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Abstract

Multiple spatial scales have been used extensively for feature extraction from LiDAR point clouds. These features have been
used for semantic classification, segmentation, and other data analysis methods. There is a gap in the adaptive methodology for
the effective use of multiple scales here. This stems from determining the best strategy to aggregate the information or features
gathered from different scales. The widely used multiscale method is feature extraction at an optimal scale, which is in itself an
adaptive method. However, the success of identifying the optimal scale depends on the set of scales used in its determination, as
it must include the scale where the global minimum of eigenentropy occurs. An alternative method is to average features across
multiple scales, which works in specific scenarios. In order to improve the flexibility of using different methods in the same
workflow, we propose an adaptive method for the selection of multiscale feature extraction for semantic classification of LiDAR
point clouds, with a focus on airborne laser scans. Our decision-making process for finding the best multiscale method exploits
spatial locality of the features. We show how such a control strategy can be implemented in an Apache Spark–Cassandra distributed
system for processing large-scale point clouds using voxelization for preserving spatial locality, and binomial logistic regression
for selecting voxels to implement a specific multiscale method at. Our results show significant improvement in classification
accuracy in the Dayton Annotated Laser Earth Scan (DALES) data, implemented using Spark MLlib in our distributed system.

Index Terms

Airborne LiDAR point clouds, semantic classification, Apache Spark, Cassandra, Connector, distributed system, multiscale,
optimal scale, voxelization, random forest classifier, binomial logistic regression.

I. INTRODUCTION

SEMANTIC classification is one of the routinely implemented data processing operations on Light Detection and Ranging
(LiDAR) data. The 3-dimensional (3D) point clouds acquired using aerial laser scanning (ALS) usually span across large

topographic regions, thus including urban settlements, forests, etc. Here, we focus on 3D point clouds of urban regions, with
relevant semantic classes such as, buildings, roads, vegetation, etc. Semantic classification can be done using supervised or
unsupervised machine learning, which require handcrafted features, or using deep learning.

Many of the features that are significant for classification are derived from the local neighborhood. Use of multiple spatial
scales for gathering salient information has been practiced for geometric analysis of LiDAR point clouds to characterize
spatial locality effectively [1]. There are different ways of aggregating the information across scales, which influence the value
of the extracted features. Using a scale where global minimum of entropy occurs as optimal and subsequently for feature
extraction [1] has been widely practiced for LiDAR point cloud classification [2]. However, this method is fraught with the
appropriate choice of initial scales which must contain the scale with global minimum value of entropy. As an alternative
to optimal scale determination, the average of relevant features across scales has been used for geometric reconstruction and
semantic classification has been explored to a limited extent for airborne LiDAR point clouds [3]. However, averaging works
only if there is limited (statistical) variation in the feature values across different scales. Yet another way of aggregating
scales is to use the features from all scales as a long vector [4], which requires neighborhood approximation with high point
density. The state-of-the-art implementation of long vectors is significantly different from those of optimal scale and averaging
approaches. Optimal scale as well as scale-averaged features have shown good results in semantic classification of airborne
LiDAR point clouds [2], [3]. Given the limitations of both methods, an adaptive choice of the multiscale feature extraction at
each point between the two methods is bound to improve the classification accuracy, to be tested on a selected classifier.

The pointwise computation of multiscale features using is in itself a compute-intensive problem. The compute requirements
become exacerbated for an adaptive multiscale method for large-scale point clouds. Recently, we have proposed an integrated
distributed system [5], [6] using Apache Spark [7] and Cassandra [8] for processing large-scale point clouds. Hence, we propose
a control strategy of reuse of computed features that leads to efficient implementation of the adaptive method on the distributed
system.
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Apache Spark is a unified data analytics engine that uses in-memory processing using a programming abstraction, called
as Resilient Distributed Data (RDD). Spark is often integrated with storage systems, e.g., Cassandra. Spark implements the
partitioning of the data in Cassandra, to be stored in tabular format in the nodes (or systems) in a cluster. Both Spark and
Cassandra provide the advantage of horizontal scaling, thus accommodating large-scale data. They jointly parallelize data
analytics. A Datastax Spark-Cassandra-connector [9] is used for efficient integration that leverages data locality to reduce
network latency. The connector is essential for querying in Cassandra from Spark. We use this integrated system to exploit its
inbuilt Spark MLlib (Machine Learning Library), for feature extraction and semantic classification [5], [6]. The persistent data
storage enables interactive visualization of large-scale point clouds [6].

