0.01
RASSF1 0.01
ACD 0.01
LAIR1 0.01
IFNAR2 0.01
HDAC2 0.01
BEST1 0.01
APC 0.01
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ant, protein binding, phosphoprotein, regulation of transcription, metal-binding, etc.,

(Table TC5.4). These top 10 terms are sorted based on their false discovery p-value in

Table TC5.4. We have verified the gene-disease association (GDA) score of the shared

genes found from the GO terms with NG > 25% of total genes (highlighted in column

NG) using the DisGeNET database (https://www.disgenet.org/). A total of 38 and 346

genes have been found in common across top enriched GO terms of breast and lung can-

cer, respectively. 35 out of these 38 genes of breast cancer have positive GDA scores

when studied using the DisGeNET database (https://www.disgenet.org/), implying the

presence of evidence in the literature indicating the association of the gene with the dis-

ease. Few top-ranked genes associated with different breast and lung cancer subtypes

are given in Table TC5.5. Our HCNM successfully identifies the significant feature-rich

subspace in genes of both the cancer profiles, that are biologically significant.

5.4 Conclusions

Our proposed HCNM model successfully identified the subspace in genes in both

breast and lung cancer datasets. Heterogeneous correlation network analysis adds to

our model as both independent and cross-correlations among the genes are effectively

utilized. Our multilevel integrative model greatly decreased the dimensions of data

by considering both consensus communities and network topology. Overall, we can

conclude that our HCNM successfully identifies the significant feature-rich representa-

tive subspace in genes, which are optimal for finding the disease subtypes. In our next

chapter, we use the gene-subspace, for an application of cancer subtype prediction. We

use multi-omics data of each cancer profile to identify the subtypes in samples/patients

using multi-omics integrative procedures such as SNF, ANF, and iCluster.
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CHAPTER 6

SUBTYPES IN CANCER
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Predicted Cancer Subtypes

Prediction of cancer subtypes is vital for early prognosis of the disease, for per-

sonalized treatment, and improved likelihood of survival of the subject. We study the

subtypes in breast cancer data, one of the well-studied cancer phenotypes, and subtypes

in lung cancer data, one of the least studied phenotypes. In this Chapter, the subtypes

of each phenotype are found using subspace in genes and by applying multi-omics inte-

grative studies for subtype prediction. We compare the subtypes found using subspace

in genes with subtypes of entire data. We also compare the subtypes using the avail-

able popularly known subtypes annotation in the literature, i.e., PAM50 labels for breast

cancer subtypes [183, 184], and expression subtypes labels for lung cancer [185].
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Here, we propose a two-step algorithm to predict subtypes for a cancer pheno-

type. (1) Integration of sample similarity networks across different omic features by

network fusion I3 (Figure FC1.2), and (2) clustering of the fused similarity network

to find subtypes. Steps (1)-(2), including I3 can use several network fusion meth-

ods [161, 164, 186, 187].

The details of the representative integrative subspace of multi-omics data are pro-

vided in Section 6.1, integrated multi-omics algorithms were used to find disease sub-

types are described in Section 6.2, and the comparison of results across different meth-

ods are provided in Section 6.3.

6.1 Dataset

Table TC6.1: Data dimensions before and after finding representative integrative subspace of
multi-omics in breast and lung cancer profiles. The annotated subtype categories of each cancer
profile are provided in the column ‘Subtypes’.

After Preprocessing Subspace Data Subtypes
mRNA Methy. mRNA Methy.

Breast Cancer
Samples = 486 16087 10040 531 339

PAM50 Subtypes [183]
1. Luminal A
2. Luminal B
3. HER2 Positive
4. Triple-Negative
5. Normal

Lung
Carcinoma
Samples = 200

16877 9405 904 785

Molecular Subtypes [184]
1. Basal
2. Classical
3. Primitive
4. Secretory

To find disease-specific patient subtypes and to validate the subspace in genes, we

have used a) the entire data, i.e., preprocessed data of methylation features and expres-

sion traits (Section 5.1), and b) the representative subspace data produced by multilevel

integrative procedures I1 and I2 (Chapter 5). We compare our results of the entire data
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with subspace data. The dataset dimensions are given in Table TC6.1. The subspace

in breast cancer data is 3.3% of the total (16087) expression traits and 3.38% of the

total (10040) methylation features. Similarly, the subspace in lung cancer data is 5.36%

of the total (16877) expression traits and 8.35% of the total (9405) methylation fea-

tures (Table TC6.1). Overall, in both the phenotypes, the representative subspace is less

than 10% of total genes. The benchmark annotated subtypes of breast and lung cancer

phenotypes, i.e., PAM50 subtypes and molecular expression subtypes, respectively, are

downloaded using R, TCGAbiolinks library [163]. The classified breast cancer sub-

types of PAM50 are of five categories, namely, luminal A, luminal B, HER2 positive,

triple-negative or basal-like type, and normal categories, and the molecular expression

subtypes of lung cancer are categorized as basal, classical, primitive, and secretory (Ta-

ble TC6.1, column-‘Subtypes’).

6.2 Subtype Prediction using Representative Integrative Subspace

We use network-based (NB) multi-omics fusion integrative methods for patien-

t/samples subtype prediction. We first identify the similarity or affinity networks of

the samples for each omic feature in the integrative subspace, and then fuse them as an

integrative step (I3 in Figure FC1.2). We then find clusters of samples representative of

cancer subtypes.

Step-1: Network Fusion (I3):

Most multi-omics integrative algorithms, such as similarity network fusion (SNF) [164],

and affinity network fusion (ANF) [186] integrate data of multi-omic after computing

similarity or affinity matrices internally. ANF is an improvised integrative procedure

on SNF; both the methods first compute the distance between patients and using the

distance matrix, affinity measurement of each genomic feature is computed separately,

then using network fusion procedure, a final multi-omics integrated network is gener-
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ated. We use SNF and ANF in our work, by tuning the hyperparameters K (number of

neighbours), σ (variance for affinity measurement), α (measure for local diameter) and

β (measure for pair-wise distance) using the correlation measure (ref: Equation 7 [42]).

The number of clusters is estimated using eigen gap and rotation cost methods.

We also use iCluster [188], a multi-omics integrative method where similarities be-

tween the samples and clusters are computed simultaneously by minimizing the intra-

cluster variance. We use the ‘tune.iClusterplus’ method to find the optimal number of

clusters and Lasso penalties. Compared to SNF and ANF, the computation time taken

for the iCluster procedure is higher because the implementation of iCluster directly

gives the clusters, thus combining step-1 and step-2.

