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SPATIOTEMPORAL ANALYTICS OF LIDAR DATA FOR

ENVIRONMENTAL PERCEPTION TO ASSIST AUTONOMOUS DRIVING

Abstract

Accurate and reliable perception of nearby objects of interest, such as on-road im-

pediments, ground surfaces, curbs and ditch, navigable surfaces, etc., is crucial for

course planning and localization in autonomous driving. Spatio-temporal analysis of

autonomous driving data is the task of extracting semantic and geometric structures

that approximate spatial and temporal relationships for concise perception tasks from a

large set of data. The ability of autonomous vehicles to perceive their surroundings is

one of their most crucial functions. Few of the various methods for perceiving the envi-

ronment and its surroundings that have been suggested utilize semantic information to

improve the perception models. This turns finding perception task-appropriate method-

ologies or developing new approaches with semantic and geometric information into a

significant research challenge. This thesis proposes geometry-aware approaches with a

high potential for contributing to the classification, detection, and reconstruction tasks.

In this project, we aim to incorporate semantic and geometric information into the pro-

cess for perception tasks of ground and non-ground classification, road edge detection,

road surface reconstruction, and 3D object detection.

There is active research on computer vision solutions to the problems of percep-

tions by proposing novel systems or analysis methods. However, there is still scope

for improvement for many of these solutions because of the limitations imposed by the

complexity of the components in environments, with a simultaneous representation of

stationary and movable environments, the barriers in the way of the autonomous vehi-
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cle, and the variety of the external environment. For crucial perceptual tasks, we provide

an automated approach with the aid of spatiotemporal analysis and improvement. Our

work intends to handle three crucial perception-related tasks for autonomous driving,

including (i) classifying ground and non-ground, (ii) extracting the road surface, and

(iii) enhancing 3D object detection.

To distinguish between drivable zones and impassable obstacles, the ground from

non-ground classification method comprises decoding of the proper height-based fea-

tures by using neighborhood processing techniques of the data points obtained by the

LiDAR sensor in the form of 3D point cloud data. We interpret the ground and non-

ground elements separately based on the semantics and geometrical perception of the

point cloud. Using a supervised machine learning classifier, we divide the data points

into their respective ground and non-ground classes as a first step towards the crucial

task of perception.

Then the detected ground elements are heuristically separated and labeled into road

edge components. The processing mechanisms for the next important perceptual task

include road edge point detection, surface mesh generation, our proposed frame classi-

fication for identification of road topological structure, and edge point set smoothing,

along with a few preprocessing making our method more efficient than existing meth-

ods. Finally, we propose automatic road surface extraction using geometry-based and

temporal sequential extraction techniques based on the road type to exploit properties

of the semantic structure of road rendered in the range image representation.

We also propose a design methodology for improving 3D object detection with the

help of adaptive learning. To build a fresh set of more accurate detections, we propose

the adaptive model, built based on two-way matching and using shape descriptors that

provide geometrical information encoded in detected objects to select one detection out

of an ensemble of detections from different models.
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For interpreting the environment during autonomous driving and representing the

extracted information as ground data, road surface, and enhancement of object detec-

tion, we use both spatial and temporal processing and machine learning approaches in

our workflow. The effectiveness of our approaches for each perception task is evaluated

qualitatively and quantitatively. Overall, the state-of-the-art methods for significant per-

ceptual tasks to support autonomous driving is improved by our unique methodologies

based on spatiotemporal analysis and processing, machine learning, and geometrical

computations.
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CHAPTER 1

INTRODUCTION

The development of self-driving vehicle technology has gradually increased over the

past three decades, primarily due to advancements in computer and sensing technolo-

gies that have decreased the size and cost of essential hardware. Perception, planning,

control, and coordination are the different categories of requirements of autonomous

vehicle software [7]. These competencies interact with one another and with how the

vehicle interacts with its surroundings. The ability of autonomous cars to perceive their

surroundings is one of their most crucial functions. Environment perception is a criti-

cal component of autonomous vehicles since it gives the car vital information about its

surroundings, including the positions, velocities, and potential future states of nearby

barriers as well as the free drivable areas [8]. Depending on the sensors used, LiDARs,

cameras, or a combination of these two types of equipment can be used to solve the

environment perception task. In the field of intelligent vehicles, where a self-driving

vehicle is required to travel in a complex environment while also identifying objects

safely, spatio-temporal analysis and evaluation of contextual situation awareness are

particularly crucial. The three essential tasks in the perception domain necessary for

autonomous driving are ground and non-ground classification, extraction of drivable

surfaces, and 3D object detection. There are many state-of-the-art techniques for carry-

ing out these tasks; we investigate these techniques and carry out spatial and temporal

analyses that aid in better comprehending the data and the scene, opening up new av-
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enues for advancements and state-of-the-art.

Systems for perception must be able to recognize and represent different participants

in all environments, including unexpected environments. This is especially true in urban

areas with a high volume of traffic and complicated lane and road configurations. These

factors, along with various forms of peripheral infrastructure and vegetation, make per-

ception difficult. Perception tasks involve data input from different sensor modalities

i.e. LiDAR, camera, and radar sensors are widely used.

Light detection and ranging device, often known as LiDAR, transmits millions

of light pulses per second in a precise pattern and it can produce a dynamic, three-

dimensional map of the environment. Most autonomous vehicles today rely heavily

on LiDAR for perception tasks. The points the LiDAR returns in an actual situation

are never accurate. The scan point sparsity, missing points, and disorganized patterns

present challenges in managing LiDAR points. However, LiDAR data is much more ac-

curate with concise depth information as compared to camera images which suffer due

to the different appearance, shape, and attitudes of various objects, as well as the inter-

ference of lighting, shielding, and other factors during imaging, in the field of computer

vision, using images [9].

The terrain surface is divided into drivable regions and impassable obstacles in the

first processing stage. Despite being assumed in many approaches, the ground surface

typically has a random structure rather than a single plane. For example, discern a car

going on the road even within a tunnel, or beneath a tree, protruding and overhanging

structures must be identifiable from the ground surface. Explicit depiction of the ground

surface produces useful information regarding drivable locations, but many techniques

interpret ground data as noise and concentrate on their removal. Widely used strate-

gies either use grid-based intermediate representations or vertical displacement analy-

sis [10,11]. These methods typically struggle to model closer objects accurately. Others
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use scan lines of multibeam LiDAR to categorize the ground surface based on a slope

threshold. This can be done either using point pairs as a basis [12,13], or by accounting

for bigger point clusters [14, 15]. These algorithms are occasionally subject to inaccu-

rate measurements.

We extract hand-crafted pertinent height-based features to address the drawbacks of

existing approaches while maintaining their modest processing requirements. A tech-

nique based on the neighborhood extracts features. After carrying out a proper spa-

tial analysis based on Local Geometric Descriptor (LGD) and selecting an appropriate

neighborhood size, the relevant height features are extracted. We precisely differentiate

ground and non-ground segments by using multi-scale feature extraction to propagate

information about ground-level fluctuations.

Another one of the most crucial processes in the assessment of navigable space is the

collection of three-dimensional (3D) information about the road surface. Road surface

detection informs the autonomous vehicle on the locations of free space where it can

drive without collision. It is the prerequisite for any online path planning and control

operations. Many people have historically used visual inspection and interpretation to

assess road surface quality [16]. The road environment is highly complex and heteroge-

neous. The heterogeneous environment makes it challenging to collect and accurately

analyze roadway data spanning thousands of kilometers of route. The foundational

information for further analysis is high-precision road terrain obtained as point cloud

data, which is used for applications like road surface settlement, pavement, and slope

collapse [17].

We provide an automated technique for extracting road surfaces, which may be di-

vided into two parts: (I) curb-based methods and (II) global properties of roadways

(e.g., topology and smoothness). Point clouds from temporal frames are segmented

into the ground and non-ground categories as a starting point. Edge detection for the
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curb is done after the ground segment has been separated, and mesh creation is done to

extract the road surface. Curb points are discovered by geometrically analyzing nearby

locations and range image representation. To locate and follow the curb, the topology,

smoothness, and trajectory information of point cloud sequences are taken into consid-

eration. The topological road structure is extracted from temporal frames of point cloud

sequences using our suggested innovative frame classification algorithm, which is then

used to derive potential road surfaces.

Researchers have been particularly interested in driving in urban settings because

of the high vehicle density and different area-specific traffic regulations that must be

followed. The surroundings of autonomous vehicle contain a variety of challenges,

including sensitive objects like vehicles and pedestrians. The approaches discussed

in [18, 19] are not reliable or broad enough to be used with autonomous cars because

of the diverse types, appearances, shapes, and sizes of the objects. In object detection,

deep learning has demonstrated superior performance compared to traditional learning

or feature-based techniques. A collection of proposal bounding boxes must typically

be created around the input for deep learning algorithms. Then, each proposal box is

routed through the CNN network to identify a classification (including background)

and fine-tune its bounding box positions. Selective Search [20] and EdgeBoxes [21],

which both rely on affordable hand-crafted features and inference procedures, are the

two popular techniques for proposing bounding boxes.

3D objects require segmentation, recognition, and localization as point clusters in

space. Each cluster needs to be divided into distinct objects after segmentation. The

spatial relationships surrounding the LiDAR point clouds and the shapes of the objects

in entire, partial, or obstructed circumstances used in object recognition make up the

majority of the information embedded in each cluster. Therefore, most algorithms use

the computer vision detection problem through specific fusion methods, as we do for

our analysis and detection enhancement. On top of the base 3D detection models, which
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Figure FC1.1: Gaps and challenges in environment perception tasks addressed in our work to
assist autonomous driving

would use the shape attributes of detected objects and two-way matching across detec-

tions of an ensemble of models, we propose employing an adaptive-learning prediction

selection model to boost the 3D object detection.

1.1 Problem Statement

The spatio-temporal analysis of different components of perception tasks in au-

tonomous driving induces point cloud data understanding and extraction of spatio-

temporal features helpful in generating new systems and boosting the existing ones. The

analysis involves improving and accomplishing computer vision tasks for autonomous

driving assistance such as ground and non-ground segmentation, road edge detection,

3D surface extraction for navigable/drivable space, boosting 3D object detection by us-

ing an ensemble of models, etc. Our aim is to perform analysis in the spatial as well

as the temporal domain of the point cloud data collected by the LiDAR sensor, which

decodes different perception tasks based on the different segments the point cloud data
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comprises of the ground and non-ground separation, extraction of a drivable surface

from ground component and improving the detection of the objects present in the non-

ground component. The three main research objectives and the challenges involved are

summarized in Figure FC1.1. Our objective is to address the following problems:

• Ground and non-ground classification based on semantics and usage.

– A point cloud collects several significant components to depict data effec-

tively. These point cloud components are perceived in order and later as-

sembled to form an overall interpretation of underlying information based

on the steps involved in the analytical perception process. The separation

of ground regions and non-traversable obstacles is crucial in interpreting the

scene and extracting the drivable surface data. Existing methods are either

insufficiently precise or rely on deep learning networks. Mapping the points

that belong to the ground and non-ground requires a significant amount of

effort if done manually or a significant amount of processing power if a deep

learning network is used. Segmentation using hand-crafted features contin-

ues to be the best trade-off between efficiency and accuracy [22,23]. Random

forest classifier (RFC) [24] has been known to work effectively for seman-

tic segmentation of the airborne and terrestrial LiDAR point clouds [25, 26].

However, there is a gap in the use of effective use of RFCs for 3D automo-

tive LiDAR point clouds. There is a need to determine an appropriate feature

vector and preprocessing steps to address this gap.

• Road surface extraction using 3D LiDAR point cloud sequences

– Navigable space detection is a difficult problem for robotics and intelligent

vehicle technology that requires a combined approach of computational ge-

ometry and computer vision. The traditional data processing workflow uses

semantic segmentation, which is capable of quickly identifying road points.
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However, to identify curb or edge points, the semantic segmentation results

must be post-processed. Thus, there is a gap in determining the curb points

and extracting road surface using the entire trajectory information from a

sequence of LiDAR point clouds. This entails a workflow that works at dif-

ferent scales, i.e. at the scale of a point, a point cloud, and the sequence of

point clouds.

• Boosting the 3D object detection

– 3D object detection is the task of localizing and recognizing objects in a 3D

scene that are present around the self-driving vehicle. Individual detection

model approaches may perform well in a given environment, but a single

3D object detection model may not produce comparable results across all

detected objects in all environmental conditions when precise detection is

more useful in all cases during autonomous driving. Ensembling features

from several sources have been the focus of some works [27–29]. When us-

ing ensemble methods based on model output, the typical strategy is to use

the main model whose predictions are modified by a secondary model, as

done in [30, 31]. The use of methods to remove redundant bounding boxes,

such as Non-Maximum Suppression [32], Soft-NMS [33], or WBF [6], is

another strategy for combining the output of detection models. There is a

gap in the state-of-the-art in use of ensemble models for selecting the output

of detection models instead of merging them for 3D object detection. We

focus on using pre-trained models to effectively use the state-of-the-art mod-

els. Hence, addressing the gap includes a decision-making workflow that

includes a post-processing step to adaptively choose the outcomes of these

models.

Our work in this thesis aims to explore and analyze diverse methods implemented for
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three perception tasks and introduce our approach as an alternative and equally efficient

solution for deriving information essential to assist autonomous driving. Our proposed

methods work on the point cloud sequences captured from the Velodyne LiDAR sensor

mounted on a mobile platform.

1.2 Contributions

Our novel contributions lie in integrating the appropriate existing and proposed

methods in spatio-temporal analysis for three important tasks of ground and non-ground

classification, 3D road surface extraction, and boosting 3D object detection to assist au-

tonomous driving (Figure FC4.2). Our key contributions and implementations in this

thesis include the following:

• We propose the use of point cloud registration as a medium for outlier removal

to improve the representation of data using its statistical measures, which gives

better feature computation and comparatively less processing time and the use

of selected features based on the impact of different features with a supervised

machine learning model, namely, the random forest classifier, for ground and non-

ground point classification.

• We design and implement a complete automated system using ground points

for road surface extraction from the ego-motion in 3D automotive LiDAR point

clouds.

• We propose a novel per-frame road-geometry classification, i.e. frame classifica-

tion, using appropriate image representation of the ground points and the process

of transfer learning with the help of ImageNet weights instead of training the im-

age classification model from scratch.
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• We further propose appropriate point set processing using the range image repre-

sentation of the 3D points for performing road edge point detection and the point

set smoothing of the detected edge points by merging the edge points over contin-

uous temporal frames and appropriate surface mesh generation methods for our

road surface extraction.

• We design and implement a novel adaptive learning prediction-selection strategy

of selecting appropriate detection from multiple detections obtained from 3D ob-

ject detection methods. This is to improve the accuracy of 3D object detection

of MLS point clouds using an effective application of two-way matching for pre-

serving the bounding boxes based on the spatial locality of the detected bounding

box from an ensemble of detection models,

• We propose a novel use of random forest regression to predict the distance be-

tween the shape descriptors of the detected object points and ground truth object

points to select the detection from an ensemble of 3D detection models.

1.3 Thesis Structure

The thesis structure is as follows: in Chapter 2, we provide a literature survey on

analysis and approaches taken in the areas of ground classification, segmentation, and

extraction of road edge points and drivable surface, scene classification, and different

models for 3D object detection and improvements on the same, which are essential

tasks in autonomous driving, emphasizing the variety of implementations and their cor-

responding limitations. Chapter 3 discusses our first important step of ground and non-

ground classification, which is widely adopted to form a basis in many use cases for

object detection, tracking, and 3D surface extraction and reconstruction involving anal-

ysis of point neighborhood for better understanding of scene captured by LiDAR, outlier

removal, inclusion of selected hand-crafted features, and point set classification, along



10

with the experiments conducted. In Chapter 4, we propose an algorithm for an auto-

mated system for 3D road surface extraction from sequences of 3D LiDAR point cloud

data utilizing our ground segmentation approach and semantically inferring the road

edge points to generate the 3D meshes corresponding to the road surface and the exper-

imental results compared with existing methods. Chapter 5 focuses on boosting the 3D

object detection task, another vital task in autonomous driving, using a decision-making

model to adeptly pick one of the detected objects from the corresponding predictions

of an ensemble of 3D detection models, along with experimentation of weighted box

fusion for comparing and assessing the improvements. The potential applications of

our work are concluded in Chapter 6, along with a comment on entire systems that can

employ our algorithms as a module for each perception task discussed and the range of

potential future work aimed at enhancing our methods.
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CHAPTER 2

LITERATURE SURVEY

A significant amount of study has been done over the years on different perception

tasks involved in the autonomous driving scenario to help the automated systems better

understand the underlying components such as performing segmentation, localization,

mapping, and object detection. The binary segmentation of point cloud involves reveal-

ing the ground and non-ground points, which form the basis for other tasks in many

cases. The road surface extraction provides us with the extracted surface of the drivable

area, a key component for a self-driving vehicle, which calls for ground segmentation,

road edge point detection, road plane estimation, and scene understanding. 3D object

detection is also one of the crucial tasks in autonomous driving. Different models pro-

vide different detections, all aiming for improvement in the detections. Boosting the

3D object detection would result in more efficient driving.