Multiscale methods exploit local dependencies. In order to exploit the spatial locality in the adaptive multiscale method, we
propose voxelization of the point cloud. We then use these voxels as smallest units to determine the local strategy for choice
of multiscale method. We also choose voxelization to be a part of the implementation on the distributed system, as a process
integratable with the spatial partitioning and the parallelism in the system.

Ground truth is an ideal metric to make the decision between the two methods at each point. However, in a real-world
implementation, the ground truth is usually unavailable. Hence, we propose a novel approach where the voxels are classified
based on its better performance in the semantic classification. Posing this as a binary classification problem, we propose the
use of a binomial logistic regression model (LRM). We choose a random forest classifier (RFC) for semantic classification
owing to its suitability for ALS point cloud analysis [2] and the availability of its implementation in Spark MLlib.

Adaptive strategies in analyzing airborne LiDAR point cloud data have been studied in the recent past. A collection of
spherical and cylindrical neighborhood shapes, including optimal scale for the former, has been used for feature extraction [10].
These features after normalization have been used in an RFC. The classification results show improvement in overall accuracy,
when using the hybrid features. We use cubical neighborhood in our distributed system owing to the trade-off between
computation and accuracy, and its approximation to spherical neighborhood [5]. Since computing features using different
neighborhood shapes is not an efficient strategy for large-scale point cloud processing, we explore approaches where the same
features can be reused in different ways. This is the overall motivation behind our hybrid strategy.

Our contributions include:
• a novel adaptive control strategy of combining multiscale feature extraction methods, namely, optimal scale and averaging

operation, to improve accuracy of semantic classification of ALS point clouds,
• an effective application of voxelization for preserving spatial locality of implementation of selected multiscale method,
• a novel use of logistic regression to predict the classification outcome using widely used optimal scale approach in the

random forest classifier, in order to select the voxels for changing to the multiscale averaging method.

II. ADAPTIVE MULTISCALE FEATUE EXTRACTION

We propose a control strategy of adaptive multiscale feature extraction using optimal scale and averaging operation for
improving accuracy of semantic classification of ALS point clouds. For assessing our proposed strategy, we use ground truth
to confirm our hypothesis. We then propose an efficient data management strategy to implement multiscale aggregation using
point cloud voxelization and logistic regression.

Multiscale Feature Extraction and Classification: There are up to 21 pointwise features that are found to be significant
for semantic classification of LiDAR point clouds [2], where several of them characterize the local neighborhood. The local
neighborhood is defined using a local geometric descriptor. These significant features are either height- or eigenvalue-based.
The eigenvalue-based ones are computed from the eigenvalues of the local geometric descriptor, λ0≥λ1≥λ2. The commonly
used descriptor is the covariance matrix, that is computed as the sum of tensor (outer) products of distance vector with each
neighbor. The local neighborhood size is considered to be the scale for feature extraction. For instance, the radius of the
spherical neighborhood or the edge length of a cubical neighborhood is used as the scale [5]. Owing to the uncertainty in
environmental data, multiple scales are routinely used to extract these locality-based features.

Computing features at the optimal scale is an adaptive multiscale method. The scale where entropy is the global minimum
is commonly used as the optimal scale owing to the reduction in uncertainty [1]. While averaging features across scales is an
alternative strategy [3], they are contingent upon the averaged features being the optimal representative value across scales.
Most of the height- and eigenvalue-based features can be averaged across scales to give representative values. The height-
based features are computed from the local neighborhood. The local geometric descriptors are positive semidefinite second-order
tensors [11], whose tensor invariants are the eigenvalue-based features. Thus, averages can be representative values if there is
less statistical variance across scales. Averaging certain features also implies stochastic modeling. The saliency map {Cl ,Cs,Cp},
when averaged, represents the likelihood values of the point belonging to the geometric classes of line, surface, point-type
features, respectively. The different spatial scales may be considered as mutually exclusive events [11], and the joint probability
given by the saliency map is the overall likelihood across scales.

Here, we consider the union of the feature subset of height-based H3D, and 3D eigenvalue-based features Sλ ,3D [2] as
the feature vector. The choice of features is primarily made based on their relevance for classification [12], relatively high
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classification accuracy with the use of Sλ ,3D at the optimal scale in an RFC [2], and the integrability of the feature computation
in our distributed system [5], [6].