We have implemented these methods using R packages, namely, SNFtool [164],

ANF [189], and iClusterPlus [190]. The detailed implementation specifics of these

multi-omics integrative algorithms, i.e., SNF, ANF, and iCluster, are provided in Ap-

pendix B. The implementation of SNF library as a tool using R-Shiny is available at

GitHub repository, https://github.com/vrrani/SimilarityNetworkFusion.

Step-2: Sample Clustering for Subtype Prediction:

In order to find clusters in the fused similarity or affinity networks, we extract clusters

of samples using spectral clustering, using the estimated number of clusters, done in

Step-1. We then compare these clusters or subtypes with the popularly known subtype

annotation data of TCGA, namely PAM50 [183,184] for breast cancer, and expression

subtypes [185] for lung cancer.

6.3 Comparative Analysis of Subtypes

Table TC6.2 is the list of the estimated number of subtypes/clusters of both pheno-

types. Amongst the integrative multi-omics procedures considered here, the computa-

https://github.com/vrrani/SimilarityNetworkFusion
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tion time for iCluster is significantly more than the other methods; the same is observed

in (ref: Figure 3(c), [164]). Hence, iCluster is not implemented on full gene space.

Table TC6.2: Count of estimated clusters/subtypes for each of the integrative multi-omics
algorithms on representative subspace (∗ HCNM) data and entire data (∗ Full) of breast and
lung cancer phenotypes.

Disease Phenotypes→ Breast Lung
Methods ↓
SNF HCNM 3 3
ANF HCNM 4 3
iCluster HCNM 4 3
SNF Full 3 3
ANF Full 4 3
Annotation Subtypes 5 [183, 184] 4 [185]

Using subspace in genes data and multi-omics integrative procedures, we have ob-

tained the subtypes and compared them with subtypes annotation PAM50 of breast can-

cer and ExpressionSubtypes of lung cancer data. The plotted Kaplan-Meier survival

curves of breast cancer (Figure FC6.1) displayed a clear separation between good sur-

vival and poor survival subtypes based on their survival probabilities in fusion-based

models SNF and ANF with subspace data. This also echoes our assertion that reduced

dimension (representative subspace) data is more significant than the entire (full) data

of each genomic feature, as subspace data is less prone to noise, bias, and outliers. The

SNF method on representative subspace data displayed better subtypes when tested at

median survival-probabilities (50%) with the least log-rank p-value, i.e., 0.094. A simi-

lar pattern is observed with lung cancer subtypes. The subtypes found using subspace in

genes are comparable to the subtypes found with complete multi-omics feature space.

The benefit of using the reduced dimensionality data is that the subspace is less prone to

noise, bias, and outliers. But, though the dataset contains 200 subjects for lung cancer

and 486 subjects for breast cancer, the available annotation information for subtypes is

only for 54 and 480 subjects for lung and breast cancer data, respectively. Hence, for

subtypes comparison, we have considered only 54 subjects for lung cancer, and 480

subjects for breast cancer.
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PAM50-Subtypes

SNF-FullSNF-HCNM

ANF-HCNM

iCluster-HCNM

ANF-Full

Figure FC6.1: The good and poor survival times of breast cancer data for subtypes were pre-
dicted using different methods. Subtypes are significant at median survival-probability in all
methods. We see clear survival probability separation for subtypes identified using SNF with
subspace in genes and benchmark study using annotated subtypes, i.e., PAM50, than using ANF
and iCluster.

Comparing the subtypes of breast cancer using the Sankey plot depicts more agree-

ment between SNF and ANF subtypes (Figure FC6.2). The subtypes in SNF HCNM

(representative subspace) model divides into two subtypes in ANF Full model (second

and third vertical bars in Figure FC6.2). We also observe similar behavior when com-

pared the patients subtypes with annotation subtypes, using Jaccard similarity (S j) and

NMI. The S j and NMI are slightly higher with subspace data and fusion-based meth-

ods, i.e., with SNF or ANF compared to full/entire data, assuring the subspace in genes

identified using HCNM is significant (Table TC6.3). Overall, the network fusion based
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ANF-HCNMANF-FullSNF-HCNMSNF-Full

Figure FC6.2: Sankey plot of the patient subtypes from using our algorithm using network
fusion methods (SNF, ANF) with data from the complete (Full) gene space and our represen-
tative integrative subspace (HCNM), shows that subtypes found using SNF-HCNM data agree with
SNF/ANF-Full data, more than ANF-HCNM.

methods are more favorable over iCluster, when used with our representative subspace,

owing to the computational time, and the results in Table TC6.3 and Figure FC6.1.

Table TC6.3: Quantitative measures to compare the subtypes.

Scores
SNF

(HCNM)
SNF
(Full)

iCluster
(HCNM)

ANF
(HCNM)

ANF
(Full)

(i) Breast Cancer
NMI 0.43 0.42 0.33 0.39 0.43
S j 0.46 0.44 0.42 0.51 0.51

(ii) Lung Cancer
NMI 0.37 0.39 0.32 0.45 0.42
S j 0.64 0.66 0.64 0.71 0.71
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6.4 Conclusions

We have used the representative integrative subspace data identified using our het-

erogeneous correlation network model HCNM, to find the patient subtypes in breast and

lung cancer phenotypes. The fusion-based integrative multi-omics methods are most

suitable for finding the patient subtypes. Using the quantitative and qualitative assess-

ments, we infer that the subtypes found using subspace data are more in agreement

with the benchmark annotated subtype labels in literature. The HCNM model is efficient

in finding subspace in genes that are feature-rich and significant for each phenotype, as

subtypes found with subspace in genes displayed better survival prediction plots, log-

rank p-value, NMI, and S j when compared with full/complete data. For evaluating the

overall performance of the method, we need to perform an ablation study, which is in

the future scope of this work. We intend to integrate Bayesian methods more exten-

sively into multi-level integration algorithms to improve combining network-based and

Bayesian methods as future work. The extensibility and scalability of our algorithm to

other omic features require further in-depth study.
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Part III

Extensions to Network Analysis
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CHAPTER 7

MATRIX VISUALIZATION APPLICATIONS

In this chapter, we describe the extended applications of biomedical data using ma-

trix visualizations. The first study focuses on visualizing FC matrix derived from rs-

fMRI data. The FC is a complete (unthresholded) correlation matrix that depicts the

inter-correlated clusters when an appropriate seriation technique is employed. The sec-

ond study describes a novel hybrid graph layout, named RadTrix, that is proposed to

visualize an unbalanced bi-partite graph. RadTrix is a composite of matrix and radi-

al/circular visualization. We have used a disease-gene association network, the ‘disea-

some’, as a case study for the RadTrix layout.