This chapter provides a thorough summary of different approaches and implemen-

tations involved in analyzing essential perception tasks throughout the previous few

years, including various related methods. The state-of-the-art in 3D automotive LiDAR

point cloud processing on the these topics is discussed in this chapter.
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2.1 Pointwise Analysis

This section describes the various analysis performed on each point in the point

cloud that are relevant to the various methods used in our work. It includes works on

point-wise ground and non-ground classification, as well as various works on shape

descriptors based on object points. This section provides a summary about literatures

that address the challenges in the ground and non-ground classification and 3D object

detection.

2.1.1 Ground and Non-Ground Classification

Ground point segmentation, comparable to classifying each point into “ground” and

“non-ground points,” serves as the starting point for our spatio-temporal analysis. Since

the middle of the 2000s, this field of study has been active [22, 34]. There are two con-

current strategies: (i) using height-based hand-crafted features and conventional ma-

chine learning; and (ii) using convolutional neural networks (CNNs) or convolutional

encoder-decoder, either with image representation for its projection (e.g., sparse pseudo

image, bird’s eye view (BEV), range image, etc.) or with 3D points directly [35]. The

CNNS can be used directly for binary road segmentation; for example, [36]. Although

CNNs perform best in trained contexts, they are expensive for training and less general

in other environments. However, depending on the need, ground point segmentation has

continued using height-based feature extraction [22,23]. For example, either geometry-

based filtering [23] or elevation map image processing [37]) is carried out. Through

voting [22], such images at different resolutions are used as input to an ensemble edge

detection for probabilistic ground point segmentation.

A different approach is the fine-grained multi-class semantic segmentation [35], in

which the relevant classes can be joined functionally to form a “ground” class [22, 34,



13

37]. Range pictures are frequently utilized for projection-based approaches employing

deep learning, which belong to a class of semantic segmentation methods widely em-

ployed [38, 39]. Another group of networks, such as RandLA-Net [40], SCSSnet [41],

etc., directly use 3D point sample sets.

After some testing, we recommend employing supervised learning with custom fea-

tures to partition the ground at a reduced cost.

2.1.2 Shape Descriptors

The methods for extracting 3D point cloud descriptors widely in use are thoroughly

examined in this survey. These methods can be broadly divided into local-based de-

scriptors, global-based descriptors, and hybrid-based descriptors. Fast Point Feature

Histogram (FPFH) [42] is introduced to simplify and reduce the computational com-

plexity of the PFH descriptor and is used mainly for object registrations. It is a local

descriptor that uses the relationships between point pairs in the support region and es-

timates surface normals to represent the geometric properties. By integrating extra per-

spective variance, the Viewpoint Feature Histogram (VFH) [43] expands on the concept

and characteristics of FPFH. It is a global descriptor comprising of a surface form com-

ponent and a viewpoint direction component used for object detection purposes. The

Clustered Viewpoint Feature Histogram descriptor [44], a local/regional descriptor, can

be considered an extension of VFH, which takes into account the advantage from sta-

ble object regions obtained by applying a region growing algorithm after removing the

points with high curvature. It is used for object detection with pose estimation and de-

tection of partial objects. Globally Aligned Spatial Distribution (GASD), a novel global

descriptor proposed by Lima et al. [45], is based on a reference frame estimated for the

entire point cloud model representing an object and is constructed based on Principal

Component Analysis (PCA).
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2.2 Road Surface Estimation

This section discusses various feature extraction methods, such as manual feature

extraction based on analysis and feature extraction using deep learning networks, both

of which are useful in tasks such as road surface extraction, scene classification, and

ground plane estimation. It provides a summary of state-of-the-art that are relevant to

the task of road surface extraction.

2.2.1 Road Edge Extraction

For mobile laser scanning (MLS)/LiDAR point clouds [46, 47], monocular pictures

captured by moving vehicles [48], and elevation maps from 2D laser scanners [49], curb

extraction has been examined. To find potential points or locations, all of these tech-

niques employ elevation filtering and the proper line fitting algorithms. Our method is

most similar to road boundary extraction for MLS point clouds [47], which is extracted

by searching outward from the vehicle trajectory to discover edge points. The MLS

point clouds differ, though, in that the search is carried out in the candidate point set,

and we take advantage of the range image view of the vehicle LiDAR point cloud on

which the search is carried out.

The curb points are designated as “sidewalk” in the benchmark SemanticKITTI

dataset for vehicle LiDAR point clouds, where the points are first labeled in tiles by

human annotator [2] and the road boundary/curb points are subsequently specifically

refined [50]. The IoU (intersection over union) score for sidewalk is 75.5% in SCSS-

nett [41] and 75.2% with RangeNet++ [38] in the baseline techniques in the benchmark

test of semantic segmentation performed using deep learning architectures.

As a result, we see that while deep learning algorithms for semantic segmentation

are good at identifying road points, they fall short in detecting road edge points. The
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class disparity can be used to explain this. Therefore, we provide a ground-based road

edge recognition method that considers structure. Our strategy involves employing

height-based hand-crafted features in supervised learning techniques, such as [22], to

find road edge points.

2.2.2 Scene Classification

We look at the state-of-the-art in the area of scene categorization, which is clos-

est to our novel frame classification. Transfer learning has been used for coarse scene

classification on satellite or aerial images [51], where ResNet (Residual Network) has

shown close to accurate performance [3]. ResNet with 50 layers (ResNet-50) offers

the best performance and value for classifying the land cover in remote sensing im-

ages [52]. The KITTI vision benchmark suite has been used to classify the types of

roads based on their functionality as “highways” and “non-highways” with the help

of AlexNet [53]. We choose to use ResNet-50 for our frame classification rather than

AlexNet since it performed better on aerial images. Our road extraction system requires

a deep learning architecture that performs well for the top-view of the road. Percep-

tually, top views clearly distinguish between different road geometry classes, namely

“straight” and “curved” roads.

2.2.3 Ground Plane Estimation

According to recent research on road extraction, the geometry extraction process is

preceded by ground plane estimation and segmentation [34, 41]. To estimate ground

elevation, GndNet creates a pseudo-image using 2D voxelization or pillars, which is

then sent to a convolutional encoder-decoder [34]. SCSSnet conducts a precise ground

plane estimate and employs semantic segmentation to locate ground points [41]. Since

the direct extraction of coarse geometry is what we are after, we locate edge points
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and triangulate them with trajectory points. The mesh map, which is a triangulation of

an automotive LiDAR using surface normals produced from range images [54], is also

different from our proposed 3D surface extraction method.

2.3 3D Object Detection Models

An autonomous driving system consists of perception, planning, decision, and con-

trol. Object detection is an essential aspect of many robotics applications and au-

tonomous driving. 3D Object detection is a task of localization and classification of

objects. Object detection in point clouds is an intrinsically three-dimensional problem.

Recently, with advances in deep networks for point cloud data, several works [55, 56]

have shown state-of-the-art 3D detection results with point cloud as the only input. One

line of work [57, 58] uses mature 2D detectors to provide initial proposals in the form

of frustums. This limits the 3D search space for estimating 3D bounding boxes. A new

deep architecture [59] proposed for fusing camera and LiDAR sensors for 3D object

detection combines the camera and LiDAR features using the cross-view spatial feature

fusion strategy. The method [60] proposed a novel 3D object detector, KDA3D, which

achieves high-precision and robust classification, segmentation, and localization with

the help of key-point densification and multi-attention guidance. This section provides

a summary of literatures that addresses the challenge in the 3D object detection task

with ensemble models as mentioned in Chapter 1.

2.3.1 Adaptive Prediction-Selection Model

The most relevant work is used in the framework [61] for object tracking tasks.

When the car is in an intersection, an adaptive strategy is used to enhance prediction

and analysis outcomes by employing several prediction models. The various parts of

the Gaussian Sum Filter (GSF), which correspond to the degree of uncertainty regard-
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ing the direction in which the vehicle will travel, are provided to various turning models

as the vehicle approaches the intersection. The findings demonstrate that, compared to

employing a single, constant velocity model, employing several models has lowered the

analysis RMSE in tracking and provided a better assessment of the analysis uncertainty.

Another similar work is taking advantage of the spatial location of the features during

adaptive multiscale feature extraction [62] for the decision-making process to discover

the optimum multiscale approach. When using a particular multiscale method while

employing the hybrid features and choosing voxels, the classification results demon-

strate an improvement in overall accuracy.

2.3.2 Weighted Boxes Fusion

Weighted boxes fusion (WBF) is a novel method for combining predictions of object

detection models. A 3D object detection pipeline [10] using point cloud sequence data

uses the WBF for the test time augmentation by rotating the point cloud and ensembling

predictions with weighted boxes fusion. The object detection approach in [11] also uses

the test time augmentation with different augmentations, and the other usage is to merge

the results of different models across different sub-designs.

2.4 Summary

We build upon the state of the art on feature extraction, ground plane estimation, and

3D object detection discussed in this chapter. Our novel contributions are elaborated in

Chapters 3, 4, and 5, respectively.
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CHAPTER 3

GROUND AND NON-GROUND CLASSIFICATION

In any outdoor environment autonomous system, the ground classification is an im-

portant preprocessing task for the local environment perception. Ground classification

for LiDAR point cloud is a crucial procedure to ensure driving safety in an autonomous

vehicle. Many tasks, like object detection, classification, and 3D reconstruction, can

be carried out after the ground and non-ground components have been separated. The

primary goal of ground classification is to separate ground points and positive obstacles

above the ground from the 3D point cloud acquired by LiDAR, allowing for the further

identification of road and obstacle types. The vehicle experiences changes in pitch, roll,

and suspension when driving. The space between measurement points is also significant

due to the uneven distribution of 3D LiDAR data, which causes the laser measurement

points close to the LiDAR to be distributed relatively dense while the distribution of

laser measurement points farther from the LiDAR to be distributed relatively sparse.

The goal of this spatial analysis is to separate ground points and non-ground points by

analyzing the neighborhood point distribution for each class.

Mapping the points that belong to ground and non-ground requires a lot of effort if

manually done or a lot of processing power if a deep learning network is used. The pro-

posed method segments ground data efficiently and accurately using machine learning

as compared to other methods without much processing power. We first experiment with
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Figure FC3.1: Summary of our proposed classification system, for ground and non-ground
classification. Our system includes two significant intermediate processes of feature extraction
and registration.

the simple height filter approach for ground and non-ground points classification. To

improve the classification results we utilize the neighborhood search on the point cloud.

We compare the LGD (Local Shape Descriptor) for different neighborhood searches on

the point cloud to identify what type of neighborhood would be suitable to generate

features for ground and non-ground classification. The ground surface on which a ve-

hicle can travel, which is mostly the road surface, is referred to as navigable/drivable

space. The “ground” point class covers various fine-grained classes, such as “road,”

“parking,” “sidewalk,” “terrain,” and so on [34]. A summary of ground and non-ground

classification is shown in Figure FC3.1.
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3.1 Height Filter Based Classification

A simple geometrical consideration may provide us with the means to greatly sim-

plify or even automate the processing of ground point filtering. The ground surface is

actually a collection of points that form a geometrical pattern of the plane with no ver-

tical component. The point cloud consists of a large number of points. It is not enough

to get to small details for basic tasks from such a large number of points. The ground

points do not have a vertical component as opposed to the non-ground points. Utilizing

this fact we use a simple height filter to classify the ground and non-ground points.

The data is separated into ground points and non-ground points based on the height

filter. We analyze the SemanticKitti [2] point cloud data and observe that the ground

points have z values (values in a vertical direction) below or close to 0. The range of

z-values approximately is [-27.7, 3.02]. Based on this height filter is set to (max(z)-

min(z))/100 . The normalization factor/value is chosen as ‘100’ as the z values have a

variation of 0.01 and also it sets the height filter close to 0 (around 0.03).

The points are separated into ground and non-ground points using the height (z-

value) threshold. In some regions where the terrain is rugged the vehicle will experience

changes in pitch, roll, and suspension when driving and cause the uneven distribution

of 3D LiDAR data, due to which the ground points could be higher than the z-threshold

in some regions. To address the issue of misclassifying ground points as non-ground,

we divide x-y plane containing the entire point cloud into cells. A region is defined by

the subset of the point cloud contained in a cell through the entire height of the point

cloud. We determine the minimum z-value in each such region and use the sum of the

minimum z-value and the z-threshold value as the new z-threshold value for the region.

Thus, we use an adaptive height filter to identify ground points.
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3.2 Analysis of Local Geometric Descriptors

The structure of the local neighborhood is identified using local geometric descrip-

tors [63]. The covariance tensor is used as the local geometric descriptor in this case.

The descriptor is derived from a local neighborhood. In general, many techniques can

be used to locate nearby neighborhoods for points in a 3D point cloud. These neighbor-

hood types, such as a spherical neighborhood with a radius, a spherical neighborhood

with the number of closest neighbors in relation to the Euclidean distance in 3D space,

or a hybrid search of a neighborhood with the maximum k-nearest neighbors inside a

given radius, are used in particular. These neighborhood types are parameterized with a

single scale parameter which is represented by either a radius or the number of nearest

neighbors, and they allow describing the local 3D structure at a specific scale. Multi-

scale neighborhoods can be used to represent the local 3D structure at several scales

instead of utilizing a single neighborhood to describe it at one scale.

A k-d tree (short for k-dimensional tree) is a data structure that organizes points

in a k-dimensional space [64]. k-d trees are a useful data structure for a variety of

applications, including multidimensional search key searches (e.g. range searches and

nearest neighbor searches). The k-d tree is used to perform three different searches for

each point in the point cloud. The four searches include :

• Radius search: For each point P, it searches the neighbor points in the given radius

with point P at its center.

• KNN search: For each point P, it searches k-nearest neighbor points with given k.

• Hybrid search: It returns at most k-nearest neighbors that have distances to the

search point less than a given radius.

• Optimal search: We use a multi-scale neighborhood and find the optimal scale for
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each point based on homogeneity score and Shannon entropy [65].

For each neighborhood type, we extract a set of geometric features describing the

spatial arrangement of points within the local neighborhood of each considered point.

The neighborhood shape can be classified into “line-”, “surface-” and “point-” type

features, which are the geometric classes [66]. Each point is represented by the local

3D shape features given by linearity, sphericity, and planarity. For each point, the co-

variance tensor is generated considering variance in the points lying in the neighborhood

of the search point. Next, the eigenvalue decomposition is performed for all the co-

variance tensors generated for each point. The likelihood of the point belonging to these

classes, Cl , Cs, Cp, respectively, are computed using eigenvalues of the descriptors at

multiple scales [66]. The tuple Cl , Cs, Cp, called as saliency map, gives the probabilistic

geometric classification of the point [66].

Every point can be defined by a combination of any two of the barycentric co-

ordinates, Cl (linear metric), Cs (spherical metric), or Cp (planar metric), which are

calculated from the eigenvalues using following equations:

Cl =
λ1−λ2

λ1 +λ2 +λ3

Cs =
3λ3

λ1 +λ2 +λ3

Cp =
2(λ2−λ3)

λ1 +λ2 +λ3

Shannon entropy [65], H, is calculated for each point based on Cl , Cs, Cp values as:

H =−Cl log2(Cl)−Cs log2(Cs)−Cp log2(Cp)

We analyze the probability density function (PDF) for each of the geometric feature

values for each class based on different neighborhoods for different frames. Based on
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our analysis of PDFs and k-distributions for all classes, objects like trunks, traffic-sign,

buildings, and poles with smaller radial neighborhood values around 1 & 2 and k-nn

values around 50 & 100 gave somewhat expected characteristics like high Cl value for

trunk, traffic sign, and k-distributions for optimal entropy values and high homogeneity

values were also within the afore-mentioned range for these objects. Thus, we choose

radius as 1 and k-nn as 100 as ideal for the neighborhood to get appropriate height fea-

tures for all classes and which will help in determining better neighborhoods for ground

and non-ground classification, including correct classification of smaller objects like a

trunk, traffic sign, etc. to non-ground class. Example of PDF plots with different neigh-

bourhood size for class car, road and trunk are as shown in Figures FC3.2, FC3.3, FC3.4.

The PDF of road class shown in FC3.3 shows characteristics of high Cp indicating a

planar neighborhood and PDF of trunk class shown in FC3.4 shows high Cl values,

whereas PDF of car shows mix of Cs and Cp characteristics. These properties are more

noticeable with a hybrid neighborhood of radius 1 and k-nn 100.

The point cloud is classified into “ground” and “non-ground” points for ground point

detection. S1 involves two sequential substeps, namely, outlier removal and semantic

classification. Here, we exploit the temporal and spatial locality of the points.

3.2.1 Outlier Removal

Point cloud registration or scan matching is done for consecutive frames to find a

spatial transformation (e.g., scaling, rotation and translation) in order to align two point

clouds. Rigid transformation refers to the transformation that does not change the dis-

tance between any two points and consists of translation and rotation, unlike non-rigid

transformation, which consists of scaling and shear mapping. The iterative closest point

(ICP) algorithm [67] is used in this work which performs rigid registration (yielding

rigid transformation) in an iterative fashion by alternating in the initial transformation,
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Figure FC3.2: PDF of car Cl , Cs, Cp, Entropy values based on different neighbourhoods for 3
different frames of sequence 08 indicating high density with Cl and Cp plots. Blue, Green, and
Orange line plots show the Cl , Cs, Cp values, respectively.
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density with Cs value around 0. Blue, Green, and Orange line plots show the Cl , Cs, and Cp
values, respectively.