The features we use are: (a) eigenvalue-based features, namely, eigenentropy Eλ , omnivariance Oλ , sum of eigenvalues Σλ ,
change of curvature ∆c, (spherical) anisotropy Aλ , saliency map {Cl ,Cs,Cp}, and (b) height-based features using corrected
height from ground z, namely, standard deviation σz, and range ∆z (difference between maxima and minima). The eigenvalue-
based features at each scale are:
Eλ =−

2
∑

i=0
λi ln(λi); Oλ = 3

√
λ0.λ1.λ2; Σλ =

2
∑

i=0
λi; ∆c =

λ2
Σλ

;

Aλ = λ0−λ2
λ0

; {Cl ,Cs,Cp}= {λ0−λ1
Σλ

, 2.(λ1−λ2)
Σλ

, 3.λ2
Σλ
}.

The feature vector for each scale s, Fs = H3D∪Sλ ,3D. Thus,
Fs = {Eλ ,Oλ ,Σλ ,∆c,Aλ ,Cl ,Cs,Cp,σz,∆z}.

Optimal scale sopt is the scale at which Eλ is the minimum, in which case the pointwise feature vector is Fopt = F(s=sopt ). The
averaged feature vector is Fµ = 1

ns
∑
s

Fs, for ns scales.

We use the extracted features in an RFC for LiDAR point cloud classification, that is implemented using Spark MLlib. The
classification accuracy for the point cloud is measured using intersection over union (IOU), averaged across all classes, and
overall accuracy (OA). For a point cloud with Nc classes,

IOU= 1
Nc

∑
C

IOUC, where for a class, IOUC = T P
T P+FP+FN ,

and OA=∑
C

T P+T N
T P+T N+FP+FN ,

where T P, T N, FP, and FN are class-wise counts of true-positive, true-negative, false-positive, and false-negative classification
outcomes, respectively, for the point cloud.

Control Strategy – Rationale and Implementation: While theoretically the global minimum of entropy measure is an
effective indicator of optimal scale [1], the global minimum may not be always present in the selected scales, in practice. This
leads to the case where not all regions in the point cloud are best represented using optimal scale. In practice, determining
optimal scale requires an exhaustive search for the global minimum entropy across multiple scales. Especially in large-scale
point clouds, a trade-off between efficiency and accuracy is used, where a local minimum is often chosen.

As a result, we hypothesize that regions with low classification accuracy owing to this trade-off, can improve the accuracy
using averaged features. We use the ground truth to test this hypothesis. Ground truth identifies points misclassified using the
optimal scale approach, but correctly classified using the averaging approach. The accuracy is then improved adaptively by
replacing the optimal scale features with averaged ones.
Definition: The adaptive multiscale feature extraction is the control strategy of choosing the best multiscale features at each
point in a point cloud to improve the classification outcome.

1) Voxelization: While we have incorporated spatial locality in local geometric descriptors, we also expect that the spatial
contiguity (locality) influences the multiscale approach for the region. Using spatial locality for decision-making can be achieved
using our distributed system, designed for managing and processing large-scale point clouds. We have shown in our previous
work that an Apache Spark-Cassandra integrated distributed system can be effectively used for semantic classification of large-
scale airborne LiDAR point clouds, using both averaged multiscale features [5] as well as optimal scale ones [6]. The spatial
partitioning used in the distributed system is along either x- or y-axis. This partitioning is used for distributing the data to
different Spark nodes. For region-wise locality, we now voxelize each spatial partition along both x- and y- axes in a gridded
format, thus forming vx×vy cuboidal voxels. Now, we propose to apply a chosen multiscale approach to all points in a voxel,
i.e., a subset of the point cloud, thus implementing a region-wise application of a chosen method. For the sake of simplicity,
we keep vx = vy here. The voxelization of the point cloud also improves system efficiency through increased parallelism, as
the voxelization and regional analysis are implemented in the same Spark node.

2) Voxel Selection Using Logistic Regression: We first rank voxels based on their average IOU values when classified using
the optimal scale features. We select the low-ranked voxels, whose points are then classified using the averaged features.