7.1 Matrix Seriation for Visualizing Changes in FCN

Brain functional connectivity network is a fully connected undirected graph that can

also be represented as an adjacency matrix. Visualizing the adjacency matrix using seri-

ation, i.e., reordering, rows and columns helps reveal the block-like structures along the

diagonal, which are patterns for clusters. Matrix seriation or permutation is an approach

that naturally reveals the cluster information in the network, which doesn’t necessitate

any prerequisites such as sparsifying the network or providing an input parameter to

find the clusters. Bertin defined seriation as a procedure of ’simplifying without de-

stroying’ [191]. The correct choice of reordering an adjacency matrix naturally reveals
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the semantically relevant clusters in the matrix. There are several methods to imple-

ment seriation [158], such as, principal component analysis (PCA), visual analysis for

cluster tendency Assessment (VAT) [192], Random and Rank-two ellipse (R2E) seri-

ation [193], etc. These seriation procedures have been used to examine the cortical

structure of mammalian brains [194] and in genomic applications [195].

7.1.1 A Case Study of an OCD Patient fMRI Data: Changes Due to Treatment

We have used a matrix seriation procedure to understand the patterns of brain re-

gions of an obsessive-compulsive disorder (OCD) subject data [196]. The subject is a

21 years-old male student with declined academic progress and severe obsession, com-

pulsion, and mentally disturbed symptoms, including suicidal thoughts, etc., along with

motor coordination issues such as problems regarding vigilance, execution, verbal, etc.

The MRI images exhibited a lesion at the posterior cerebellum at the right side of the

brain (Figure FC7.1) (i), which can be due to the obstruction of the blood supply in

the posterior inferior cerebellar artery region. The pre-supplementary motor area (pre-

SMA) region connectivity with the lesion region is depicted in Figure FC7.1 (ii). The

cross-hairs on Figure FC7.1 (i) depict the lesion region, and the connectivity of the

lesion with pre-SMA is shown in Figure FC7.1 (ii). Hence the OCD symptoms are pre-

sumably due to secondary to posterior cerebellar infarct in right crus II. The fMRI data

of post and pre-treatment of this subject is used to demonstrate the enhanced network

modularity of the cerebellar network, with improved symptoms after treatment.

The rs-fMRI data of this subject is studied before and after ‘repetitive transcranial

magnetic stimulation’ (rTMS) treatment. rs-fMRI scans of 250 volumes are acquired

using a 3-Tesla scanner with a 20-channel coil at National Institute of Mental Health

& Neurosciences (NIMHANS)1, with the consent of the subject. The raw fMRI files
1https://nimhans.ac.in/about-us/

https://nimhans.ac.in/about-us/
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(ii) pre-SMA connec�vity with lesion(i) Lesion in posterior cerebellar of right brain

LR

Figure FC7.1: Brain fMRI scans that demonstrate (i) lesion at posterior cerebellar right crus II
(cross-hair marks) and (ii) pre-supplementary motor area (pre-SMA) region connectivity with
the lesion regions.

of pre- and post-rTMS treatment are available at Harvard Dataverse2. The scanned

images are processed using the FMRIB software library of version-5.0.10 [197]. The

pre- and post-treatment fMRI scans are subjected to Harvard-Oxford (HOA) atlas [198]

and MNI-FLIRT atlas [199]. The total analyzed ROIs are 48 from the cortical area, 15

from the subcortical area, and 28 from cerebellar regions of the brain. The BOLD time-

series signals of these selected 91 ROIs/nodes are aggregated, and pairwise Pearson’s

correlations are measured across the 91 nodes (48+28+15). Hence, after pre-processing

the data, two FC matrices of [91× 91] are generated for each pre- and post-treatment

scan. The correlation strengths of the two [91× 91] FC matrices were studied using

‘Rank-two ellipse’ (R2E) seriation procedure that carefully sorts items into an ordered

series to identify recognizable patterns.

7.1.2 Rank-two Ellipse (R2E) Seriation

Seriation techniques reorder nodes to improve the clarity of blocks along the diago-

nal by moving the higher correlation valued cells closer to the diagonal, i.e., Robinson

matrix order [200]. It is the process of identifying new ordering or permutation of rows

and columns to reveal the patterns and finer structure such as: subnetwork, cliques,
2https://doi.org/10.7910/DVN/X12BZD

https://doi.org/10.7910/DVN/X12BZD
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(ii) Post-treatment FC matrix with R2E seria�on

(i) Pre-treatment FC matrix with R2E seria�on

Figure FC7.2: Matrix visualization after applying rank to ellipse (R2E) seriation (i) before
rTMS treatment and (ii) after rTMS treatment. The cerebellar network and other connected
networks are represented with black-dotted bounding boxes, and inter-network overlaps are
depicted with green colored bounding boxes. A single overlapped region before treatment (green
box) has switched across three distinct overlapped regions after treatment, signifying improved
modular network structure. Cerebellar, cortical, and subcortical nodes are given in black, blue,
and green colors, respectively. The lesion node, i.e., ‘right crus II’ and the neuro-stimulation
region, ‘superior frontal gyrus’ are represented in red color.
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clusters, central actor/hub nodes, etc. Thus, along the diagonal, the matrix visualization

shows the clusters in the network. For reordering, we use a seriation method on the ma-

trix, which is a two-way one-mode, i.e., the matrix uses the same permutation order of

the nodes along its rows and columns. Thus, matrix seriation is a permutation method.

Here, we have implemented the R2E seriation technique on the two [91×91] matri-

ces for node clustering [193] (Figure FC7.2). R2E seriation involves iteratively finding

the correlation of correlation matrices of p nodes by considering columns in the matrix

as p dimensional points, and this iterative process has been found to converge onto an

ellipse in two-dimensional space. R2E seriation at the nth iteration, when converged, all

elements of the matrix will be ±1, and the observation of points being laid out on the

ellipse, at which the matrix reduces its rank from p to 2. Hence, the clusters revealed

in the seriation are found to be laid out as the clusters on this ellipse. The unique po-

sitions of p points on the ellipse are used to find the reordering of rows and columns,

representing the correlation matrix in the Robinson matrix format. The Robinson form,

for a symmetric matrix, implies ai j ≤ aik for i < j < k (upper-triangle matrix). The ad-

vantage of the R2E procedure is that its low execution time, compared to other seriation

methods, since convergence is guaranteed within fewer iterations [201], with smoother

transitional patterns that are biologically meaningful [202].