26

R
a
d

iu
s

R
=

1
 

R
a
d

iu
s

R
=

2
 

Hy
bri

d
R=

3,K
=5

0

 
Hy

bri
d 

R=
3,K

=1
00

 

Hy
br

id
R=

1,K
=5

0
 

Hy
br

id
R=

1,K
=1

00
 

Hy
br

id
R=

2,K
=5

0
 

Hy
br

id
 

R=
2,K

=1
00

 

Frame 20 Frame 4050

R
a
d
iu

s
R

=
3

 

Frame 1

Cl, Cs, Cp Entropy Cl, Cs, Cp Entropy Cl, Cs, Cp Entropy
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3 different frames of sequence 08 indicating high density with Cl and Cs plots. Blue, Green, and
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27

finding the closest point in the source point cloud for every point in the target point

cloud. A correspondence pair denotes the existence of an affine transformation (e.g.,

scaling, rotation, and translation) that transforms a point in the source point cloud to

another point in the target point cloud.

Different variants of ICP use different objective functions E(T ) for finding the op-

timal rigid transformation T . The most common is point-to-point ICP which uses least

squares as the objective function:

E(T) = ∑
(p,q)∈K

∥p−Tq∥2
2. (Eqn 3.1)

Another variant of ICP is the point-to-plane one which uses the following objective

function:

E(T) = ∑
(p,q)∈K

(
(p−Tq) ·np

)2
, (Eqn 3.2)

where np is normal of point p. The point-to-plane ICP algorithm has been proven to

be a faster convergence speed than the point-to-point ICP algorithm [68]. Hence, we

choose the point-to-plane ICP algorithm for registration.

To improve the registration outcomes, a multiway approach is beneficial. The prac-

tice of aligning many bits of geometry in a global location is known as multiway reg-

istration. Here, we use multiway registration, which internally uses an ICP registration

with pose graph optimization [69].

The registration uses temporal locality, i.e. points in a frame must be preserved in

consecutive frames. With the idea that data points in the consecutive frames should

be close in the spatial domain, we find corresponding pairs of points in consecutive

frames. The ICP registration is done on the point set. Registration is done based on the

maximum correspondence distance i.e. distance between two sets of points. Follow-

ing registration, we obtain the correspondence set consisting of pair of points between



28

Figure FC3.5: Point cloud from SemanticKITTI dataset [2] after multiway registration using
point-to-plane ICP algorithm. Points in yellow and blue represent consecutive point clouds at the
current and previous frames respectively. The left image is the 3D top view of the point cloud
and the right image is the zoom-in 3D top view of the point cloud.

pair of frames. The points which are not present in the correspondence set after the

registration are considered outlier points. We discard those points and then perform

the classification. Owing to the continuity of motion across frames, experiments are

performed on iterative registration in different combinations of consecutive frames for

outlier removal. The registration of points is shown in Figure FC3.5.

3.3 Random Forest Classifier

We improve the classification based on a height filter to separate ground and non-

ground points by training a Random Forest Classifier (RFC) [24] model with a set of

relevant features. We extract the height-related features and feed them to the RFC to test

the classification accuracy between the ground and non-ground points. We also experi-

mented by adding the local height features extracted based on the hybrid neighborhood

search in both scenarios, i.e. at single scale and at multiple scales.

3.3.1 Semantic Classification

The elevation (z) of several of the objects corresponding to non-ground locations is

higher than the ground. As a result, height-based features are optimal for distinguish-
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Table TC3.1: Point-wise features at each scale for ground detection (S1)

Local Features Global Features Global Features
Point-based Frame-based

Height-based
– Difference from max.
– Difference from mean
– Standard deviation

Height-based
– Value (z-coordinate)
– Difference from mean
(of frame)

Position-based
– Distance from sensor
– Elevation angle θ

Height-based
– Difference from mean
– Standard deviation

ing ground locations from others, according to [22]. The “ground” class is a coarser

class that combines numerous fine-grained semantic classes relevant to the ground. We

extract local and global spatial handmade features and utilize them to divide the point

cloud into the ground and non-ground classes using the RFC.

The feature extraction is implemented on the point cloud in each frame, after outlier

removal. Here, we compute multi-scale local height features, for three scales. Multi-

scale features, i.e. features captured at different spatial resolutions, are known to work

better than a single scale for LiDAR point classification using RFC [70]. Here, for each

point, we select a hybrid neighborhood search that combines the criteria of the spherical

and the k-nearest neighborhoods (knn). Thus, we identify at most k-nearest neighbors

(knn) of a point that are within a given distance, r, from the point. The height features

used for ground point detection are listed in Table TC3.1. These extracted features are

computed and used in an RFC for both training and testing.

3.4 Experiments & Results

Our method requires an input dataset with enough annotations to generate machine

learning solutions. In that regard, SemanticKITTI [2] serves well as our test data.
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3.4.1 Datasets

The SemanticKITTI dataset [2] has been published primarily for three benchmark

tasks, namely semantic classification and scene completion of point clouds using single

and multi-temporal scans.

The SemanticKITTI dataset comprises over 43,000 scans of which over 21,000 are

training sequences with IDs from 00 to 10. We have used sequence 08 as the vali-

dation/test set, as prescribed by the data providers, thus training our model on the re-

maining training sequences for our classifier model, i.e. RFC model for ground point

detection. We only used every 10th frame of the SemanticKITTI sequences because

the frame-wise data is acquired every 0.1 seconds, and our subsampling ensures that

significant variations in the scene are captured without incurring high computing costs.

Overall, the dataset has annotations for 28 distinct classes for the semantic classifi-

cation benchmark task. We consider five such classes, namely “road,” “parking,” “side-

walk,” “other ground,” and “terrain,” together as the “ground” class in our approach.

Thus, the “non-ground” class implies the remaining classes, i.e. movable objects, such

as “car,” “bicycle,” etc., and stationary objects, such as, “building,” “vegetation,” etc.

We test our method on another dataset called the nuScenes dataset [5], which has

been used for a variety of benchmarks such as LiDAR segmentation, object detection,

and tracking, etc. This dataset contains 1000 scenes from 15 hours of driving data with

20-second long sequences for training, validation, and testing (700, 150, 150). The

dataset is diverse, with data from two cities, left versus right-hand traffic, interesting

driving maneuvers, common traffic situations, and unexpected behavior. nuScenes’ 32-

lane LiDAR generates approximately 30k points per frame.

We test on the mini dataset which is a subset of trainval consisting of 10 scenes.

The nuScenes-lidarseg dataset includes annotations for 32 different segmentation tasks.
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We combine the classes to form ground, which includes “driveable surface,” “other flat,”

“sidewalk,” “terrain,” and non-ground, which includes “barrier,” “bicycle,” “bus,” “car,”

and “construction vehicle,” “motorcycle,” “pedestrian,” “traffic cone,” “trailer,” “truck,”

“vegetation,” as we did with the SemanticKITTI dataset for the LiDAR classification.

3.4.2 Experimental Setup

For multi-scale feature extraction for ground point detection using RFC, hybrid cri-

teria for neighborhood determination have been used for three different scales. We

have commonly used the constraint of r of 1m for the spherical neighborhood in all

the scales, and variable k values for the knn neighborhood, i.e. k = 50,100,200 neigh-

bors. We have systematically experimented with several combinations of neighborhood

criteria to arrive at this parameter setting as described earlier.

We have used all sequences from the training dataset for training except sequence

08 which is used for validation for SemanticKITTI dataset while for nuScenes we use 8

sequences for the training and 2 sequences for validation from the mini dataset. The out-

lier removal using registration and geometric feature computation takes approximately

∼11 seconds and ∼122 seconds respectively per frame. Training the RFC model for

complete data takes approximately∼2 hours and inference time after feature extraction

takes ∼20 seconds. The computation time stated are based on the approach imple-

mented on a system with an Intel core i7 CPU with 12 GB of RAM.

3.4.3 Results

For our workflow, we perform both qualitative analysis using visualization and ap-

propriate quantitative evaluation. For our initial approach of classification using a height

filter, we obtain an accuracy of 76.82%. We also perform experiments with different

feature selections and outlier removal.
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3.4.3.1 Feature Selection

To analyze the results we carried out 10 different experiments by including and

excluding different features and their impact on the results. We also extracted additional

multi-scale local height features by considering hybrid search with radius: 1, k-nearest

neighbor: 50 and hybrid search with radius: 1, k-nearest neighbor: 200 to the existing

local feature set with hybrid search with radius: 1, k-nearest neighbor: 100. We use

this additional features as instead of relying on a single scale however appropriate,

multi-scale features would provide additional information. We also added remission

and azimuth angle as features if they provide any improvement. The results of these

experiments are shown in Table TC3.2.

From the above experiments, we can observe that the highest accuracy is obtained

with Exp 9 with multi-scale features added. This feature set in Exp 9 also coincides with

the feature set mentioned in Table TC3.2. The remission feature shows the least impor-

tance for all the experiments included. The inclusion of multi-scale features shows

improvement in accuracy; however, including all features decreases the accuracy, pos-

sibly due to overfitting the data. For the next set of experiments, we consider the feature

set mentioned in Exp 9.

Next, we experiment with different scenarios along with the outlier removal pro-

cess done before the classification and feature set mentioned in Exp 9 and Exp 10 in

Table TC3.2. At each frame, we perform iterative registration using three consecutive

frames, i.e. x, (x-1), and (x-2), where x is the current frame. x is registered with respect

to (x-1), and again, (x-1) with respect to (x-2). Thus, two sets of registrations are per-

formed. Points preserved from the first set of registration are considered as input for the

next registration step. The points finally preserved after outlier removal using two-step

registration are considered for the classification step. Results of different registrations

experiments are in Table TC3.3. The highest accuracy i.e. 96.91% results of classifica-
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tion are obtained with the multi-scale feature set and registration and the same setting is

used as the initial step for our next perception task of road surface extraction described

in Chapter 4.

The classification report with Precision, Recall, F-1 score, and IoU score for the

highest accuracy i.e. 96.91% results of ground and non-ground points obtained with the

multi-scale feature set and registration are shown in TableTC3.4. The micro-average

precision, recall, and F1 score is calculated from the individual classes’ true posi-

tives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs) of the

model. The macro-average precision, recall, and F1 score is calculated as an arithmetic

mean of individual classes’ precision and recall scores.

Figures FC3.6 and FC3.7 show the ground segmentation. Although GndNet [34]

has reported a mIoU of 83.6%, this number is not comparable because their mIoU

was determined by combining the ground and non-ground classes. Similar to this, the

ground segmentation in [22] reported a mIoU of 78.46% for the “ground” class, but this

is not comparable because their “ground” class also includes “vegetation”. These mIoU

scores suggest that, despite the fact that we cannot directly compare, our method for

classifying ground points exhibits a really high level of accuracy.

We also tested our approach on the mini subset of nuScenes dataset with the same

multi-scale feature settings of radius of 1m and k-nn with k= 100, along with registration-

based outlier removal, which yielded better results on the SemanticKITTI dataset. Ta-

ble TC3.5 displays the classification report and IoU score of ground and non-ground

points from the mini subset of nuScenes [5]. We can see that the classification results

for the nuScenes dataset show high accuracy.
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Figure FC3.6: Non-Ground points obtained after classification for frame 20 of sequence 08 of
SemanticKITTI dataset [2]. Points are colored based on semantic labels in (Left) the 3D view of
the point cloud, and (Right) the 2D top view in the x-y plane of the point cloud.

Figure FC3.7: Ground points obtained after classification for frame 20 of sequence 08 of
SemanticKITTI dataset [2]. Points are colored based on semantic labels in (Left) the 3D view of
the point cloud, and (Right) the 2D top view in the x-y plane of the point cloud.
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Table TC3.2: Experimental results for ground and non-ground classification on SemanticKITTI
dataset [2]

Remi- Azimuth Variance of Common Frame- Multi-scale Point- Accuracy
Index ssion Angle φ z-value wise Features wise Features (%)
Exp 1 No No Yes Yes No 96.38
Exp 2 No Yes No No No 95.65
Exp 3 Yes Yes Yes Yes No 95.20
Exp 4 Yes Yes No No Yes 96.58
Exp 5 Yes Yes No No No 95.46
Exp 6 Yes Yes Yes Yes Yes 96.17
Exp 7 No Yes Yes Yes No 95.07
Exp 8 No No Yes Yes Yes 96.60
Exp 9 No No No Yes Yes 96.63

Exp 10 No No No Yes No 96.37
Common point-wise features in all experiments at single scale:

1. z coordinate value 2. range value 3. elevation angle θ

4. Height difference (local) : max(local z coordinates) - z coordinates(at a point)
5. Mean difference (local) : z coordinates(at a point) - mean(local z coordinates)

6. Variance (local) : var(local z coordinates)
7. Standard deviation : standard deviation(local z coordinates)

Common frame-wise features in experiments :
1. Mean difference : z coordinate value - mean (all z coordinates)

2. Standard deviation : standard deviation(all z coordinates)
Multi-scale point-wise features :

Below features are added for 3 different neighbor searches:
Hybrid search with r - 1 & k - 100 (Added in first model)

Hybrid search with r - 1 & k - 50 (Added for experiments 1 to 8)
Hybrid search with r - 1 & k - 200 (Added for experiments 1 to 8)

Table TC3.3: Results of our classification model with and without registration process on Se-
manticKITTI dataset [2]

Points from Point Cloud considered
for Classification Feature Set Registration of

Point Clouds
Accuracy of
RFC model

All points
1 set of
hybrid neighbours
-based local features

No registration performed 96.37%

All points
3 set of
hybrid neighbours
-based local features

No registration performed 96.63%

Points preserved
between registrations

1 set of
hybrid neighbours
-based local features

Registration 1 : Frame x, frame x-1
Registration 2 : Frame x, frame x-2 96.53%

Points preserved
in consecutive registrations

1 set of
hybrid neighbours
-based local features

Registration 1 : Frame x-1, frame x-2
Registration 2 : Frame x, frame x-1 96.58%

Points preserved
in consecutive registrations

3 set of
hybrid neighbours
-based local features

Registration 1 : Frame x-1, frame x-2
Registration 2 : Frame x, frame x-1 96.91%
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Table TC3.4: Classification report with Precision, Recall, F1-score, Support, Accuracy and IoU
for SemanticKITTI dataset [2]

Precision Recall F1-score Support IoU(%)
Non-Ground 0.93 1.00 0.97 27560594 94.7%
Ground 1.00 0.91 0.95 21618194 93.0%
Micro Average 0.96 0.96 0.96
Macro Average 0.97 0.95 0.96
Weighted Average 0.96 0.96 0.96
Overall Accuracy(%): 96.91%

Table TC3.5: Classification report with Precision, Recall, F1-score, Support, Accuracy and IoU
for nuScenes dataset [5]

Precision Recall F1-score Support IoU(%)
Non-Ground 0.957 0.954 0.955 1331065 91.4%
Ground 0.943 0.947 0.945 1080143 89.58%
Micro Average 0.95 0.95 0.95
Macro Average 0.951 0.951 0.951
Weighted Average 0.951 0.951 0.951
Overall Accuracy(%): 95.07%

3.5 Summary

We have proposed and implemented ground and non-ground classification, an alter-

native system for classification which works for all scenarios, rough surfaces, and even

on different datasets for 3D automotive LiDAR point clouds. We analyze the neigh-

borhood of the points using the local geometric descriptor technique to determine an

appropriate neighborhood for feature extraction. We also experimented with the outlier

removal process and multi-scale feature extraction, which improved the results. Su-

pervised learning using RFC is used for ground and non-ground classification. Our

experiments on SemanticKITTI and nuScenes yielded promising results, which have

been qualitatively and quantitatively verified.
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CHAPTER 4

ROAD SURFACE EXTRACTION USING 3D LIDAR POINT

CLOUD SEQUENCES

Robotics and intelligent vehicle technology face a difficult problem called naviga-

ble space detection, which calls for a combined approach of computational geometry

and computer vision. After the initial ground classification in this Chapter, we focus on

the road surface extraction challenge which utilizes the ground points from classifica-

tion as described in Chapter 3. In processing automotive LiDAR point clouds in three

dimensions (3D), the ground surface on which a vehicle can travel, which is mostly

the road surface, is referred to as navigable space. The “ground” point class covers

various fine-grained classes, such as “road,” “parking,” “sidewalk,” “terrain,” and so

on. [34]. The state-of-the-art methods perform ground point segmentation/detection

followed by ground plane estimation motivated as a precursor to road surface extrac-

tion [34,41]. However, even for a single point cloud, we find that ground plane estimate

must be done piece-wise, resulting in a coarse approximation of the surface geometry.

Piece-wise estimation necessitates a systematic geometric study to establish the num-

ber, position, and orientation of planes required to form a watertight surface when used

together. This is a difficult point-set processing task, especially given the unstructured

point clouds. Instead, we propose extracting the surface mesh directly from the road

points. However, creating a fine mesh with all of the road points takes time. This can

be alleviated by selecting a selection of road sites that adequately sample the surface.
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Figure FC4.1: Summary of our proposed system [1], road surface extraction, for 3D road sur-
face extraction using ground points detected from an automotive LiDAR point cloud sequence.
Our system includes two novel and significant intermediate processes of road edge point detec-
tion and frame classification.

Here, we propose the road edge points and vehicle positions as this desired sample set.

Given we are using the positions of the ego-motion of the vehicle, we can now

expand the surface extraction across all frames in a sequence. This leads to creating a

watertight road surface for the entire sequence, which is as seen from the point of view

of the ego-vehicle. Such a process requires all the point clouds in the sequence, which

improves the utilization of the complete dataset.

Semantic segmentation, which is used in the traditional data processing workflow

for 3D automotive LiDAR point clouds, is capable of quickly identifying road points.

However, the semantic segmentation results have to be post-processed to identify curb

or edge points [50]. At the same time, ground point filtering using local height differ-

ences is a reliable solution in the LiDAR point cloud analysis [22]. Binary clustering in
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point clouds can be done here by classifying the points as “edge” or “non-edge” using

highly statistically significant handmade features such as height differences. Since it

was discovered that the expectation-maximization (EM) approach is useful for binary

grouping of LiDAR point clouds, [71], we propose a road edge point detection method

using binary clustering of ground points. We also use the spatio-temporal locality of

the points for outlier removal to improve ground point detection.

In the presence of turnings and complex topology, such as junctions, extracting road

geometry becomes difficult. We start with the workflow for straight roads because our

work is unique in terms of obtaining surface mesh geometry for roads. This mesh

generating procedure can then be used for curved roads, such as turns and junctions.

Alternatively, our suggested method may extract contiguous parts of straight roadways

and use surface correction to fill the gaps between them for short curved segments. For

most sequences with a significant number of contiguous straight highways, this tech-

nique works. The point cloud geometry for each frame must be classified in order to

meet our criteria for recognizing consecutive straight roadways. We propose a novel

frame-wise point cloud geometry classification, referred to as frame classification, us-

ing an appropriate image representation of the geometry. We choose an intermediate

image representation specifically, as is done in state-of-the-art deep learning classifiers

for semantic segmentation [35]. Here, transfer learning is used for frame classification.

Thus, our proposed approach is to detect ground points, on which both edge de-

tection and frame classification are performed. We further smooth the edge point set

to improve the sample set for surface mesh generation and finally extract the road sur-

face using geometry algorithms. A system based on this approach [1] is implemented

as shown in (Figure FC4.1). Our novel contributions are in integrating appropriate

methods in our proposed system, for road surface extraction from LiDAR point cloud

Sequence for its implementation (Figure FC4.2).
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Figure FC4.2: Our proposed workflow of road surface extraction [1], for generating 3D road
surface, from input 3D LiDAR frame-wise point clouds in a sequence and its trajectory in-
formation (position and pose of the vehicle). Our workflow proceeds from point-, frame-, to
sequence-wise processing.

We propose a novel workflow to extract approximate road geometry, for straight

roads. The workflow of road surface extraction consists of five key steps, namely, (S1)

ground point detection, (S2a) frame classification implicitly giving the road geometry,

(S2b) road edge point detection, (S3) edge point set smoothing, and (S4) 3D road surface

extraction. As shown in Figures FC4.1 and FC4.2:

• S1 is a point-wise operation, i.e. it is implemented on each point in the point cloud,

i.e. a frame.

• The frame-wise operations, S2a and S2b, are decoupled and implemented in par-

allel.

• S3 and S4 are sequence-wise operations, and hence require the trajectory informa-

tion of the vehicle for the entire sequence.

The overall workflow of road surface extraction, i.e. S1 to S4, is captured in Algorithm 2.

The partial workflows of the point-wise classification process (S1) and the sequence-

wise road edge extraction (S2a, S2b, S3) are given in Algorithms 1 and 3, respectively.
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Our proposed road surface extraction gives the surface as visible from the point-of-view

of the vehicle. Hence, the vehicle is called an ego-vehicle [41].

4.1 S1 – Ground Point Detection

The point cloud is classified into “ground” and “non-ground” points for ground point

detection. S1 involves two sequential substeps, namely, outlier removal and semantic

segmentation. Here, we exploit the temporal and spatial locality of the points. This step

is the classification process described in Chapter 3.

4.1.1 Outlier Removal

The Iterative Closest Point (ICP) registration [67], method as described in Chapter 3

is used to do point cloud registration or scan matching on two separate point clouds to

determine the correspondence pairs of points between the two.

The registration process relies on temporal locality, which means that points in one

frame must remain in succeeding frames. As a result, we identify point correspondence

pairings in successive frames and designate the remaining points as “outliers” that need

to be filtered out. Iterative registration is used on three successive frames at a time due

to the consistency of motion across frames. In two steps, we conduct registration for a

given current frame x. Using registration between frames (x− 1) and (x− 2), outliers

are taken out of frame (x−1) in the first phase. After executing registration between (x)

and (x−1), the identical procedure is then repeated on frame (x).
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4.1.2 Semantic Segmentation

The elevation (z) of several of the objects corresponding to non-ground locations is

higher than the ground. As a result, height-based features are optimal for distinguish-

ing ground locations from others, according to [22]. The “ground” class is a coarser

class that combines numerous fine-grained semantic classes relevant to the ground.

We extract local and global spatial handmade features and utilize them to divide the

point cloud into the ground and non-ground classes using the Random Forest Classifier

(RFC) [24].

After removing outliers from the point cloud in each frame, feature extraction is

applied. Here, we compute three-scale multi-scale local height features. For LiDAR

point classification using RFC, multi-scale features, i.e. features recorded at various

spatial resolutions, are known to perform better than a single scale [70]. Here, for each

point, the same neighborhood with a hybrid search that combines the criteria of the

spherical and the k-nearest neighborhoods (k-nn) is used. The height features used for

ground point detection are the same as listed in Table TC3.1. These extracted features

are computed and used in an RFC for both training and testing.

4.2 S2a – Road Edge Point Detection

The ground points that physically interface with the curb or sidewalk are those spots

along the borders of the road [50]. Both the left and right banks of the road must

be extracted for road surface extraction. Edge detection is a well-researched issue in

image processing where gradient information is used to identify image borders. It is

typically accomplished using the three-step method of differentiation, smoothing, and

labelling. [72]. The height gradient is employed as a distinguishing feature to pinpoint

the places on road boundaries using the same strategy as in image processing.
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Input : Point cloud P( f ) at a frame f
Output: Set of ground points Gp( f )

Gp( f )← {} // Set of ground points
for point p in point cloud P( f ) do

// Extraction of all features,
// as given in Table TC3.1
for 0≤ i < nscales do

Ni ← find-local-neighborhood(p, neighborhood size)
end
Fp ← compute-features (Pi, N1, . . ., Nnscales )

// Classification of points as
// ground or non-ground points
type(p)← classify-using-Random-Forest-Classifier(Fp)

// Add ground points to the output
if type(p) is “ground” then

Gp( f )← Gp( f )∪{p}
end

end
return Gp( f )

Algorithm 1: Ground point detection per frame, i.e. S1

However, our road edge identification method differs from picture edge detection in

two significant respects. To begin, unlike image smoothing used for edge detection in

photos, smoothing is required only for road edge points, not the complete point cloud.

On ground points, we execute edge smoothing and labeling procedures, which are now

collectively referred to as edge point set smoothing. Secondly, in our case, the road ex-

traction depends on the road geometry information, i.e. determined during S2b. Addi-

tionally, the edge point set smoothing S3 requires knowledge of the sequence trajectory

for coordinate system translation, unlike the differentiation step, which is performed on

a frame. As a result, the three steps do not follow successively, here. Thus, S2a is solely

for differentiation, while S3 implements edge point set smoothing and labelling.
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4.2.1 Height Gradient-based Differentiation

Here, only the ground points are used to compute the first-order derivatives or gradi-

ents of height values. For this work, we recommend point clustering with two particular

demands. First, we group road sites into “flat” and “non-flat” zones, which are described

as having low and high height gradients, respectively. Second, height differences are

used to compute the characteristics required for clustering. Of the custom character-

istics deduced by hand-crafted features that are utilized to semantically segment 3D

aerial and terrestrial LiDAR point clouds [70], we choose the two appropriate height-

difference (∆z) features, namely, in a local neighborhood, and in the 2D accumulation

map. The 2D accumulation map generates local neighborhoods of points projected to

xy-plane, within a square of fixed length (e.g. 0.25m), centered at the point. For the

clustering process, we observe that the clear clusters do not exist in vehicle LiDAR

point clouds. We note that the vehicle LiDAR point clouds do not have distinct clus-

ters for the clustering process. In these circumstances, it has been demonstrated that

the Expectation-maximization (EM) algorithm [73] performs superior to the k-means

clustering. The Figure depicts flat and non-flat regions identified using the k-means

and EM algorithms across different road structures, indicating that the EM algorithm

distinguishes between regions more precisely than the k-means algorithm. The basic

presumption of the EM algorithm is the presence of a Gaussian Mixture Model (GMM)

in the data. We then utilize the EM technique to identify two clusters of points that

belong to the flat and non-flat regions, assuming a bimodal data distribution in the 2D

feature space.

4.2.2 Projection to Range Images

The edge points are located in the non-flat zones, where the preferred edge points are

those that are closest to the centerline or the trajectory. The range picture of the frame is
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Figure FC4.3: Flat and non-flat regions identified for different road structures using the k-means
and EM algorithms. Flat and non-flat regions are highlighted in purple and yellow respectively.
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the ideal frame format to employ for a frame-by-frame process of centerline detection.

The column of the range image where the sensor, or the ego-vehicle, is positioned, is

referred to as the centerline. A dense rasterized representation of the obscured view

from the ego-vehicle position is referred to as a range image. As a result, it is created

as a spherical projection of the points closest to the ego-vehicle, with the pixels colored

according to the attribute of the closest point in the pixel. The angular resolution in

the elevation and azimuthal angles determines the image resolution. For instance, the

angular resolution for the Velodyne HDL-64E S21 that was used for SemanticKITTI

data [2] acquisition has 64 angular subdivisions (i.e.≈0.4o) in elevation angle spanning

for 26.8o, and similarly 0.08o angular resolution for 360o azimuthal angle, which gives

a 64×4500 resolution of range images.

4.2.3 Edge Detection

We propose the use of a scanline algorithm on the range image in order to deter-

mine the edge points. We first scan the image of size H×W row-wise, where the key

positions relative to the ego-vehicle, in the pixel space, are:

• at Pc f , i.e. (0, W
2 ), which indicates the centerline column in the front;

• at PcbL, i.e. (0,0), which indicates the centerline column in the back (rear), but on

the left-side of the ego-vehicle; and

• at PcbR, i.e. (0,W ), which indicates the centerline column in the back, but on the

right-side.

Keeping in mind that the ego-left vehicle’s and right sides are in relation to its front

face. In order to scan the pixels in each row in the appropriate direction until a pixel

carrying a non-flat region point is met, the pixels on the centerline columns are utilized
1This information is from the sensor specification sheet as published by the sensor manufacturer.
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as the reference at each row. For front left and right pixels for non-flat region points,

we traverse from Pc f towards PcbL and PcbR, respectively. Similarly, in the rear side,

for left side, we traverse from PcbL to Pc f , and for right side, from PcbR to Pc f . After

locating these pixels, their corresponding 3D LiDAR points are to be determined. We

refer to these row-wise points as p f L, pbL on the left side, and p f R, pbR on the right side.

These points are added to the side-specific sets, EPL and EPR, for the left and right

sides, respectively in each frame.

In this step, the height differences pertaining to other surface variations on the road,

e.g. potholes, are disregarded. We visualize the points in EPL and EPR and ensure that

no additional surface artifacts are designated as road edge points. This is significant

because artifact spots would have a negative impact on road surface extraction.

4.3 S2b – Frame Classification

The surface extraction technique is influenced by the underlying road shape as ex-

pected. The road edge points are used in our suggested method [1] to create triangulated

(surface) meshes. The edge locations along the perimeter of the road must be sampled

sufficiently for precise edge extraction. The curvature of the road influences this sam-

pling.

We first consider a broad classification of “straight” and “curved” roads as shown

in Figure FC4.5. For three reasons, we currently limit our work to straight roads. To

begin with, curved roads require more samples as edge points in order for the edges to

be retrieved accurately, and the sample quantity is decided using geometric techniques.

Second, from the perspective of the ego-vehicle, the wider road topology is not suffi-

ciently recorded to extract the curved road edges piece-wise. The existing procedure

is unable to capture the road topology for turnings and crossroads, which involves T-

and X-intersections that must be recorded. Thirdly, more inner road points are required
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Input : A sequence S of frame-wise point clouds {P( fi) : 0≤ i < n f rames} with frame fi at
index i

Input : Trajectory information of the sequence T (S)
Output: 3D surface mesh of the extracted road Rm

Pedge ← {} // Set of edge points in S
for frame f in S do

// Ground point detection
// using Algorithm 1
Gp( f )← ground-point-detection(P( f ))

// Frame classification using
// top-view image as straight- or
// curved-road
TVimg( f )← projection-xy-plane(Gp( f ))
road type( f )← classify-using-transfer-learning(TVimg( f ))

// Straight-road edge detection
// using Algorithm 3
if road type( f ) is “straight-road” then

Ep( f )← straight-road-edge-detection(Gp( f ))
Pedge ← Pedge∪Ep( f ) // Merging all

// edge points
end

end
Rm ← generate-triangulated-mesh(Pedge)
return Rm

Algorithm 2: The complete workflow of road surface extraction for road surface extraction
from a sequence

in order to correctly extract curved road surfaces. These three issues call for a thor-

ough investigation, which is outside the purview of our current work. Consequently, we

demonstrate a proof-of-concept for our workflow for straight roads exclusively.

4.3.1 Transfer Learning Using ResNet-50 Architecture

We see that each frame in the 3D LiDAR point cloud sequence clearly illustrates

the road geometry from the top-view or a 2D projection of the points on the x-y plane.

We suggest the use of transfer learning with ResNet-50 in order to take advantage of

the perceptual variations across frames. Effective scene classification of perceptually

distinguishable images has been achieved for other works using ResNet-50 [3]. We
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generate the top view image of ground points for classification. Given that between 40

and 50 percent of the points in the point cloud are ground points, the point densities

for ground points used for the top view projection image are not significantly differ-

ent. Also, the point density is not a barrier for ResNet images of a given size at this

time, however, managing the point density may help to improve accuracy in the future.

Sample image for each road type is shown in Figure FC4.4.

The 2D top-view RGB image is rendered utilizing the attribute values of the points

using the perceptually uniform sequential colormap, or Viridis colormap. The sequen-

tial colormap is then further discretized into, let’s say, 5 bins. The color map is used to

render the ground points found in S1 while taking into account their remission values.

In these images, we apply transfer learning using the ResNet50 model (Figure FC4.5).

Here, pre-trained weights for image classification of ImageNet are used, as per the de

facto standard in transfer learning on images.

4.4 S3 – Edge Point Set Smoothing

Now, the road edge points identified in S2a are fitted to form edges. Due to the

noise in the edges, these edges have to be smoothed. To prevent filtering out essential

locations, the smoothing is carried out individually for the left and right sides of the

road. Edge labeling is the process of identifying edges and removing false positives.

Thus, S3 includes both smoothing and labeling. The global coordinate system, which

contains the whole trajectory of the series, is used to implement the edge processing.

The transformation of the coordinate system is therefore the initial substep.
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(a) Turning road

(b) Straight road

(c) Cross road

Figure FC4.4: Sample top view images for straight road, turning road and crossroad generated
with ‘viridis’ perceptually sequential colormap with remission values
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Figure FC4.5: Frame classification [1] implemented on top-view images of ground points in
each frame, using (i) transfer learning using ResNet-50 architecture [3]. The possible class
hierarchy for frames is given in (ii), of which we currently focus on the first level of straight and
curved road classes.

4.4.1 Local to World Coordinate System Transformation

This transformation makes sure the smoothed edge is present in the 3D world space

exactly as it is. The smoothing and transformation procedures are also non-commutative

meaning that the sequence in which they are carried out must be rigorously preserved.

Hence, we now add the trajectory information as an input to the workflow (Figure FC4.2.

This input contains the position and poses of the ego-vehicle at each frame of the se-

quence. Transformation matrices are used to represent the shift in position and posture.

Each frame’s edge points are subjected to these matrices in order to translate them into

the 3D world space.
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4.4.2 Point Set Smoothing and Labeling

Using the converted coordinates, the straight road edges are smoothed. First, we

identify the subsequences of frames that make up consecutive stretches of straight roads.

Each side’s implementation of this is done individually. The random sample consensus

(RANSAC) line fitting model [74] is applied to each such subsequence. As a result, both

sides of the road have disconnected smooth line segments resembling dashed lines.

4.5 S4 – 3D Road Surface Extraction

Following smoothing, each continuous segment of the straight road’s left and right

edge points is used to create a triangulated mesh that represents the surface of the road.

Here, a constrained Delaunay tetrahedralization [75] is implemented and is followed by

the extraction of the outer/external surface of the tetrahedral mesh. When opposed to

using projections of the 3D points for 2D Delaunay triangulation, this produces triangles

of higher quality i.e. better shaped triangle closer to an equilateral triangle.