On visualizing the changes on the seriation maps before and after the treatment

using FC matrices, we have observed (a) extended connectivity of the cerebellar net-

work (black nodes) – the larger cerebellar cluster/block had an increased overlap with

both anterior and posterior brain networks as observed along the diagonal as shown

in Figure FC7.2 (ii), and (b) formation of better-defined sub-clusters within the larger

cerebellar cluster, indicating improved within-network modularity of distinct functional

cerebellar networks. That is to say, the connectivity of the cerebellum before treatment

that was predominantly with the occipital brain regions changed post-treatment to reveal

more significant coactivation with the parietal, temporal, and frontal regions. Besides,
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we could observe more distinct modularity within the cerebellar nodes post-treatment,

with the vestibular network (lobules IX and X) separating from the cognitive-limbic net-

work (crus I/II and vermis), while remaining within the larger cerebellar cluster. This

indicates that stimulating the pre-SMA region could have improved the within- and be-

tween network connectivity of the posterior cerebellar brain regions and thus driven the

change in the clinical profile of the OCD subject.

7.2 A Hybrid Graph Layout for Unbalanced Bipartite Graph

A bipartite graph, also known as bigraph or 2-mode network, is a graph with two dis-

joint sets of nodes laid in parallel lines, with the inter-set links connecting these disjoint

sets. The bipartite graphs are viewed as either vertical or horizontal, two-layer graph

layout and are used to study networks of biomedical, biomolecular, epidemiological,

ecological, protein complexes, etc [203]. The bipartite graphs are generally visualized

using node-link layouts, but these graphs are highly prone to visual clutter, especially

when the sets of nodes are unbalanced, i.e., the cardinality of nodes in one set of the

bipartite graph is much greater than the other set (Figure FC7.3). Hence, we propose a

novel hybrid visualization layout, RadTrix, for a bipartite graph with a relatively large

skew in the vertex set sizes in the two sets.

7.2.1 RadTrix Layout

RadTrix is a composite visualization, specifically of the type of nested views [203].

It is a composite of two visualizations in a single view, i.e., matrix visualization for

a smaller set and circular/radial graph layout for the larger set of nodes in a bipartite

graph. The design pattern used here is the choice of visualization techniques for the two

sets. The use of radial layout allows for a layout of the larger set where the screen space

is maximally utilized. The use of the matrix layout uses its quadratic spatial complexity
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(i) Balanced bipar�te graph (ii) Unbalanced bipar�te graph

N-Set

D-Set

N-Set

D-Set

Figure FC7.3: A bipartite graph of a vertical two-layer layout with the nodes of (i) balanced
cardinality (ii) unbalanced cardinality.

(i) Two connec�on points (ii) Four connec�on points

Figure FC7.4: A toy example for comparison of choice of layout for D nodes to reduce the
visual clutter. A graph layout with (i) two connection points, (ii) four connection/landing points.

to facilitate four landing spots for nodes, i.e., endpoints for edges incident on nodes,

in the smaller set, thus reducing the clutter due to crowding of edges (Figure FC7.4).

Compact and intuitive visual representation is achieved in this design, as is expected

from nested views [203]. At the same time, the disadvantage of limited space for matrix

visualization remains, thus, limiting the size of the smaller set.

The radius r of the radial layout is based on maximizing the use of screen space for

visualization. The N nodes of the larger-set are uniformly placed on the circumference

of the circle, with an angle difference of θ = 2π/N between them. The location for
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each of the Nodes in the N-set are placed using the polar coordinates, relative to the

center of the circle, (r cos(kθ),r sin(kθ)) for k ∈ Z and 0≤ k < N to place the N nodes

in the circumference. We recommend r ≥ 4×N. Finally, for rendering links between

the node on the circumference and a node in the matrix, our algorithm compares the

distance of the location (obtained from the polar coordinates) of the circumference node

with each of the four landing spots of the matrix node, and uses the landing spot giving

the minimum distance to draw the link between the nodes. We have implemented the

RadTrix algorithm using D3.js library. The tool is available at the GitHub repository

https://github.com/vrrani/RadTrix.

We describe the RadTrix layout construction using the following steps:

1. Arrange the larger set of nodes of a bipartite graph uniformly on the circumference

of the radial layout.

2. Draw the nodes on the circumference as per the size corresponding to its property,

for example, node degree.

3. Arrange the smaller set nodes as a matrix, with the same ordering of nodes used

in rows and columns.

4. Color the matrix cells based on a specific criterion of the relationship between the

nodes.

5. Merge the radial and matrix layouts by placing the center of the latter with that of

the former, and scale the matrix to fit inside the circle of the former.

6. Render the links from nodes on the radial layout to the nearest landing spot of the

nodes in the matrix layout. (The four landing spots are the left and right side of

the row representing the node in the matrix layout; and the top and bottom side of

the column representing the same.)

https://github.com/vrrani/RadTrix


106

7. Re-order/seriate the nodes in both the matrix and the radial layout to visualize the

patterns.

The beneficial feature of RadTrix in reducing visual clutter lies in the design pat-

tern of exploiting the quadratic spatial complexity of the matrix layout to provide with

four landing spots. In comparison, a radial layout gives two landing spots per node

(Figure FC7.4 (i)), and a traditional node-link diagram gives only one. Reducing visual

clutter implies the reduction of edge crossings which improves the readability of the

unbalanced bipartite graph.

7.2.2 A Case-study using RadTrix

As a case-study, a diseasome network, i.e., disease-gene association network is used

where diseases and genes are the two disjoint sets of the bipartite graph. Disease-gene

association networks are well studied as a bipartite graph [204–206]. One of the chal-

lenges in visualizing the bipartite graph in this specific scenario is that generally, for D

diseases, we have N genes in the diseasome, where D� N. The difference in set cardi-

nalities in such an unbalanced bipartite graph leads to visual clutter in the case of two-

layer graph layout representation [207] (Figure FC7.3 (ii)). Hence, we use the RadTrix

layout to visualize and understand disease-gene associations. The diseasome network

is generated using an integrated multi-omics data in [208]. We have constructed the dis-

easome using the set of 35, 36, 58, 29, and 51 genes for Breast, Colon, GBM, Kidney,

and Lung cancer profiles, respectively. These genes are common in both mRNA and

DNA methylation genomic networks of integrated analysis in [208]. This gives us 209

genes in all; however, since there are genes shared across different disease phenotypes,

we have removed duplicates and reduced the set of unique genes in the diseasome to 73.