4.6 Experiments & Results

Sequences of LiDAR point clouds that follow the path of the vehicle must be in-

cluded in the input dataset for road surface extraction, together with sufficient annota-

tions to enable machine learning algorithms. SemanticKITTI [2] works well as our test

data in this regard.



53

Input : Set of ground points Gp( f ) at a frame f with label “straight-road”
Input : Trajectory information of the sequence T (S)
Output: Set of road edge points Ep( f )

NFp( f )← {} // Set of non-flat region points
for point p in Gp( f ) do

Am ← compute-accumulation-map(p)
Ng ← find-local-neighborhood(p, neighborhood size)
F∆z ← compute-local-height-difference-features(Gp, Ng, Am)
region type(p)← classify-using-GMM(F∆z) // Classify as flat or non-flat
region

if region type(p) is “non-flat” then
NFp( f )← NFp( f )∪{p}

end
end

// Generate range image of size (H,W) using non-flat region points
Rimg( f )← range-image-generation(NFp( f ),Gp( f ),H,W )
EPL ← {}
EPR ← {}

// Detect edge points from range image
for 0≤ row < H do

Pc f ← (row, W
2 ) // Determine centerline pixel in the front side

// using the column for sensor
PcbL, PcbR ← (row,0), (row,W ) // Determine centerline pixel in the back
(rear) side

// using the columns for sensor
p f L ← point-in-pixel-furthest-from-centerline-in-pixel-interval(Pc f ,

[
Pc f ,PcbL

]
)

p f R ← point-in-pixel-furthest-from-centerline-in-pixel-interval(Pc f ,
[
Pc f ,PcbR

]
)

pbL ← point-in-pixel-furthest-from-centerline-in-pixel-interval(PCRL,
[
PcbL,Pc f

]
)

pbR ← point-in-pixel-furthest-from-centerline-in-pixel-interval(PCRR,
[
PcbR,Pc f

]
)

EPL ← EPL∪{p f L, pbL}
EPR ← EPR∪{p f R, pbR}
// Correct the selected edge points in 3D world space
for point p in {p f L, p f R, pbL, pbR} do

p← transform-using-trajectory-information(p, T (S))
end

end

// Postprocessing edges to remove outliers
EPL ← smooth-edge-using-RANSAC-line-fitting(EPL)
EPR ← smooth-edge-using-RANSAC-line-fitting(EPR)
Ep( f )← EPL∪EPR
return Ep( f )

Algorithm 3: Straight road edge detection per frame, followed by collation of edge points
from all frames (S2a, S2b, S3)
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4.6.1 Implementation of Road Surface Extraction

The road surface extraction has been implemented on Intel core i7 CPU with 12 GB

of RAM. We have used Open3D library APIs [76] for point cloud registration in S1. For

neighborhood computation in S1 and S3, Open3D KDTree has been used. The scikit-

learn library APIs [77] have been used for implementing the RFC and GMM models

in S1 and S2a, respectively. Frame classification model in S2b has been implemented

using Keras APIs [78] and the model has been trained for five epochs. Edge point set

smoothing in S3 has used the RANSAC model from the scikit-image library. PyVista

library APIs [79] has been used for geometry computation in S4.

4.6.2 Dataset

We test our approach using the SemanticKITTI dataset [2] as described in Sec-

tion 3.4.1. Since our work is different from the benchmark tasks, validation is not

readily available for the dataset. Given its fit as input to road surface extraction, we use

SemanticKITTI for our experiments and provide an appropriate qualitative and quanti-

tative assessment.

The SemanticKITTI dataset comprises of the training sequence IDs, 00 to 10. We

have used sequence 08 as the validation/test set, as prescribed by the data providers,

thus training our model on the remaining training sequences for our classifier models,

i.e. RFC model for ground point detection (S1), and transfer learning model for frame

classification (S2b). We have only used every 10th frame of training sequences of Se-

manticKITTI since frames are captured in 0.1s and our subsampling ensures significant

variations in the vehicle environment are captured without incurring high computational

costs. We have found that including more overlapping data resulted in increased com-

putation without adding new information.
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We group the classes to form the ground and non-ground classes as described in 3.

The curbs of the road are labeled as sidewalk [50] and are important in our evaluation.

For the frame classification, we have manually annotated all frames in all training

sequences, i.e. from 00 to 10, into “straight,” “crossroad,” and “turning”.

4.6.3 Experimental Setup

For multi-scale feature extraction for ground point detection using RFC, hybrid cri-

teria for neighborhood determination have been used for three different scales. We

have commonly used the constraint of r of 1m for the spherical neighborhood in all the

scales, and variable k values for the knn neighborhood, i.e. k = 50,100,200 neighbors.

We have systematically experimented with several combinations of neighborhood cri-

teria to arrive at this parameter setting as described in Chapter 3. Similarly, we have

used similar hybrid criteria, i.e. r = 1m and k = 50 for finding the local neighborhood

of ground points for computing height-difference features to be used in the GMM for

detecting flat and non-flat regions.

For road surface extraction, we employed the training dataset sequences 01, 05, 07,

and 08. Additionally, we put our suggested approach [1] to the test using sequence 15

from the test dataset. Our results for all the sequences are given in Figure FC4.7. The

performance of our edge point set smoothing in S3 in sequence 07 is demonstrated in

Figure FC4.6.

The outlier removal using registration, geometric feature computation, and ground

points classification takes approximately∼11 seconds,∼122 seconds, and∼20 seconds

respectively, per frame. The computation time for height feature extraction from ground

points and edge extraction per frame takes approximately∼34 seconds and∼4 seconds

respectively. The computation time for the final step of mesh generation for surface

extraction for the entire trajectory is approximately∼1 second and may vary depending
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on the length of the trajectory.

4.6.4 Results

We perform both suitable quantitative evaluation and qualitative analysis using vi-

sualization for each step in our operation.

S1: Ground Detection: The details of the sequences used in our models are given

in Table TC4.2. The percentage of road points kept as ground points do not drop for

any training sequences after the S1 outlier removal. This demonstrates the effectiveness

of our method [1] for removing outliers while keeping the “road” points. Table TC4.3

gives the findings of our ground detection utilizing RFC and other experiments we car-

ried out by incorporating multi-scale characteristics and registrations. The results in Ta-

ble TC4.3 coincides with the results in Table TC3.3 which are utilized for road surface

extraction. The Table TC4.3 displays the mean IoU (mIoU) and average accuracy for

the ground class for all frames of test sequence 08. Although GndNet [34] has reported

a mIoU of 83.6 percent, this number is not comparable because their mIoU was deter-

mined by combining the ground and non-ground classes. Similar to this, the ground

segmentation in [22] reported a mIoU of 78.46 percent for the “ground” class, but this

is not comparable because their “ground” class also includes “vegetation”. These mIoU

scores suggest that, despite the fact that we cannot directly compare, our method for

classifying ground points exhibits a really high level of accuracy.

S2a: Frame Classification: As a test, we have developed two distinct frame classifica-

tion models that are matched to the various levels of the road geometry class hierarchy

(Figure FC4.5). The details of the sequences and number of frames for different road

geometry class used for training and validation/testing is shown in Table TC4.1 The first

model is used to categorize roads as straight or curved, and the second is used to catego-

rize roads as straight, crossroads, and turnings. We also experimented with the grayscale
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Table TC4.1: Details of the SemanticKITTI [2] sequences used for training and validation/test-
ing in frame classification [1]

Seq. ID # Frames
Training Total Used Straight Crossroad Turning

0 4,541 455 238 205 12
1 1,101 111 69 23 19
2 4,661 467 195 134 138
3 801 81 17 48 16
4 271 28 25 3 0
5 2,761 277 172 102 3
6 1,101 111 54 57 0
7 1,101 111 54 57 0
9 1,591 160 42 39 79

10 1,201 121 64 32 25
All 19130 1922 930 700 292

Testing
8 4071 408 261 124 23

images using binary colormap for comparison with RGB images using Viridis colormap

along with different bins to form sequential + quantitative colormap. We also verified

the results across two models i.e. ResNet-50 as described in Section 4.3.1 and similarly

used transfer learning with the same ImageNet weights with the MobileNet architec-

ture. We perform this experiment only on 1st hierarchy i.e. “straight” and “curved”

roads. The results of this experiment are shown in Table TC4.4. The results show that

ResNet-50 performs better than MobileNet.

Table TC4.5 displays the validation accuracy for both frame classification models

on sequence 08 for each model. We utilized the model for “straight” and “curved”

roads because it had a greater level of categorization accuracy in this instance. Future

research can further enhance these accuracy scores by addressing the class imbalance

at both hierarchical levels (Table TC4.2).

S3: Edge Point Set Smoothing: Following S3,Table TC4.6 displays the class distri-

bution of our road edge points. We note that the majority of the edge points primarily

belong to the “road” class, followed by the “sidewalk” class. This demonstrates that,

as expected, our method [1] finds edge points marked as “road” or “sidewalk”. This
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Table TC4.2: Specifications of the SemanticKITTI [2] sequences used for training and valida-
tion/testing in road surface extraction [1]

Seq. ID Ground truth (GT) Filtered after outlier removal in S1
Training #Points #“Ground” points “Road” * (%) # “Ground” points “Road” * (%)

0 55,300,603 21,242,723 45.2 20,928,740 45.2
1 11,737,924 6,684,753 71.8 6,425,398 72
2 58,678,800 26,955,344 42.8 26,568,086 42.8
3 10,038,550 4,563,802 48.8 4,485,650 49
4 3,518,075 1,816,228 65.9 1,779,528 66.4
5 34,624,816 14,025,815 40.5 13,802,511 40.5
6 13,567,503 8,417,991 34.1 8,223,230 34.1
7 13,466,390 5,301,837 48.1 5,233,937 48.2
9 19,894,193 9,313,682 45 9,159,419 45.1

10 15,366,254 5,608,339 43.7 5,487,403 43.9
All 236,193,108 103,930,514 45.3 102,093,902 45.3

Testing Filtered and Classified in S 1
8 50,006,369 21,943,921 40.3 41.1

* Our annotation of “ground” combines five classes, namely, “road,” “parking,” “sidewalk,” “terrain,”
and “other ground,” as given in SemanticKITTI dataset [2]. Percentage values in columns 9 and 11 give

the fraction of ground points in columns 8 and 10, respectively, that are annotated as “Road” in SK.
Boldface indicates improvement in retaining road points, thus demonstrating the efficiency of processes

in S1.

Table TC4.3: Ground detection using random forest classifier (RFC) [1]

Set of points # Scales Classification mIoU
to be classified for local features accuracy (%-age) (%-age)

All points 1 (single scale) 96.37 89.38
3 (multi-scale) 96.63 90.63

Filtered* points
1 (single scale) 96.58 89.47
3 (multi-scale) 96.91 90.79

* Filtered points are those that were retained after outlier removal in S1.

demonstrates the effectiveness of S2a, S2b, and S3. The results of the edge point set

smoothing for sequence 07 are shown in Figure FC4.6, which demonstrates a signifi-

cant reduction in edge point noise and smooth road edges on the left and right of the

trajectory.

The root means square error between the edge point sets computed using “road”

(GT) and “ground” (detected in S1) points are calculated after performing these three

steps on the “road” points in the ground truth (GT). We perform this analysis due to the

lack of ground truth of edge points and retrieved surface. In Figure FC4.7 the RMSE

values for Sequences 01, 05, 07, and 08 are provided. We notice that the RMSE errors
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Table TC4.4: Frame classification results using ‘Viridis’ colormap for RGB image and ‘bi-
nary’ colormap for gray scale image with different number of bins for sequential+quantitative
colormap and two models on SemanticKITTI dataset [2].

Image type
No. of bins (Binning
values to get sequential +
quantitative colormap)

Resnet50 Mobilenet

RGB (with local maxima
& minima) -
Using Viridis colormap

5 88.50% 74.50%
10 85.37% 71.13%
20 84.13% 70.13%
No binning 85.25% 70.88%

Grayscale (with local maxima
& minima) -
Using binary colormap

5 79.37% 79.37%
10 76.13% 73.37%
20 73.25% 60.00%
No binning 79.50% 78.37%

Table TC4.5: Results of frame classification [1] using transfer learning on SemanticKITTI
dataset [2]

#Class hierarchy* Class outcomes Classification
levels accuracy (%age)

1 Straight road, Curved road 82.35
2 Straight road, Crossroad, 78.51

Turning
* Frame class hierarchy is as shown in Figure FC4.2).

are rather small, given that each frame has an extent of 51.2 meters in front of the car

and 25.6 meters on either side [2].

S4: 3D Road Surface Extraction: Figure FC4.7 shows the results of the 3D ex-

tracted surface for trajectories of various sequences. Our qualitative findings demon-

strate that road surface extraction is effective on closed trajectories, complex trajecto-

ries, and straight roads with lots of contiguous straight road segments. For the purpose

of illustrating their similarities, our results of surfaces produced using detected ground

points and “road” (as per ground truth (GT)) points are overlaid. It is clear that the

triangulated meshes have adequately covered brief turning segments and connections

between straight road segments.

On test sequence 15, road surface extraction has also been fully accomplished. As

the GT for the test sequences is not available, we use surface and point rendering to

qualitatively compare our recovered road surface with the reference trajectory (Fig-
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Figure FC4.6: Edge point set smoothing [1] results on sequence 07 data of SemanticKITTI
dataset [2] trajectory (Top row) with zoomed-in region inset (Bottom row). Red, purple, and
green points show the trajectory, left and right edge points, respectively.

Table TC4.6: Class distribution of road edge points in extracted surface

GT Class ↓ # Points (% age)
Seq. ID→ 01 05 07 08

Road 12,437 (94.0) 10,093 (63.4) 3,864 (76.5) 19,856 (84.3)
Parking 0 408 (2.6) 448 (8.9) 710 (3.0)

Sidewalk 6 (0.0) 5,243 (32.9) 695 (13.8) 2,599 (11.0)
Terrain 519 (3.9) 161 (1.0) 42 (0.8) 393 (1.7)
Other-
ground 276 (2.1) 18 (0.1) 0 0
Non-

ground 0 0 0 7 (0.0)
* Underlined %-age values show that road edge points in the extracted surface belong to “road” and

“sidewalk” classes, predominantly, and as desired.
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Figure FC4.7: Results of implementing road surface extraction [1] on training sequences of
SemanticKITTI [2], where 01, 05, and 07 have been used for training our learning models,
and 08 have been used for validation/testing. Row A follows the color scheme mentioned in
Figure FC4.6. For rows B, C, and D, wireframe meshes are shown in indigo, and filled meshes
are shown in tan color.
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Figure FC4.8: Results of road surface extraction [1] on (Left) a sample sequence from the
test set of SemanticKITTI [2], for which annotations for semantic segmentation have not been
published; and (Right) a sample sequence where the surface is only partially extracted.

ure FC4.8 (Left)). We see that the road surface mesh maintains the trajectory as its

medial skeleton [80] in all of the sequences, including 15.

Road surface extraction, however, is unable to extract the road surface over the

whole trajectory in cases where (a) straight road segments are substantially fragmented

and (b) subsequences contain portions of curved and straight roads that are compara-

ble in length. Road surface extraction only extracts a portion of the road surface when

edge points are not detected for significant portions of the road, as is the case in train-

ing sequence 03 (Figure FC4.8 (Right)). For such cases, surface extraction calls for a

thorough investigation of curving roads, which is outside the scope of our current work.
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4.7 Summary

For a series of 3D automobile LiDAR point clouds, we have suggested and im-

plemented road surface extraction, a unique approach for automating 3D road surface

extraction. A five-step workflow is used. First, ground point detection is accomplished

via outlier elimination, multiscale feature extraction, and supervised learning with RFC.

Second, the EM algorithm detects road edge points based on height variations in ground

points. In addition, our frame classification uses transfer learning using ResNet-50 on

top-view images to determine the road geometry. The edge point set in the sequence

is smoothed in the fourth step. The 3D road surface is then retrieved as a triangulated

mesh using 3D Delaunay tetrahedralization as the final step. Our studies on four Se-

manticKITTI sequences with varied degrees of geometry complexity produced promis-

ing results that have been both qualitatively and quantitatively confirmed. Therefore,

road surface extraction primarily works on trajectories with contiguous straight roads.

Our method fails to extract road surfaces for the full trajectory when the segments

do not have contiguous straight road geometry, despite the fact that road surfaces across

different trajectories are extracted with a high level of visual similarity using the sug-

gested methodology. Thus, extending our algorithm to curved roads is in the scope of

future work. Other unresolved issues for the road surface extraction application include

a more reliable measure and ground truth for validation.
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CHAPTER 5

BOOSTING 3D OBJECT DETECTION

Recognizing and locating items in a 3D environment is a crucial first step toward

scene understanding which can be used for augmented reality and autonomous naviga-

tion applications. The next important perception task for autonomous driving assistance

after ground and non-classification and road surface extraction is 3D object detection.

Chapter 3 and Chapter 4 proposes the spatio-temporal analysis and approach for ground

detection and road surface extraction. This chapter presents the existing approaches and

our proposed approach for boosting 3D object detection. 3D object detection is a task

of localization and recognition of objects present around the self-driving vehicle in a

3D scene. Monocular and stereo 3D object identification techniques frequently use

camera-produced images [81]. Since images have dense pixels and a clear appearance

and texture, image-based detectors can easily identify the object. Object detection has

always been a difficult challenge in the field of computer vision using images because

of the variable look, shape, and attitude of numerous objects as well as the interfer-

ence of lighting, shielding, and other elements during imaging. This prompted many

researchers to design an effective framework to integrate features from different per-

spectives to achieve accurate 3D object detection. Early multi-sensor feature fusion

methods take RGB image, front view, and bird’s eye view (BEV) as input and then

directly combine and merge the features by cropping and resizing to generate 3D candi-

date boxes, such as MVF [82] and AVOD [83], but they ignore the different perspectives
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of image and BEV.

LiDAR point cloud data do not have sufficient sampling to detect or classify small-

scale vulnerable road users such as pedestrians, cyclists, and motorcyclists, since they

are represented by fewer points compared to other objects like cars, trucks, and trailers.

Sometimes it is observed that an object is misclassified or misrepresented. However,

many state-of-the-art 3D object detectors, such as those in [84], generally utilize point

clouds produced by LiDAR as the primary input modality because they provide exact

depth information, and are resistant to changing weather conditions, and illumination.

However, the sparsity of point clouds grows with distance because of laser-ray diver-

gence. The far-off objects have fewer points, making them highly sparse. Their object

boundaries and semantic classes are difficult to predict. The LiDAR-based 3D object

detectors are still accurate and robust as compared to camera images [85].

A few of the state-of-the-art approaches fuse the LiDAR and camera sensor modal-

ities to utilize multi-modality input for boosting the 3D object detection [85]. One such

way of fusion is depth completion which refers to completing relatively dense depth

images that contain missing values, such as those utilizing exemplar-based depth in-

painting, low-rank matrix completion, object-aware interpolation, tensor voting, Fourier-

based depth filling, background surface extrapolation, learning-based approaches using

deep networks, and alike. The depth maps are produced by the framework [86] by ex-

tracting both global and local information based on the confidence maps in a late fusion

approach. In another approach, the camera and LiDAR features are fused using the

3D ROI-based gated fusion network where a region of interest (ROI), provides samples

within a data set identified for the fusion. [59].

Individual detection model approaches may work well in a given environment, but

when that environment changes over time or in specific scenarios such as obstructions,

objects overlap, occlusion, unexpected scenarios, etc. the model may not provide the
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desired results due to differences in the underlying changes in data captured in different

environments. We propose a novel adaptive selection algorithm to improve 3D object

detection by choosing detection from various existing methods. Our method employs

an adaptive model selection mechanism to provide more accurate detection by selecting

one of several object detections from various models in various environments.

5.1 Base Model for 3D Object Detection

Three different point cloud representations are widely used as input to the 3D detec-

tor. (1) Since the original point cloud may be processed directly using PointNet++ [87]

based on the point representation, this method preserves as much of the original geo-

metric data as possible without the need for transformation. The application of Point-

Net++ to 3D detection based on the cropped point cloud of a 2D image bounding box

is proposed by F-PointNet [57]. The first point-based 3D object detection technique

that exclusively uses point clouds as network input is proposed in point-RCNN [56].

A point-based, single-stage 3D object identification framework with an excellent bal-

ance of accuracy and speed was proposed by 3DSSD [88]. (2) This approach trans-

forms point clouds into regular grids based on the voxel representation so that 3D CNN

can use this representation directly. The point cloud is divided into voxel represen-

tations by SECOND [89], which then creates 3D bounding boxes by learning voxel

characteristics using sparse convolution. By converting point clouds into pseudo im-

ages, PointPillars [90] replaces laborious 3D convolution processes with 2D convolu-

tions. The attention mechanism is introduced by Fast-PointRCNN [91] to improve the

replacement capabilities of the network. The candidate box is honed and the 3D detec-

tion precision is increased by the ROI-aware pooling suggested in voxel representation

methods. Although the voxel-based technique has excellent perceptual abilities, the

voxelization procedure will result in information loss. (3) Point-voxel joint represen-
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tation method takes points and voxels as inputs and fuses the features of points and

voxels at different stages of the network for 3D object detection, such as Part-A2 [92]

and PV-RCNN++ [93].

When direct 3D point clouds are used for object detection, approaches based on dif-

ferent point cloud representations may unnecessarily increase the computational bur-

den and introduce a large number of potential false-positive detections. The Cen-

terPoint method represents objects as points, greatly simplifying 3D recognition [4].

This method demonstrates that a simple switch from box to center-based representation

yields a 3-4 mAP increase in 3D detection under different backbones [89,90,94,95]. As

a result, using the center-based approach as the base model for our adaptive prediction-

selection model seems more appropriate.

5.1.1 Center-based 3D Object Detection and Tracking

In this study, a two-stage 3D detector called CenterPoint [4] uses a keypoint de-

tector to discover the centers of objects and their attributes, and a second step refines

these predictions. In particular, CenterPoint creates a representation of the input point

cloud using a typical LiDAR-based backbone network, such as VoxelNet [94] or Point-

Pillars [90]. It then flattens this representation into an overhead map-view and locates

item centers using a common image-based keypoint detector. It descends from a point

feature at the central location to all other object properties for each detected center, such

as 3D size, orientation, and velocity. Furthermore, to fine-tune the item placements, a

lightweight second stage is employed. We refer to this representation as a center-based

one.

The second stage extracts point features from the 3D bounding box of the estimated

object at the 3D centers of each face. It gives an additional 2 mAP boost at a relatively

low cost by recovering the lost local geometric information as a result of striding and a
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Figure FC5.1: Overview of CenterPoint [4] framework. It relies on a standard 3D backbone to
extract the map-view feature and a 2D CNN architecture detection head to get a full 3D bounding
boxes. Then, box prediction is used to extract point features at the 3D centers, which are used to
predict confidence score and box regression refinement. The image is created and inspired from
Figure 2 in CenterPoint approach [4] using point cloud from a frame of nuScenes dataset [5].

constrained receptive field.

The center-based representation has the following major benefits: First, points lack

intrinsic orientation, in contrast to bounding boxes. In addition to enabling the back-

bone to learn about the rotational invariance of objects and the rotational equivariance

of their relative rotation, this significantly shrinks the search space for the object detec-

tor. Second, a center-based representation makes subsequent activities, like tracking,

simpler. Tracklets are pathways in space and time if objects are points. The relative off-

set of objects between two frames is predicted by CenterPoint and then greedily linked.

Thirdly, point-based feature extraction makes it possible to create an efficient, two-stage

refinement module considerably more quickly than with earlier methods.

The CenterPoint network architecture utilizes two common backbone architectures

VoxelNet [94] and PointPillars [90]. VoxelNet architecture separates a point cloud into
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evenly spaced 3D voxels, and through the voxel feature encoding (VFE) layer, converts

a set of points within each voxel into a single feature representation and transforms

points within each voxel to a vector representation characterizing the shape informa-

tion. The space is represented as a sparse 4D tensor. Thus, a descriptive volumetric

representation of the point cloud is created, which is subsequently coupled to an RPN

to provide detections. This efficient algorithm benefits both from the sparse point struc-

ture and efficient parallel processing on the voxel grid.

The PointPillars approach for 3D object detection [90] allows end-to-end learning

using only 2D convolutional layers. In order to forecast 3D oriented boxes for objects,

PointPillars use a new encoder that learns features on the pillars (vertical columns) of

the point cloud. This strategy has a number of benefits. First, PointPillars can take ad-

vantage of the whole information provided by the point cloud by learning features rather

than depending on fixed encoders. Additionally, since pillars are used instead of voxels,

manual vertical direction binning tuning is not necessary. Last but not least, pillars are

quick due to the fact that all critical operations can be expressed as 2D convolutions,

which are very effective to calculate on a GPU.

On nuScenes dataset [5] CenterPoint model outperforms the challenge winner CBGS

with multi-scale inputs and multi-model ensemble [95]. This gives us a good justifica-

tion for employing this model as the foundation for boosting 3D object detection.

5.2 Boosting Models

Boosting is an ensemble method for improving the model predictions of any given

learning algorithm which generally involves training multiple models in succession so

that each one tends to fix the mistakes made by the one before it. We experiment with

two different approaches for boosting the 3D object detection by utilizing detections

from existing deep learning models. Model detections are the bounding boxes of ob-
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jects predicted by the model. We use the CenterPoint model with VoxelNet and Point-

Pillars backbone as base models for both approaches. The first approach is of merging

the detections by taking the weighted parameters of bounding boxes based on the con-

fidence of the prediction. Another approach we propose is of adaptive selection model

which adeptly chooses one from different detections based on the shape of the detected

objects.

5.2.1 Weighted Boxes Fusion (WBF)

A new technique for merging the predictions of object detection algorithms is called

weighted boxes fusion [6]. In order to achieve high accuracy, ensemble models are de-

veloped (often during competitions), where all of the predictions from many models are

combined to provide the final forecasts. For the purpose of combining all of the predic-

tions from several models, weighted boxes fusion is utilized. Non-maximum suppres-

sion (NMS) a crucial component of the process for object detection takes the detection

box with the highest score and all additional detection boxes that have a considerable

overlap (using a predefined threshold) with it are suppressed whereas Soft-NMS, con-

tinuously decays the detection scores of all other objects as they overlap. In contrast to

NMS (Non-Maximum Suppression) or Soft-NMS approaches, which merely eliminate

a portion of the predictions, the WBF method constructs the weighted average of bound-

ing box coordinates and properties using the confidence scores of all proposed bounding

boxes. The comparison between NMS/soft-NMS and WBF results for a group of incor-

rect predictions is shown schematically in Figure FC5.2. The quality of the combined

predictions improves as a result of this. We evaluate the performance of the weighted

boxes fusion across the CenterPoint-VoxelNet and CenterPoint-PointPillars models on

the filtered bounding box based on the match across the models.
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Figure FC5.2: The schematic illustration of NMS/soft-NMS vs. WBF outcomes for an ensem-
ble of inaccurate predictions. The red color box represents different models’ predictions and the
Green color box represents ground truth. The image is created based on the Figure 2 in Weighted
Boxes Fusion approach [6] using a partial point cloud from a frame of nuScenes dataset [5].

5.2.2 Adaptive Selection Model

Extensive research work has been done for building various deep learning and su-

pervised models for 3D object detection tasks. An individual model may work well

under a certain operating condition or degradation pattern, but when the degradation

status of the model changes over time or in certain scenarios, it may not provide desired

results due to the difference in the underlying changes in data captured in a different en-

vironment. An adaptive model selection mechanism is necessary to be able to provide

more accurate detection information by capturing the characteristics of various detected

objects. In some situations, an adaptive model selection mechanism can be achieved by

changing the parameters of an individual model, but it may be very difficult to achieve
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satisfactory accuracy due to the limitations of the model itself. Multiple models are

more desirable and promising for different detections. The adaptive selection model

adeptly chooses one from different detections based on the shape of the detected ob-

jects. We use a shape descriptor histogram to get the characteristics of the detected

object and predict the closest histogram distance to ground truth and choose the more

accurate detection.

5.3 Our Proposed Adaptive Model Selection Method

By selecting detection from various existing methods, we propose a novel adaptive

selection algorithm to improve 3D object detection. To provide more accurate detec-

tion, our method employs an adaptive model selection mechanism that selects one of

several detections from various models in various environments. The objective of the

adaptive learning-based prediction model selection is to obtain a mapping from each

state/detection pair, which provides a “look-up table” for corresponding detections from

each model accessible for selection. The state/detection pair indicates the preference of

selecting an individual detection under a certain state or from a certain model. Af-

ter training the simple supervised machine learning framework with the detected object

characteristics defined by the shape descriptors, the “look-up table” along with the clos-

est distance of shape descriptor to ground truth descriptor characteristics will be capable

of giving recommendations of the most appropriate detection from an ensemble of 3D

detection models.

When the car is in an intersection, one similar method is used for object tracking

tasks in [61] to enhance prediction and analysis outcomes by employing several predic-

tion models. The findings demonstrate that, compared to employing a single, constant

velocity model, the employment of several models has lowered the analysis RMSE in

tracking and provided a better assessment of the analysis uncertainty.
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We propose a novel framework for adaptive prediction-selection based on the shape

descriptor using a random forest regression algorithm. 3D object detection models with

different architectures can be adopted as the prediction models in this framework. For

the time being, our approach only involves two models at a time, as we propose two-way

matching on detections across two models to map the corresponding objects. We use

the CenterPoint with PointPillars as Model1 and CenterPoint with VoxelNet as Model2

as base prediction models in this framework for our spatial analysis to boost the 3D

object detection. As described in Section 5.1.1 the CenterPoint network provides good

justification for being used as base model and the architecture utilizes two common

backbone architectures, VoxelNet [94] and PointPillars [90]. To show the effectiveness

of our approach for adaptive selection among the output of detection models, we use the

same center-based CenterPoint approach but with two different backbone architectures,

VoxelNet [94] and PointPillars [90], as base detection models.

Our approach functions as a model stacked on the ensemble of detection models

to learn and select an accurate prediction. This is different from using the stacking

ensemble approach, the idea of which is to learn from several different weak learners

and combine them by training a meta-model to output predictions based on the multiple

predictions returned by these weak models. Here, instead of combining predictions

from an ensemble of models, we select one of the predictions from the ensemble of

models as the final output. The proposed novel adaptive prediction model selection

scheme can autonomously decide on appropriate detection to select according to the

distance of its shape descriptors from the ground truth. Our proposed framework is

shown in Figure FC5.3.
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Figure FC5.3: Our proposed workflow for adaptive model strategy. We perform two-way
matching for mapping corresponding objects across predictions from 3D object detection mod-
els. For each detection box match, the detection corresponding to the closest(lowest) distance
is selected for a final set of detections based on the predicted distance of the shape descriptor
histogram.

5.3.1 Mapping the Corresponding Objects Detected across Different Models

Obtaining a mapping of detections from several models is the first stage in an adap-

tive learning based prediction-selection model. We consider only two models Model1

and Model1, as stated in Section 5.3 at a time for mapping. Detections from the model

represent the bounding boxes of objects B predicted by the model. This mapping cre-

ates a “look-up table” for corresponding detections from each model that can be chosen.

The decision to choose a single detection under a particular state or from a particular

model is influenced by the detection pair. There is a strong likelihood that two bound-

ing boxes belong to the same object if their spatial relationship indicates their closest

match in the spatial domain. Thus, the closest detected bounding boxes are taken into
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consideration for our current framework, which uses the bird-eye-view center distance

(xy-only) between two detected bounding boxes.

We first register the equivalent match among the detections of Model2 for each of

the detections of Model1, i.e. mapping each bounding box from B1 to B2 which is a

one-way match. Similar to this, we register the match for each of Model2 detections

across Model1 detections, i.e. mapping each bounding box from B2 to B1 which is

again a one-way match but the order of finding an equivalent match is reversed. The

bounding boxes mapped in each one-way match i.e. (B1,B2) and (B2,B1) are stored in a

look-up table. Two-way matching is about registering (B1,B2) from Model1 to Model2

as R1, and registering (B2,B1) from Model2 to Model1 as R2, and only if R1(B1,B2)

== R2(B2,B1), i.e. both the registered pairs have same bounding boxes, the matching is

retained. The identical matches from the two-way match strategy are preserved and the

remaining matches are thrown away. Because the number of detections from different

models varies, two-way matching is preferable to one-way matching. As a result, there

is always a probability that a false detection from one model will not be present in the

detections of another model, and thus such false detections can be removed using two-

way matching. We use two-way matching in the spatial domain between two detection

models to determine the match across detections for each frame.

We only use one-way matching in the spatial domain with the same bird-eye-view

center distance (xy-only) to be used for mapping the detected bounding boxes of the

prediction model and bounding boxes of objects in the ground truth while training the

adaptive learning selection model. There is no need for two-way matching to find a

match among the ground truth bounding boxes because the ground truth bounding boxes

do not require finding a match among detections. We employ two-way matching across

detection models to validate our proposed model.
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Input : List B1 and B2 of detections from 3D object detection model Model1 and Model2
Output: Selected 3D object detections by adaptive model B f

M1 ← {} // Set of matched bounding boxes for detection in B1 to detection
in B2

M2 ← {} // Set of matched bounding boxes for detection in B2 to detection
in B1

M← {} // Set of matched bounding boxes after two-way matching
// match bounding boxes
Function matchDetections(B1,B2):

for bounding boxes b1 in B1 do
for bounding boxes b2 in B2 do

if center(b1) is closest to center(b2) and
Euclidean distance between center(b1) & center(b2) < distance threshold then

Mb ← matched-detection (b1,b2)
end

end
end
return Mb

End Function
// match bounding boxes of B1 to bounding boxes in B2
M1 ← matchDetections(B1,B2)
// match bounding boxes of B2 to bounding boxes in B1
M2 ← matchDetections(B2,B1)
// keep matched bounding boxes after two-way matching
for match m1 in M1 do

for match m2 in M2 do
if m1 == m2 then

M← two-way matched-detection (b1,b2)
end

end
end
// compute GASD shape descriptor for matched bounding boxes from Model1 and

Model2
for match m in M do

desc1(d1)← compute shape descriptor
desc2(d2)← compute shape descriptor
// predict distance for shape descriptors using Random Forest Regressor

(RFR)
distance(desc1(d1))← RFR(b1)
distance(desc2(d2))← RFR(d2)
if distance(desc1(b1)) ¡ distance(desc2(b2) then

B f ← add bounding boxes b1
end
else

B f ← add bounding boxes b1
end

end
return B f

Algorithm 4: The complete workflow of adaptive learning based prediction-selection model
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5.3.2 Shape Descriptor Computation

Extraction of 3D features or descriptors is one of the extremely important processes

in 3D applications that has a big impact on how well descriptive outcomes work overall.