Hence the final diseasome network is with 5 diseases (D) and 73 genes (N), 209 links

between D and N (edges), with set cardinalities as, D� N. We have a 5× 5 matrix
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layout of the five disease phenotype nodes, and the 73 genes uniformly placed on the

radial layout.

 (i) Orthogonal edge router layout  (ii) RadTrix layout
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Figure FC7.5: The diseasome of our case study, generated using (i) Orthogonal Edge Router
layout of the yFiles, in Cytoscape [5]. (ii) Our proposed RadTrix layout.

To explore which genes are significant between the diseasome phenotypes, we use

the RadTrix layout of the diseasome. Similar to RadTrix, the Orthogonal edge router

layout uses radial layout for the genes and represents the circle interior to place the

disease nodes. However, this layout is not optimized to reduce edge crossings, leading

to visual clutter (Figure FC7.5 (i)). Hence, we have performed gene-centric analysis

using RadTrix, as shown in Figure FC7.6.

The matrix layout of D diseases follows the two-way one-mode format [158], i.e.,

representing a D×D matrix D, where rows and columns refer to the same entities in the

same permutation order. We use the matrix cells to visually encode a unary operator in

the diagonal elements and a binary operator in the non-diagonal elements of the matrix.

For example., we can represent diagonal element Dii as the number of genes associated

with disease Di, and non-diagonal element Di j as the number of common genes asso-
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(iii) (iv)

Unseriated

Node Degree
1 532 4

(i) (ii)

Figure FC7.6: Visualizing the diseasome generated for our case study using RadTrix. (Top
row - Leftmost) Overview using the unseriated version. (i) Unary mouse hovering operation
to highlight a node to visualize that is common among multiple diseases, (ii) binary mouse
hovering operation to highlight Lung all 51 genes, (iii) common genes between Lung and GBM,
and (iv) common genes between Colon and Breast.

ciated with diseases Di and D j, for i, j ∈ Z and 0 ≤ i, j < D. Similarly, the node size

in radial view can be used to visually encode a unary property of the node, e.g., the

node degree. In our case study, we use the visual encoding of the size of gene node to

indicate ‘relative node degree’, i.e., the ratio of node degree with the maximum node

degree in the diseasome. For easy readability, we use three node sizes, small, medium,

and large, to indicate relative node degree less than 0.2, 0.2-0.8, and greater than 0.8,

respectively. We can also visually encode the links between gene and disease nodes

with their corresponding property, which we have chosen to avoid cognitive overload.

We further provide user interactions such as highlight of corresponding node-links and

gene nodes on mouse hovering as shown in Figure FC7.6 (i)-(iv), and similarly, high-
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lighting characteristics of unary (Figure FC7.6 (i), (ii)) or binary (Figures FC7.6 (iii),

(iv)) properties in the matrix cells, corresponding to the disease and gene nodes.

In addition to readability tasks in [209], the below listed analytical tasks were conducted

by RadTrix for diseasome analysis.

• Task-A: Analyze the distribution of association across the two sets (of genotypes

and phenotypes), namely, to find:

A1: Distribution of genes corresponding to each disease.

A2: Distribution of diseases to each gene.

• Task-B: Find specific genes exclusive to a specific disease.

• Task-C: Find specific genes that belong to at least two diseases.

• Task-D: Find the set of diseases a gene associates with.

Using highlighting of links upon mouse-over accomplishes Task-A to Task-D. Mouse-

over on the node in the radial layout gives the distribution of association of the corre-

sponding genotype to different diseases. Similarly, mouse-over on the node in the ma-

trix layout gives the distribution of association of the corresponding single or pair of the

phenotype(s) with the genotypes. For example, all 51 genes that have been discovered

in association with Lung cancer can be highlighted as shown in Figure FC7.6 (ii). We

have also used seriation to reorder the nodes of the matrix and nodes on the circumfer-

ence of the radial view. Figure FC7.6 (i)-(iv) shows our results, where we have found

two clusters. The cancers Kidney, Breast, and Colon form the first cluster, and GBM,

Lung form the second cluster.

We can conclude that visual representation with RadTrix layout can effectively be

used to understand the unbalanced bipartite graphs. The reduced visual clutter due to

minimized edge crossings makes the layout more suitable to examine bipartite graphs.
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CHAPTER 8

CONCLUSIONS

In this thesis, we have demonstrated novel uses of correlation networks of biomed-

ical data and its clustering to obtain biologically significant conclusions. We have ex-

ploited the semantics of correlation networks and used consensus community detection

procedures to study biomedical correlation networks. Here, we have presented two dif-

ferent biomedical data analysis problems: i) Finding functional segregation in resting-

state functional connectivity network (FCN) by identifying non-overlapping commu-

nities and cliques within the communities by applying multiscale consensus procedure

using EFA. ii) Finding feature-rich subspace of tumor-specific genes of multi-omics

cancer data by utilizing integrative methods, heterogeneous correlation networks, and

consensus voting techniques. The identified integrative subspace has been further used

to find the patient subtypes in cancer.

8.1 Functional Segregation using Brain FCN

Our motivation is to find salient node-partitioning of the brain resting-state FCN by

exploiting the semantics of the correlation matrix that utilizes complete data. Hence,

we use a weighted, undirected, and completely connected network for functional seg-

regation. Functional segregation refers to the modules of a network with nodes that are

functionally related and tightly connected due to homogeneous edge distribution. We
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use EFA and consensus method to locate the strongly inter-linked brain ROIs/nodes of

the network that are modularity maximized and are biologically significant. Consider-

ing the number of factors nF of EFA as a scale, we implement EFA multiple times with

varying values of scale from the predefined interval for nF , which also addresses the

limitations of EFA. The node-partitioning from each EFA run is then aggregated using

consensus voting. We identify the most optimal set of multiple scales, i.e., sub-interval,

using relevant efficiency metrics followed by a data-driven ranking procedure on the

ensemble. The optimal scale is a continuous sub-interval that maximizes the efficiency

of the node-partitioning. Our multiscale EFA algorithm is used for finding consensus

communities and cliques.

We experiment with our multiscale consensus procedure using three case studies of

different resolutions, i.e., node dimensions of FCN and parcellation methods of fMRI

data. Our results of communities and cliques are found to be biologically significant

such as bilateral symmetry, hierarchy, and persistence of community behavior of the

nodes, and found significant based on relevant prior studies. We have witnessed the

same using different visualizations such as matrix visualization, Sankey plots/alluvial

diagram, and plotting the communities and cliques on brain surface using spatial cen-

troid coordinates. Our proposed algorithm is scalable to the size of the FCN and is

generalizable to different parcellation methods. In this work, we use a completely con-

nected network and address the limitation of EFA by exploiting the consensus method.