The geometric structure should be captured by a strong and discriminative descriptor

that is also simultaneous translation, scaling, and rotation invariant. It is one of the

research areas of study that merits in by providing many useful 3D descriptor [96] from

3D point clouds, particularly in environments with occlusion and clutter.

The three primary categories of 3D descriptors now used in literature are global-

based descriptors, local-based descriptors, and hybrid-based descriptors. In general, the

first method estimates a single descriptor vector that encodes the entire input 3D object.

The success of global descriptors depends on the ability to observe the full geometry of

object point clouds, which proves to be a little more challenging. While utilizing appro-

priate keypoint-extraction methods to extract geometrical data from the local vicinity

of each key point in the point cloud, local descriptors generate features. And the local

descriptors are robust to occlusion and clutter [97] which the global descriptors are not.

However, the local descriptors are sensitive to the changes in the neighborhoods around

keypoints [98]. The hybrid-based descriptors combine the fundamental theorem of lo-

cal and global descriptors or combine both types of descriptors to maximize the benefits

of both local and global features.

As global descriptors, which demand comparatively less computing time and mem-

ory footprint, encode the geometric data of the entire 3D point cloud of the object and

in general, 3D object identification, geometric classification, and shape retrieval all re-

quire global descriptors we choose the global descriptor as a feature for input to our

adaptive learning based prediction-selection model. We propose to use the Globally

Aligned Spatial Distribution (GASD) [45] global descriptor for efficient object recog-

nition and pose estimation. The wide application of the GASD descriptor is for the task
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of 3D object recognition and it outperforms ESF, VFH, and CVFH descriptors.

5.3.2.1 Globally Aligned Spatial Distribution

In order to align an entire point cloud representing an instance of an object with the

canonical coordinate system, GASD relies on the estimation of a reference frame. The

aligned point cloud is then given a descriptor based on the spatial distribution of its 3D

points. The color distribution over the aligned point cloud may also be added to the

descriptor. For computing object pose, global alignment transforms of matching point

clouds are applied.

A 3D point cloud that represents a partial perspective of an item is the input for

the GASD global description method. To align the point cloud to the canonical coor-

dinate system and make the descriptor pose invariant, the initial step entails estimating

a reference frame for the point cloud. Principal Component Analysis (PCA) is used to

estimate the reference frame. The first stage entails computing the centroid of the set

of 3D points, or Pi, which is the origin of the reference frame and represents a partial

perspective of an object with i=1,..., n. Then, using Pi and P, a covariance matrix C

is generated with x and z axis are the eigenvectors v1, v3 corresponding to the mini-

mal and maximal eigenvalues, respectively and y-axis is v2 = v1×v3. Then, the whole

point cloud is aligned with this reference frame. Next, an axis-aligned bounding cube

of point cloud is partitioned into ms×ms×ms cells. Concatenating the histograms created

by adding the number of points that fall into each grid results in the global descriptor.

The shape descriptor computed can also be combined with color information based on

HSV space to increase discriminative power. However, we do not use color information

for our shape descriptor computation.
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5.3.3 Random Forest Regressor

We compute the GASD shape descriptor for the points lying inside each of the

bounding boxes. We use the GASD descriptor as the independent variable and the sta-

tistical distance between the GASD descriptors of predicted and ground truth bounding

boxes as the dependent variable based on which the bounding box selection is done.

Random forest regressor (RFR) algorithm is used to regress the statistical distance

value. For training the RFR model, we perform the one-way matching between the

predicted bounding box of a single model and the ground truth object bounding box.

For each match, we compute the GASD descriptor consisting of a 512 vector histogram

for both the predicted bounding box of the model and the ground truth object bounding

box. We further compute the distances between the two shape descriptor histograms of

detected and ground truth bounding boxes and between the detections of two models

as targets for training and testing our regression model. We also calculate statistical

measures directly between the detections instead of shape descriptors histograms. The

distances used between the two detections are as follows:

• L1, Manhattan, or City Block Distance between histograms

DL1 = ∑
i
|h1(i)−h2(i)|

• L2 or Euclidean Distance between histograms

DL2 =
√

∑
i
(h1(i)−h2(i))

2

• L∞ or Chebyshev Distance between histograms

DL∞ = max
i
|h1(i)−h2(i)|
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• Direct bird-eye view center distance of detections (distance between x-y only)

DC =
√

∑
i
(cxy1(i)− cxy2(i))2

• Difference between the volume of bounding boxes i.e. v=l*w*h of detections

DV = |v1(i)− v2(i)|

• Bhattacharyya distance between histograms

DBH =
√

1−∑
i

√
h1(i)h2(i)

• Earth Mover’s distance between histograms

DEM =
min fi j ∑i, j fi jAi j

sumi, j fi j

∑
j

fi j ≤ h1(i),∑
j

fi j ≤ h2( j),∑
i, j

fi j = min

(
∑

i
h1(i)∑

j
h2( j)

)

• Hellinger distance between histograms

DH =
1√
2
· ∥
√

h1(i)−
√

h2(i)∥2

The statistical distances for a feature matching is used to evaluate the similarity of

two probability distributions between predicted and ground truth bounding box shape

descriptors. It aids in quantifying the “closeness” of two statistical samples. We train

our random forest regression model with input of the predicted bounding box shape

descriptor and the statistical distance between the predicted and ground truth bounding

box as the target value.

For our adaptive learning prediction-selection model, we use the trained regression
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model to regress the distance value. Based on the closest(lowest) distance the detec-

tion corresponding to it is selected and added to the final list of detections. The overall

workflow of the adaptive learning based prediction-selection model is captured in Al-

gorithm 4.

5.4 Experiments & Results

LiDAR point clouds with required annotations for object detection for multiple

classes must be included in the input dataset for our adaptive model. nuScenes [5]

is a good choice for our validation data in that aspect.

5.4.1 Dataset

The nuScenes dataset [5] has been used for multiple benchmarks such as LiDAR

segmentation, object detection, tracking, etc. This dataset contains 1000 scenes from

15 hours of driving data with 20-second long sequences with 700, 150, and 150 se-

quences for training, validation, and testing. This large-scale dataset provides data from

the entire sensor suite, including six cameras, one LiDAR, five radars, localization info

via GPS, and IMU data. It includes 1.4M camera images, 390k LiDAR sweeps, 1.4M

RADAR sweeps, and 1.4M object bounding boxes in 40k keyframes. The dataset show-

cases good diversity with data from two diverse cities, left versus right-hand traffic,

interesting driving maneuvers, everyday traffic situations, and unexpected behaviors.

The dataset also ensures data alignment between sensors and cameras by calibrating

the extrinsic and intrinsic of every sensor.

The dataset only includes box annotations every ten frames, but each LiDAR frame

has calibrated vehicle pose information (0.5s). A 32 lanes LiDAR used by nuScenes

generates about 30k points every frame. There are 28k, 6k, and 6k annotated frames
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for training, validation, and testing. Ten classes having a long-tail distribution are in-

cluded in the annotations. An average of the classes serves as the formal measurement

of evaluation. Mean Average Precision (mAP) and nuScenes detection score are the pri-

mary metrics for 3D detection (NDS). Instead of the usual box-overlap, the mAP uses a

bird-eye-view center distance of 0.5m, 1m, 2m, and 4m. Translation, scale, orientation,

velocity, and other box properties are included in the NDS, a weighted average of mAP,

and other attributes measurements. We train our adaptive selection model on the train-

ing data of 700 sequences and evaluate our approach on the 6k frames of 150 sequences

of validation data.

5.4.2 Experimental Setup

To test our adaptive model, we need to have a set of models with comparative detec-

tion results to select among the detections. Some of the results from good older models

have been improved to a great extent by some of the recent models. Many recent models

have improved results by utilizing multi-modality input. CenterPoint [4] which takes

only LiDAR point cloud data as input, serves as an ideal choice for an adaptive model

where we focus on improving the results with only 3D point cloud data input. We use

CenterPoint-VoxelNet and CenterPoint-PointPillars as our 3D object detection models

for comparative results. CenterPoint-Voxel use a (0.1m, 0.1m, 0.2m) voxel size and

CenterPoint-Pillars use a (0.2m, 0.2m) grid. For experiments on nuScenes, CenterPoint

sets the detection range to [-51.2m, 51.2m] for the X and Y axis, and [-5m, 3m] for the

Z axis.

We use the training and validation data for training and validating our random for-

est regressor model and validate the results of the adaptive learning based prediction-

selection on the validation data. The training time for the random forest regressor

model is approximately a few hours while the inference time per frame for our adaptive
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learning-based selection model is approximately∼0.8 seconds. The inference times are

measured on an RTX 3060 GPU with 12GB memory.

5.4.3 Results

To find the similarity between the probability distributions of shape descriptors, we

experiment with different statistical measures to identify the most suitable measure for

our Random Forest Regression (RFR) model. We use the R2 (coefficient of determi-

nation) as the regression score function to validate the accuracy and precision of our

trained model. The best possible score is 1.0, which can be negative (because the model

can be arbitrarily worse). In the general case when the actual y is non-constant, a con-

stant model that always predicts the average y disregarding the input features, would get

a score of 0.0. We experiment with L1 norm, L2 norm, Chebyshev distance, Direct bird-

eye view center distance of detections (distance between x-y only), Difference between

the volume of boxes, Bhattacharyya distance, Earth Mover’s distance, and Hellinger

distance as described in section 5.3.3 between the two shape descriptor histograms of

detected and ground truth bounding boxes and between the detections of two models as

targets for training and testing our regression model, respectively.

For the matched bounding boxes, we take the shape descriptor vector histogram as

input and train and test our regression model with the target statistical measure. Re-

sults of our experiments with different statistical measures and its corresponding R2 for

our test data are shown in Table TC5.1. The results show that the highest R2 (coeffi-

cient of determination) score is obtained with Bhattacharyya distance. This shows that

the Bhattacharyya distance provides more information on the similarity between the

probability distributions of shape descriptors from model detections and ground truth

bounding boxes.

We evaluate our adaptive learning based prediction-selection model with CenterPoint-
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Table TC5.1: R2 score on test data with respect to different statistical measures.

R2 score
Statistical Measure CenterPoint-Voxelnet CenterPoint-PointPillars

L1-Norm 0.384 0.372
Direct bird-eye view center distance 0.152 0.154

Difference between volumes of boxes 0.014 0.024
Bhattacharyya distance 0.490 0.472
Earth Mover’s Distance 0.355 0.349

L2-Norm 0.446 0.439
Chebyshev distance 0.385 0.372
Hellinger distance 0.468 0.455

VoxelNet and CenterPoint-PointPillars models as detection models and experiment with

a distance threshold of 4.0 for considering a two-way bounding box match and no dis-

tance threshold (distance threshold of ∞) used i.e. all the closest box matches irrespec-

tive of its distance are considered as a match in both one-way and two-way matching.

The distance threshold indicates the minimum distance required to consider the closest

bounding box match between the center of the two bounding boxes. The bounding box

match process with distance threshold is shown in Algorithm 4. The average metrics

scores across all classes are shown in Table TC5.2. The metrics used for evaluation of

object detection task with ground truth as described in [5] are :

• mean Average Precision (mAP): The well-known Average Precision metric is

used, but a match is defined by considering the bird-eye-view 2D center dis-

tance on the ground plane rather than the intersection over union-based affinities.

Specifically, we match predictions with the ground truth objects with the smallest

center distance up to a certain threshold. For a given match, average threshold

precision (AP) is calculated by integrating the recall vs. precision curve for re-

calls and precision > 0.1. We finally average over match thresholds of 0.5, 1, 2, 4

meters and compute the mean across classes.

• Average Translation Error (ATE): Euclidean center distance in 2D in meters.

• Average Scale Error (ASE): Calculated as 1 - IOU after aligning centers and
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Table TC5.2: Mean score for different for all classes when using different settings of dis-
tance threshold for match consideration for two-way matching to filter out bounding boxes on
nuScenes [5] validation data.

Detection Model Backbone Aggregation Strategy
CenterPoint- CenterPoint- Adaptive Weighted Box

Metrics VoxelNet PointPillars Selection Fusion
Filtering matches without any distance threshold

mAP 0.547 0.497 0.529 0.550
mATE 0.280 0.298 0.287 0.275
mASE 0.251 0.256 0.254 0.423
mAOE 0.269 0.365 0.301 0.474
mAVE 0.267 0.326 0.283 0.267
mAAE 0.196 0.200 0.198 0.196
NDS 0.647 0.604 0.632 0.612

Filtering matches with distance threshold of 4.0m
mAP 0.559 0.507 0.541 0.565

mATE 0.281 0.302 0.290 0.279
mASE 0.252 0.257 0.254 0.425
mAOE 0.275 0.369 0.305 0.479
mAVE 0.266 0.326 0.282 0.268
mAAE 0.195 0.198 0.196 0.194
NDS 0.652 0.608 0.638 0.618

orientation.

• Average Orientation Error (AOE): Smallest yaw angle difference between pre-

diction and ground-truth in radians. Orientation error is evaluated at 360 degrees

for all classes except barriers, where it is only evaluated at 180 degrees. Orienta-

tion errors for cones are ignored.

• Average Velocity Error (AVE): Absolute velocity error in m/s. Velocity errors

for barriers and cones are ignored.

• Average Attribute Error (AAE): Calculated as 1 - acc, where acc is the attribute

classification accuracy. Attribute errors for barriers and cones are ignored.

• nuScenes detection score (NDS): Consolidation of the above metrics by com-

puting a weighted sum: mAP, mATE, mASE, mAOE, mAVE, and mAAE. As a

first step the TP errors are converted to TP scores as TP score = max(1 - TP error,

0.0). Then the weight of 5 to mAP and 1 to each of the 5 TP scores are assigned,
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Table TC5.3: Class-wise evaluation when using two-way matching for filtering out bounding
boxes but without any distance threshold.

Object Class AP ATE ASE AOE AVE AAE
Using CenterPoint-Voxelnet backbone for detection
car 0.838 0.176 0.153 0.100 0.314 0.187

truck 0.559 0.314 0.175 0.081 0.243 0.233
bus 0.679 0.318 0.177 0.035 0.418 0.280

trailer 0.362 0.516 0.200 0.435 0.225 0.186
construction vehicle 0.161 0.704 0.429 0.847 0.12 0.297

pedestrian 0.778 0.136 0.274 0.354 0.211 0.086
motorcycle 0.542 0.178 0.235 0.210 0.392 0.278

bicycle 0.353 0.142 0.259 0.297 0.211 0.022
traffic cone 0.594 0.128 0.321 nan nan nan

barrier 0.605 0.186 0.289 0.065 nan nan
Using CenterPoint-PointPillars backbone for detection
car 0.828 0.185 0.156 0.145 0.328 0.199

truck 0.528 0.327 0.187 0.141 0.273 0.246
bus 0.636 0.341 0.183 0.050 0.567 0.309

trailer 0.326 0.582 0.217 0.551 0.191 0.131
construction vehicle 0.140 0.600 0.412 1.122 0.137 0.387

pedestrian 0.756 0.152 0.275 0.389 0.228 0.087
motorcycle 0.455 0.207 0.237 0.318 0.650 0.209

bicycle 0.209 0.179 0.266 0.483 0.234 0.032
traffic cone 0.528 0.162 0.334 nan nan nan

barrier 0.561 0.25 0.289 0.084 nan nan
Using our proposed adaptive selection model

car 0.834 0.180 0.155 0.114 0.321 0.193
truck 0.550 0.313 0.180 0.099 0.253 0.237
bus 0.659 0.329 0.178 0.043 0.451 0.275

trailer 0.349 0.527 0.203 0.494 0.223 0.179
construction vehicle 0.153 0.694 0.430 0.996 0.126 0.332

pedestrian 0.770 0.143 0.275 0.363 0.217 0.085
motorcycle 0.513 0.187 0.236 0.232 0.458 0.264

bicycle 0.301 0.153 0.263 0.308 0.214 0.023
traffic cone 0.573 0.139 0.325 nan nan nan

barrier 0.589 0.205 0.290 0.055 nan nan
Using Weighted Box Fusion

car 0.842 0.169 0.175 0.359 0.293 0.193
truck 0.576 0.294 0.191 0.294 0.232 0.241
bus 0.677 0.308 0.179 0.278 0.433 0.303

trailer 0.378 0.541 0.278 0.515 0.185 0.157
construction vehicle 0.187 0.648 0.564 1.090 0.124 0.347

pedestrian 0.776 0.134 0.664 0.528 0.202 0.077
motorcycle 0.538 0.180 0.278 0.475 0.467 0.221

bicycle 0.341 0.149 0.324 0.492 0.199 0.026
traffic cone 0.588 0.134 0.732 nan nan nan

barrier 0.597 0.196 0.848 0.238 nan nan
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and the normalized sum is calculated.