However, in the context of the newer trends in the FCN studies, our study falls short of

any analysis based on specific cognitive/task-based studies. At the same time, our study

is valuable as a first step towards the comparative analysis of node-partitioning in FCNs

for task-based studies. Overall, our method shows how a conventional correlation anal-

ysis, namely EFA, can be effectively used with network-based approaches for studying

the modular organization of the resting-state brain.

Future work: In our work, the identified sub-interval nSI by our efficiency metrics and
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data-driven ranking procedure is a continuous interval. Where nSI =
(ub−lb+1

2

)
, for the

lower and upper bounds, lb and ub in the identified interval I. We can, however, extend

our work to an exhaustive search for sets of multiple scales that include all possibilities

of the scales in I, which would be 2(ub−lb+1).

For using EFA, there is a strict requirement of positive definiteness to ensure non-

singularity for the correlation matrix of the FCN. While a correlation matrix by def-

inition must be positive-definite. But it is not guaranteed due to the complex pre-

processing techniques involved in converting fMRI data to the correlation matrix and

aggregating matrices across the subjects. It is yet to be studied how a correlation matrix

additionally corrected to be positive definite would work with our algorithm.

In our work, we have exclusively focused on non-overlapping (node-) communities

and cliques. The scope for work in the future includes studying the significance of

overlapping communities and ranked nodes, such as provincial and hub nodes of the

network.

8.2 Integrative Subspace and Patient Subtypes of Multi-omics Caner

Data

In our case study, we have used expression traits and methylation features from

the TCGA breast and lung cancer projects. We have proposed a multi-level integrative

process for finding representative integrative subspace and use it for cancer subtype pre-

diction. Our proposed HCNM model, is combined with widely used integrative methods

to build a more powerful tool to identify the representative subspace and patient sub-

types. The HCNM model uses correlations within and across the different omic features.

HCNM has successfully been used for finding the representative integrative subspace of

genes based on gene communities, consensus voting, and network topology in both



113

breast and lung cancer phenotypes. The integrative subspace of multi-omics yielded en-

riched gene-ontology along with significant gene-disease association scores. We have

used our subspace of biologically significant genes and appropriate integrative fusion

procedures to predict cancer subtypes. As reduced dimension data given by HCNM is less

prone to noise, bias, and outliers, the subtypes identified are in agreement with available

subtypes annotation of literature. In our work, we have explored the subtypes predic-

tion with multi-omics integrative procedures that are fusion-based methods, SNF and

ANF, and a non fusion-based, Bayesian method, iCluster. The fusion-based methods

outperformed both in terms of execution time and efficiency.

We have examined our workflow on one of the most widely studied cancer subtypes,

i.e., breast cancer data, and one of the least studied cancer subtypes, i.e., lung cancer

data. The identified patient subtypes in both the cancer phenotypes agree with previous

benchmark studies and exhibited better classification between poor and good survival

patients. Overall, our proposed multi-level integration model produces representative

subspace and hence dimensionality reduction of omic features, which in turn provided

significant tumor-specific patient subtypes.

Future work: The scope of our current study is limited to undirected networks, which

can be further improved using pathway information or Bayesian networks. Integrat-

ing Bayesian methods more extensively into multi-level integration algorithms will im-

prove outcomes, owing to the combination of network-based and Bayesian methods.

For evaluating the overall performance of the method, we need to perform an ablation

study, which is in the future scope of this work. The extensibility and scalability of our

algorithm to other omic features also require further in-depth study. We have examined

our HCNM on two cancer phenotypes in this work, but the model is applicable to other

phenotypes too. The integrative subspace in genes of various diseases can be used to

efficiently construct a diseasome, which is a bipartite graph of associations between dis-

eases and omic features. For example, a diseasome between comorbidities associated
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with COVID-19 such as lung cancer, ARDS, tuberculosis, etc., and ranked subspace

in genes. In the future, our work may be extended to obtain an integrated subspace

related to a set of diseases by fine-tuning the gene ranking through consensus voting,

and constructing a diseasome.

In summary, correlation analysis has been routinely used for the analysis of biomed-

ical data, and our work on correlation networks demonstrates novel uses of such statis-

tical associations. Consequently, this thesis opens up research problems stemming from

incorporating the semantics of correlation networks in the data science algorithms for

biomedical applications.
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in Reproductomics. In Reproductomics, pages 347–383. Elsevier, 2018. doi:

https://doi.org/10.1016/b978-0-12-812571-7.00019-8.



117

[13] Naiqian Zhang, Haiyun Wang, Yun Fang, Jun Wang, Xiaoqi Zheng, and

X Shirley Liu. Predicting anticancer drug responses using a dual-layer integrated

cell line-drug network model. PLoS Comput Biol, 11(9):e1004498, 2015. doi:

https://doi.org/10.1371/journal.pcbi.1004498.

[14] Khandakar Tanvir Ahmed, Sunho Park, Qibing Jiang, Yunku Yeu, TaeHyun

Hwang, and Wei Zhang. Network-based drug sensitivity prediction. BMC

medical genomics, 13(11):1–10, 2020. doi: https://doi.org/10.1186/s12920-020-

00829-3.
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[109] Dragana M Pavlovic, Petra E Vértes, Edward T Bullmore, William R Schafer,

and Thomas E Nichols. Stochastic blockmodeling of the modules and core of

the Caenorhabditis elegans connectome. PloS one, 9(7):e97584, 2014. doi:

https://doi.org/10.1371/journal.pone.0097584.

[110] Reddy Rani Vangimalla and Jaya Sreevalsan-Nair. Comparing Community De-

tection Methods in Brain Functional Connectivity Networks. In International

Conference on Computational Intelligence, Cyber Security, and Computational

Models, pages 3–17. Springer, 2019. doi: https://doi.org/10.1007/978-981-15-

9700-8 1.

[111] Joseph F Hair, William C Black, Barry J Babin, Rolph E Anderson, Ronald L

Tatham, et al. Multivariate data analysis, volume 5. Prentice hall Upper Saddle

River, NJ, 1998.

[112] Rudolph J Rummel. Understanding factor analysis. Journal of conflict resolution,

11(4):444–480, 1967. doi: https://doi.org/10.1177/002200276701100405.