To verify our approach, we evaluate the predictions only for the matched bounding

boxes for each model detection separately and compare it against our adaptive model

where either of the detection is picked. This is done to cross-verify the results only

for the filtered bounding boxes obtained with the existing object detection model, as

only those boxes would be considered as detections in our adaptive model approach.

We also present the class-wise results in Table TC5.3 and TC5.4 and the AP evaluation

metric based on the a bird-eye-view centre distance of 0.5m, 1m, 2m, and 4m for the

experiments in Table TC5.5 and TC5.6. The results of WBF are also shown in these

tables for comparison.

The overall results of our adaptive model shown in Table TC5.2 show improvement

over the CenterPoint-PointPillars model, and as the CenterPoint-VoxelNet performs

better than the existing model, the adaptive model should select the detections majorly

from the detections of CenterPoint-VoxelNet. The results show that our proposed model

shows the expected behavior with close results to those of CenterPoint-VoxelNet. The

mAP score is higher with the weighted boxes fusion strategy whereas the mASE and

mAOE errors are high as compared to the adaptive selection strategy, and due to high

errors, the NDS score is high for the adaptive selection strategy. Also, we can deduce

that filtering the matches with a distance threshold of 4.0m results in an improvement

of the mAP score by approximately 1%, but the change in the NDS score is minimal.

Similar results are also observed in Table TC5.3 and TC5.4 across different classes.

These tables show variations in AP score for both adaptive selection strategy and weigh-

ted box fusion strategy as compared to the CenterPoint-VoxelNet across different classes

are <1%; however, the ASE error scores for classes pedestrian, traffic-cone, and barrier

and the AOE error scores for all the classes except trailer are very high with weighted

boxes fusion approach as compared to our proposed adaptive selection approach.
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Table TC5.4: Class-wise evaluation when using two-way matching for filtering out bounding
boxes with distance threshold of 4.0m.

Object Class AP ATE ASE AOE AVE AAE
Using CenterPoint-Voxelnet backbone for detection
car 0.845 0.177 0.154 0.102 0.314 0.187

truck 0.576 0.316 0.177 0.086 0.247 0.230
bus 0.694 0.320 0.177 0.036 0.421 0.279

trailer 0.369 0.517 0.200 0.440 0.224 0.183
construction vehicle 0.165 0.699 0.430 0.853 0.121 0.295

pedestrian 0.795 0.137 0.274 0.358 0.212 0.087
motorcycle 0.552 0.181 0.236 0.214 0.388 0.275

bicycle 0.365 0.147 0.262 0.323 0.204 0.023
traffic cone 0.613 0.130 0.322 nan nan nan

barrier 0.616 0.188 0.289 0.065 nan nan
Using CenterPoint-PointPillars backbone for detection
car 0.835 0.186 0.156 0.147 0.329 0.199

truck 0.541 0.330 0.189 0.145 0.276 0.246
bus 0.654 0.344 0.183 0.051 0.570 0.309

trailer 0.336 0.584 0.217 0.559 0.192 0.130
construction vehicle 0.145 0.608 0.419 1.101 0.135 0.379

pedestrian 0.771 0.154 0.276 0.391 0.228 0.088
motorcycle 0.464 0.212 0.238 0.332 0.648 0.206

bicycle 0.215 0.187 0.269 0.509 0.234 0.030
traffic cone 0.539 0.166 0.336 nan nan nan

barrier 0.571 0.252 0.289 0.085 nan nan
Using our proposed adaptive selection model

car 0.840 0.181 0.155 0.116 0.321 0.193
truck 0.566 0.316 0.181 0.104 0.256 0.236
bus 0.677 0.331 0.178 0.043 0.454 0.275

trailer 0.357 0.530 0.204 0.504 0.220 0.174
construction vehicle 0.157 0.695 0.433 0.984 0.124 0.324

pedestrian 0.785 0.144 0.275 0.366 0.217 0.086
motorcycle 0.526 0.192 0.237 0.244 0.455 0.261

bicycle 0.312 0.160 0.266 0.331 0.209 0.022
traffic cone 0.590 0.142 0.327 nan nan nan

barrier 0.602 0.208 0.290 0.055 nan nan
Using Weighted Box Fusion

car 0.852 0.170 0.176 0.361 0.294 0.193
truck 0.595 0.297 0.194 0.295 0.234 0.239
bus 0.699 0.312 0.180 0.280 0.437 0.302

trailer 0.388 0.543 0.279 0.522 0.185 0.154
construction vehicle 0.197 0.657 0.565 1.081 0.124 0.344

pedestrian 0.796 0.136 0.665 0.531 0.202 0.078
motorcycle 0.553 0.184 0.281 0.485 0.467 0.217

bicycle 0.353 0.154 0.332 0.516 0.196 0.026
traffic cone 0.609 0.136 0.733 nan nan nan

barrier 0.610 0.197 0.848 0.238 nan nan
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Table TC5.5: Class-wise average precision (AP) when considering different bird-eye-view
centre distance thresholds with respect to the ground truth, and using two-way matching for
filtering out bounding boxes without any distance threshold.

AP at Distance Threshold of
Object Class 0.5m 1.0m 2.0m 4.0m mean AP

Using CenterPoint-VoxelNet backbone for detection
car 75.30 84.17 87.21 88.37 83.76

truck 38.90 55.47 62.87 66.18 55.85
construction vehicle 1.82 9.82 22.69 30.13 16.12

bus 45.36 68.79 77.57 79.84 67.89
trailer 9.23 31.89 46.88 56.64 36.16
barrier 52.40 60.32 63.69 65.73 60.54

motorcycle 48.57 54.83 56.15 57.19 54.18
bicycle 34.24 35.44 35.56 35.82 35.27

pedestrian 75.34 76.93 78.45 80.61 77.83
traffic cone 55.69 57.61 60.29 64.17 59.44
Using CenterPoint-PointPillars backbone for detection

car 73.10 83.52 86.65 87.86 82.78
truck 35.21 53.24 59.88 62.99 52.83

construction vehicle 2.40 10.75 18.55 24.16 13.97
bus 40.35 62.81 73.89 77.54 63.65

trailer 7.17 26.33 43.63 53.15 32.57
barrier 44.23 56.32 60.90 63.04 56.12

motorcycle 39.80 46.43 47.43 48.31 45.50
bicycle 20.09 20.90 21.01 21.43 20.86

pedestrian 72.79 74.46 76.80 78.30 75.59
traffic cone 48.44 51.11 53.77 57.92 52.81

Using our proposed adaptive selection model
car 74.65 83.94 86.97 88.17 83.43

truck 37.89 55.37 61.69 64.97 54.98
construction vehicle 1.82 9.99 21.13 28.39 15.33

bus 42.30 66.38 76.04 78.76 65.87
trailer 8.61 30.13 44.96 55.90 34.90
barrier 49.71 58.54 62.67 64.86 58.94

motorcycle 44.96 52.20 53.43 54.57 51.27
bicycle 29.14 30.23 30.37 30.61 30.09

pedestrian 73.97 76.24 77.88 80.07 77.04
traffic cone 53.05 55.52 58.03 62.51 57.23

Using Weighted Box Fusion
car 75.87 84.65 87.60 88.70 84.20

truck 41.55 57.62 63.99 67.12 57.57
construction vehicle 1.95 13.31 26.24 33.43 18.73

bus 45.99 67.83 77.80 79.23 67.72
trailer 10.82 33.09 49.53 57.70 37.78
barrier 50.88 59.33 63.24 65.30 59.69

motorcycle 48.06 54.32 55.73 57.07 53.79
bicycle 32.92 34.14 34.43 34.93 34.10

pedestrian 75.09 76.57 78.76 80.15 77.64
traffic cone 55.13 57.07 59.62 63.47 58.82
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Table TC5.6: Class-wise average precision (AP) when considering different bird-eye-view
centre distance thresholds with respect to the ground truth, and using two-way matching for
filtering out bounding boxes with distance threshold of 4.0m.

AP at Distance Threshold of
Object Class 0.5m 1.0m 2.0m 4.0m mean AP

Using CenterPoint-VoxelNet backbone for detection
car 75.95 84.91 87.98 89.15 84.50

truck 40.10 57.03 64.86 68.31 57.57
construction vehicle 1.82 10.32 23.02 30.77 16.48

bus 46.17 70.38 79.46 81.78 69.44
trailer 9.30 32.45 47.61 58.04 36.85
barrier 53.47 61.03 64.93 67.02 61.62

motorcycle 49.27 56.04 57.34 58.31 55.24
bicycle 35.46 36.62 36.77 36.97 36.45

pedestrian 76.80 78.43 80.49 82.14 79.47
traffic cone 57.63 59.57 62.06 66.07 61.33
Using CenterPoint-PointPillars backbone for detection

car 73.65 84.21 87.40 88.64 83.48
truck 35.92 54.48 61.53 64.48 54.10

construction vehicle 2.50 10.99 19.17 25.17 14.46
bus 41.15 64.58 75.97 79.74 65.36

trailer 7.34 27.10 45.03 55.11 33.64
barrier 44.72 57.41 62.09 64.33 57.14

motorcycle 40.40 47.36 48.48 49.37 46.40
bicycle 20.65 21.53 21.64 22.01 21.46

pedestrian 73.95 76.14 78.05 80.15 77.07
traffic cone 49.46 52.16 54.93 59.20 53.94

Using our proposed adaptive selection model
car 74.72 84.68 87.74 88.96 84.02

truck 38.85 56.89 63.69 67.06 56.62
construction vehicle 1.84 10.33 21.63 29.06 15.72

bus 43.59 68.19 78.18 80.95 67.73
trailer 8.74 30.64 46.12 57.46 35.74
barrier 50.75 59.79 63.95 66.19 60.17

motorcycle 45.94 53.65 54.90 55.87 52.59
bicycle 30.22 31.36 31.54 31.71 31.21

pedestrian 75.41 77.63 79.34 81.56 78.48
traffic cone 54.57 57.24 59.91 64.18 58.98

Using Weighted Box Fusion
car 76.62 86.05 88.46 89.55 85.17

truck 42.64 59.66 66.17 69.34 59.45
construction vehicle 2.13 14.20 28.04 34.59 19.74

bus 47.24 69.73 80.60 82.05 69.91
trailer 11.11 34.05 50.82 59.35 38.83
barrier 52.05 60.69 64.63 66.71 61.02

motorcycle 49.28 56.24 57.42 58.42 55.34
bicycle 34.30 35.53 35.62 35.91 35.34

pedestrian 76.66 78.70 80.85 82.35 79.64
traffic cone 56.92 59.17 61.81 65.62 60.88
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Table TC5.5 and TC5.6 show that the AP scores based on the bird-eye-view center

distance of 0.5m, 1m, 2m, and 4m with the weighted boxes fusion approach are high

for all the classes except bicycle as compared to other methods, whereas our adaptive

selection method shows the variation of >2% for classes bus, motorcycle and bicycle

and small variations in AP scores as compared to existing CenterPoint-VoxelNet model

which performs better than the CenterPoint-PointPillars model implying our proposed

adaptive model selected the detections majorly from the detections of CenterPoint-

VoxelNet.

However, in the absence of only LiDAR input 3D object detection models, which

have better results for some classes while other detection models would be dominant in

those classes, we cannot thoroughly verify our approach. But for our selected models,

the metrics scores were close and comparable, and even in this scenario, our adaptive

model could select the most appropriate detections.

5.5 Summary

We have proposed and implemented an adaptive learning based prediction-selection

model, an alternative to pick better detection among the detections of an ensemble of

models to boost the 3D object detection without any extra stacked ensemble model

which would work for different types of 3D object detection models with a 3D auto-

motive LiDAR point clouds as input. We analyze different distances used for finding

the closest neighbor to ground truth based on the GASD shape descriptor. Supervised

learning using RFR is used for distance prediction based on shape descriptor. We use

the spatial bird-eye-view center distance to find the closest match and propose a two-

way matching process. We also analyze the evaluation for filtered bounding boxes with

two experiments i.e. (i) where we use the distance threshold for match consideration

and (ii) no distance threshold considered for match registration. The results show im-
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provement over the CenterPoint-PointPillars model, and as the CenterPoint-VoxelNet

performs better than the CenterPoint-PointPillars model, the results of the adaptive

model are closer to the results of CenterPoint-VoxelNet as expected. Our experiments

on nuScenes yielded promising results, which have been quantitatively verified.
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CHAPTER 6

CONCLUSIONS

We performed spatio-temporal analysis on three critical perception tasks to aid au-

tonomous driving, and we also proposed various methods for each task that could bene-

fit automated systems. We have suggested a supervised machine learning technique and

manually extracted spatial features based on the semantics of the data for the ground

and non-ground classification as the foundation of the perception task. The performance

of the suggested classification algorithm enhances the distinction between ground and

non-ground objects. The outlier elimination phase with the temporal registration pro-

cess aids in removing many points, reducing the calculation of features for those points,

and has shown to be effective for better feature computation, leading to better classi-

fication outcomes. We chose the best features at single and multi-scales through tests

with various feature subsets and neighborhood analysis. Our method doesn’t need a

complex deep learning network or a lot of training. However, because features must

be extracted at each scale, multi-scale feature generation often takes longer than single-

scale feature generation. This can be further improved by using a quicker computation

model. We chose the best features at single and multi-scales through tests with various

feature subsets and neighborhood analysis. Our method doesn’t need a complex deep

learning network or a lot of training. However, because features must be extracted at

each scale, multi-scale feature generation often takes longer than single-scale feature

generation. This can be further improved by using a quicker computation model.
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Our road surface extraction method proposed using ground detection, edge detec-

tion, and mesh generation, tackles the challenges in extracting the surface for the navi-

gable/drivable area and serves as the state-of-the-art for coarser road surface extraction

in an automated system with usage of the spatio-temporal data across a sequence of

frames. Our novel frame classification can classify the road structures using the trans-

fer learning process with a high level of accuracy. Meanwhile, edge detection and

smoothing work with a low error rate for continuous segments of straight roads. The

proposed edge detection and smoothing approach are only suitable for straight roads.

The approach fails when there is a large number of contiguous non-straight segments.

The information recorded in the shape descriptors for each identified object is pro-

vided to the stacked selection model structure by our adaptive learning prediction model

for improving 3D object detection. The two-way matching procedure ensures that the

bounding boxes are preserved and have a high degree of confidence because they have

been detected in the same spatial domain across both models. To accurately determine

the similarity of the histogram distributions, the Bhattacharyya distance performs sig-

nificantly better than the other distances. The weighted boxes fusion, a substitute for

improving detections from an ensemble of models, has superior improvements in terms

of accuracy than our adaptive model, while the outcomes for our adaptive selection

model have low errors.

6.1 Future Work

Several optimizations, tests, and experiments are in the scope of future work (i.e.

the experiments with real-time results and experiments which require data in different

conditions and which are time-consuming). Future work will focus on deeper analysis

of specific mechanisms, new proposals to test different methods, and optimization of

proposed methods.
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6.1.1 Ground and Non-Ground Classification

As discussed in Chapter 3, our classification method lacks real-time computation,

our road surface extraction has limitations because it can only be applied to straight

roads rather than curved or turning roads, and our adaptive learning was unable to out-

perform the weighted boxes fusion improvements, laying the foundation for further

study. The size of the point cloud and the number of features that must be retrieved

influence how quickly the desired characteristics may be computed. A deep learning

model, on the other hand, would be considerably faster for inference, but it needs a lot

of training and computational capacity. Therefore, an intermediate strategy that would

speed up the computation without requiring significant training or high-computational

power might produce real-time results for the classification of the ground and non-

ground.

6.1.2 Road Surface Extraction Using 3D LiDAR Point Cloud Sequences

As discussed in Chapter 4, our road surface extraction has limitations because it

can only be applied to straight roads rather than curved or turning roads. The road sur-

face extraction at curves or turns affects the concise road surface extraction at curves

or turns, which may lead to bad decisions being made by the automated system pro-

posed based on this perception analysis. The road surface extraction at curves or turns

is equally essential as on straight roads. In these situations, a road edge point extrac-

tion and filtering method for all road structures will significantly increase the system’s

robustness.
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6.1.3 Boosting 3D Object Detection

The adaptive learning-based prediction selection model proposed in Chapter 5 in-

creases detection relative to the lower benchmark set by one of the models and bases its

decisions on the separation between the shape descriptor and real object descriptor. To

adequately assess the success of our adaptive-learning model, however, the detections

from models that produce superior results for specific classes while other models per-

form well in the other classes and in different environments need to be further assessed.

6.2 Summary

Spatio-temporal analysis was performed on three critical perception tasks to aid

autonomous driving, and the proposed different methods for each task demonstrated

improvements and novelty that could benefit automated systems. As the foundation of

the perception task, the proposed supervised machine learning technique and manually

extracted spatial features based on the semantics of the data produced better results

for ground and non-ground classification. Our road surface extraction method, which

uses ground and non-ground classification, is quite unique and effective for contigu-

ous straight roads. Furthermore, our proposed adaptive selection model for improving

3D object detection differs from existing approaches and yields promising results for

improving the performance of existing methods. To improve perception for more sig-

nificant assistance in autonomous driving, future work will include developing a holistic

system that integrates all of these perceptual tasks with an interactive tool.
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