132

[113] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–

174, 2010. doi: https://doi.org/10.1016/j.physrep.2009.11.002.

[114] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analy-

sis of structural and functional systems. Nature reviews neuroscience, 10(3):186–

198, 2009. doi: https://doi.org/10.1038/nrn2575.

[115] Cécile Bordier, Carlo Nicolini, and Angelo Bifone. Graph analysis

and modularity of brain functional connectivity networks: searching for

the optimal threshold. Frontiers in neuroscience, 11:441, 2017. doi:

https://doi.org/10.3389/fnins.2017.00441.

[116] Matt C. Howard. A review of exploratory factor analysis decisions and overview

of current practices: What we are doing and how can we improve? Inter-

national Journal of Human-Computer Interaction, 32(1):51–62, 2016. doi:

https://doi.org/10.1080/10447318.2015.1087664.

[117] Alvin C. Rencher. Methods of multivariate analysis, volume 492. John Wiley &

Sons, 2003. ISBN 0-471-41889-7.

[118] Anna B. Costello and Jason W. Osborne. Best practices in exploratory fac-

tor analysis: Four recommendations for getting the most from your analy-

sis. Practical assessment, research & evaluation, 10(7):1–9, 2005. doi:

https://doi.org/10.7275/jyj1-4868.

[119] Jason W Osborne, Anna B Costello, and J Thomas Kellow. Best practices

in exploratory factor analysis. CreateSpace Independent Publishing Platform

Louisville, KY, 2014. doi: https://doi.org/10.4135/9781412995627.d8.

[120] James Dean Brown. Choosing the right type of rotation in PCA and EFA. JALT

testing & evaluation SIG newsletter, 13(3):20–25, 2009.



133

[121] Henry F Kaiser and John Rice. Little jiffy, mark IV. Edu-

cational and psychological measurement, 34(1):111–117, 1974. doi:

https://doi.org/10.1177/001316447403400115.

[122] Henry F Kaiser. A second generation little jiffy. Psychometrika, 35(4):401–415,

1970. doi: https://doi.org/10.1007/bf02291817.

[123] Rubén Daniel Ledesma and Pedro Valero-Mora. Determining the number of fac-

tors to retain in EFA: An easy-to-use computer program for carrying out parallel

analysis. Practical assessment, research, and evaluation, 12(1):2, 2007. doi:

https://doi.org/10.7275/wjnc-nm63.

[124] Dennis Child. The essentials of factor analysis. A&C Black, 2006.
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APPENDIX A

APPENDIX: EXPLORATORY FACTOR ANALYSIS (EFA)

In factor analysis, each variable is expressed as a linear combination of factors, this

can be represented as [117],

yi = λi1 f1 +λi2 f2 + . . .+λim fm + εi (Eqn A1.1)

Where y1,y2, . . . ,yp are variables, f1, f2, . . . , fm are factors (m is always lesser than p),

λi1,λi2, · · · ,λim are factor loadings of m factors and εi is a vector of error terms. In

our work, we consider these m partitions of variables as m node-groupings. In matrix

format, the same can be written as,

y = Λ f + ε (Eqn A1.2)

Where y = (y1,y2, . . . ,yp)
′, f = ( f1, f2, . . . , fm)

′, ε = (ε1,ε2, . . . ,εp)
′, and Λ is a [p×m]

factor loadings matrix. The factor analysis, primarily involves the measure of covari-

ances,

Σ = cov(y) = cov(Λf + ε) = cov(Λf) + cov(ε) = Λ(cov f)Λ′+ cov(ε), the basic

assumptions of the method is cov(f) = I and cov(ε) = Ψ where Ψ is a [p× p] specific

variance matrix that represents noise terms which is specific to each variable. Hence,

Σ = ΛΛ
′+Ψ (Eqn A1.3)
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Using spectral decomposition, a covariance matrix C can be factorized as C = V DV ′,

where V is a normalized eigenvector matrix and D is a diagonal matrix of the eigenval-

ues. As the matrix C is positive definite, the equation can be written as,

C =V D1/2D1/2V ′ = (V D1/2)(V D1/2)′ (Eqn A1.4)

This can be equated to Σ = ΛΛ
′ without an error term.

Maximum Likelihood Estimation (MLE) Method for Factor Loadings Estimation:

To execute EFA, the data should express both univariate and multivariate normal

distribution [124]. The prerequisites to perform MLE method are that the data must

be independent and identically distributed (i.i.d), and must have a multivariate normal

distribution. For x being a continuous random [p× 1] vector with each variate having

a normal distribution, µ is a [p× 1] mean vector of x and Σ is a [p× p] covariance

matrix that is positive definite and symmetric, x can be said to have multivariate normal

distribution if its joint probability density function for x∼ N(µ,Σ), is:

p(x|µ,Σ) = 1

(2π)
p
2 |Σ| 12

exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
(Eqn A1.5)

The log likelihood of n observations of x for L = (x1,x2, . . . ,xn) is:

log(µ,Σ|L) = − n
2

log2π− n
2

log |Σ|− 1
2
(

n

∑
i=1

(xi−µ)′ (Σ)−1 (xi−µ)) (Eqn A1.6)

where, Σ = ΛΛ
′+Ψ

By estimating µ , Σ, and factor loadings (Λ), we can find the best fit that can max-

imize the log-likelihood. The equation must be solved iteratively to achieve maximum

likelihood. When the diagonal matrix is Λ
′
Ψ
−1

Λ, then we can say a unique solution is

obtained, where Ψ = diag(S−ΛΛ
′), and S is a sample covariance matrix.
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For the correlation matrix R, we compute Λ using EFA and verify the fit of the

model using E (residual error). The lesser the residual error, the better is the model fit

the data.

E = R−
(
ΛΛ
′+Ψ

)
= R−Σ (Eqn A1.7)
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APPENDIX B

APPENDIX: MULTI-OMICS INTEGRATIVE ALGORITHMS

Similarity Network Fusion (SNF): For the [N×M] matrix of N samples/patients and

M genes, the method SNF first computes the distance matrix (W) across the samples

and produces a [N×N] matrix. The number of distance/similarity matrices is equal to

the count of multi-omics used for the study. The SNF algorithm iteratively updates the

similarity matrix corresponding to each of the omic features as in Eqn B2.1.

P(1)
t+1 = S(1)×P(2)

t ×
(

S(1)
)T

P(2)
t+1 = S(2)×P(1)

t ×
(

S(2)
)T

P(c) = P(1)
t +P(2)

t
2

(Eqn B2.1)

Where P(~.) is a normalized weighted matrix and S(~.) is the local affinity measured

using K nearest neighbours with Ni neighbours of each node.

P(i, j) =


W(i, j)

2Σk 6=iW(i,k) , j 6= i

1/2, j = i

S(i, j) =


W(i, j)

Σk∈NiW(i,k) , j ∈ Ni

0 otherwise

(Eqn B2.2)
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Eqn B2.1 is repeated over t iterations to generate a Pt matrix for each omic feature.

In this study, we have used two omic features hence P(1)
t and P(2)

t are generated and

fused based on affinity metrics to produce a final network Pc.

To run SNF and to find hyperparameters K (number of neighbours), α (measure for

local diameter), we followed the correlation measure as in (ref: Equation 7 [42]). We

have implemented SNF with the tuned hyperparameters on both the cancer phenotypes

and on the entire, and subspace data. The number of clusters in the fused affinity matrix

is estimated using eigen gap and rotation cost methods.

Affinity Network Fusion (ANF): This is an improvised integrative procedure on SNF.

Like SNF, ANF also computes a distance matrix for each omic feature and finds affinity

measurement, but ANF works with less computation to find patient subtypes.

The K nearest neighbours Gaussian kernel, which is the combination of local Gaus-

sian kernel and K nearest neighbours, is defined as:

Ki j =
1√

2πσi j
e
−

δ2
i j

2σ2
i j (Eqn B2.3)

Where δi j is the distance measure between patient i and j, and σi j is given as:

σi j = α
(
µi +µ j

)
+βδi j (Eqn B2.4)

The Local Diameter (µi) of a patient i with K nearest neighbours indexes (Nk(i)) is:

µi =
∑l∈Nk(i) δil

k
(Eqn B2.5)

Normalized similarity measure between the patients, similar to Eqn B2.2, is given
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as:

Si j =
Ki j

∑
N
j=1 Ki j

, 1≤ i, j ≤ N (Eqn B2.6)

Before fusing the similarity matrices of each omic feature (Si j), the matrix is further

pruned, and a weighted matrix W(v) is constructed. The final fused matrix is the sum-

mation of all pruned matrices of each omic feature. Besides, to generate a smoother

fused matrix W, the matrix is multiplied by itself for r times, where at W∗, the rank of

the matrix is 1, and the matrix reaches a stable state. Similar to SNF, the hyperparame-

ters K (the number of neighbours), α (measure for local diameter), and β (measure for

pair-wise distance) for ANF is estimated using the correlation measure as in (ref: Equa-

tion 7 [42]). The number of clusters of W∗ is estimated using eigen gap and rotation

cost methods.

iClusterPlus: To find subtypes of patients, we have used ‘iClusterPlus’, an improved

version of iCluster (integrative clustering of multiple genomic data types) [210]. iClus-

ter is a popularly known method to find the subtypes of patients. For n patients/subjects

of m different omic data types with (X1, . . . ,Xm) omic matrices that are row normalized

in the [p× n] matrix with pm features. The subtypes are jointly estimated using latent

variables of the integrative model:

X1 = W1Z+ ε1

X2 = W2Z+ ε2
...

Xm = WmZ+ εm

(Eqn B2.7)

Here Z is an [l×n] matrix with l latent variables, ε is an error matrix, and (W1, . . . ,Wm)

is coefficient matrices of m various omic features. To achieve the sparse estimation of

Wm, Lasso penalty [166] can be used, and optimal latent variables are estimated using

the optimal number of clusters C. We have used the ’tune.iClusterplus’ method [188,
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190] to find the optimal number of clusters (C) and the Lasso penalty (λ ). The tuning

method uses Bayesian information criteria (BIC) to select the best sparse model with

the optimal combination of penalty parameters. The best C is computed using deviance

ratio (DR), which can be interpreted as explained variation (EV). An elbow-curve be-

tween the number of clusters and % of EV reveals the optimal value of clusters of the

data. Finally, patient subtypes are identified using the K-means clustering algorithm.

DR = (log− likelihood)
f ittedmodel−nullmodel
f ullmodel−nullmodel

(Eqn B2.8)


	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Contribution
	Organization of the Thesis

	Correlation Networks of Biomedical Data
	Brain Connectome
	Functional Connectivity Networks

	Multi-omic Associations for Cancer Data Analysis
	Correlation Analysis of Cancer Genomic Data


	I Brain Functional Connectivity Correlation Networks
	Modularity Maximized Communities in Brain using Factor Analysis
	Proposed Approach for Functional Segregation
	FCN generation
	Edge-Filtering Networks
	Community-detection/Node-partition Methods
	Exploratory Factor Analysis (EFA) for Node-Partitioning
	State-of-the-Art Community Detection Methods

	Comparison of EFA with State-of-the-Art Methods
	Conclusions

	Multiscale Consensus Approach for Brain Functional Segregation
	Network Transformation
	Input data preparation and FCN generation
	EFA and Co-association Matrix
	Multiscale EFA
	Continuous Interval for nF:
	Goodness of fit for EFA
	Choice of Rotation Method for EFA
	Sub-interval from Ensemble Experiments

	Transformed Network Generation

	Communities and Cliques in Transformed Network
	Efficiency Metrics to Find Optimal Sub-interval Selection
	Efficiency Metrics
	Optimal Sub-interval of Multiple Scales

	Multiscale Consensus Communities and Cliques
	Consensus Communities
	Consensus Cliques
	Significance of Resultant Communities and Cliques

	Conclusions


	II Multi-level Integrative Study of Multi-omics Cancer Data
	Representative Integrative Subspace of Multi-omics
	Data and Preprocessing
	Finding Integrative Subspace Using HCNM
	Biological Significance of Subspace in Genes
	Conclusions

	Subtypes in Cancer
	Dataset
	Subtype Prediction using Representative Integrative Subspace
	Comparative Analysis of Subtypes
	Conclusions


	III Extensions to Network Analysis
	Matrix visualization Applications
	Matrix Seriation for Visualizing Changes in FCN
	A Case Study of an OCD Patient fMRI Data: Changes Due to Treatment
	Rank-two Ellipse (R2E) Seriation

	A Hybrid Graph Layout for Unbalanced Bipartite Graph
	RadTrix Layout
	A Case-study using RadTrix



	Conclusions
	Functional Segregation using Brain FCN
	Integrative Subspace and Patient Subtypes of Multi-omics Caner Data

	Bibliography
	Appendix: Exploratory Factor Analysis (EFA)
	Appendix: Multi-omics Integrative Algorithms