We use ground truth analysis to establish the improvement in classification accuracy. However, in practice, an automated
method is needed for selecting voxels for applying the change in the multiscale method, i.e., in the absence of ground truth.
Given that there is no single feature that gives clear clusters for LiDAR point cloud classification, we need a combination of
features in the feature vector that can predict the classification outcome for a voxel. We now pose this problem as that of
binary classification, given the voxels are to be grouped based on its apt multiscale aggregation method, from our two selected
methods. Hence, a binomial logistic regression model (LRM) is applicable where the outcome (dependent) binary variable is
the success of classification using our chosen classifier. We use the following pointwise feature vector for the logistic regression,
which is derived from the same used in the classifier:

FLRM=({z}∪Fs)\{Cs,∆z} .
We remove Cs and ∆z from the feature vector, as they are linearly dependent on remaining saliency map, {Cl ,Cp}, and height z,
respectively. The choice between z and ∆z has been decided based on our results. The LRM is computed and applied pointwise.
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Fig. 1: Our proposed workflow involves the hybrid strategy of multiscale aggregation and a logistic regression model for
improving classification accuracy in large-scale point clouds using an Apache Spark-Cassandra integrated distributed system [5],
[6]. Models RFC-1, RFC-2, and LRM are trained using Apache Spark MLlib.

Since the number of points in each voxel is not a constant, the feature size varies at the voxel level. Hence, performing
logistic regression directly for voxel classification based on a long vector of pointwise features is inefficient and impractical.
Hence, we perform pointwise analysis using logistic regression, and then we determine the success rate for each voxel. We use
a threshold for the success rate τs, lower than which, we select the voxel to change its multiscale method for feature extraction.
We expect the voxel size and voxel-wise point density to influence the improvement in accuracy. We study the influence of
voxel size in our results, here. The voxels could be further merged or split to achieve a desired point density in each voxel
for effective implementation. This leads to adaptive voxel sizes, which is to be studied in future.

Workflow: In our proposed workflow (Figure 1), we first train the RFC models for both multiscale methods, namely, RFC-1
and RFC-2 for the optimal scale and averaged features, respectively. We then use the accuracy of RFC-1 outcomes to train
the binomial LRM, now using normalized features. For testing an unlabeled point cloud, we first run the RFC-1, to get the
pointwise class labels. We run the voxelizer and the LRM, after storing the class labels from the RFC-1. If the LRM gives
outcome ‘1’ for a voxel, i.e., success in running RFC-1 for the voxel is above the threshold τs, then we retain the labels from
RFC-1 for all the points in the voxel. If the outcome for the voxel is ‘0’, then we compute averaged features for only those
points and implement RFC-2 on the voxels. The class labels of all points in the voxel are now the outcomes of RFC-2. Our
workflow finally outputs labeled point clouds.

An alternate to the strategy of correcting optimal scale features using averaged features, is to choose between the two
approaches. However, choosing between two approaches requires implementation of both approaches for each point, which is
inefficient for large-scale point clouds. This step is unavoidable for training but can be avoided for testing, and using pre-trained
models for testing can keep it as a one-time process. Thus, we adopt a sequential implementation of one method, followed by
correction of selected regions using the second method, which is more efficient for big data.



5

TABLE I: Tiles in DALES dataset [13] used in Random Forest Classifier (RFC) and Logistic Regression Model (LRM)

Tile ID #points Tile ID #points +Roles
(LRM)

RFC Training RFC Testing
5110_54320 17,747,769 5150_54325 11,882,667 Train
5110_54460 13,784,200
5110_54475 11,981,458 5080_54400 12,219,779 Test
5110_54495 11,930,713

Total: 55,444,140 points Total: 24,102,446 points

TABLE II: Intersection Over Union (IOU) and Overall Accuracy (OA) measures of Semantic Classification by RFC

Granularity Level Average IOU OA
Using Optimal Scale

Pointwise 0.2782 74.18%
Using Multiscale Averaging

0.3312 85.48%
Proposed Adaptive Multiscale Feature Extraction

(Voxelization along x- and y-axes gives vx× vy voxels)
Point/Voxel Selection based on Ground-truth Analysis

Pointwise 0.3333 85.611%
Voxel-wise
10×10 voxels (50.00m×50.00m) 0.3380 85.49%
20×20 voxels (25.00m×25.00m) 0.3395 85.44%
40×40 voxels (12.50m×12.50m) 0.3452 85.53%
80×80 voxels (6.25m×6.25m) 0.3476 85.62%
160×160 voxels (3.12m×3.12m) 0.3514 85.77%
320×320 voxels (1.56m×1.56m) 0.3520 85.79%

Voxel Selection based on Logistic Regression Model
Voxel-wise
10×10 voxels (50.00m×50.00m) 0.3378 85.22%
20×20 voxels (25.00m×25.00m) 0.3395 85.61%
40×40 voxels (12.50m×12.50m) 0.3381 85.59%
80×80 voxels (6.25m×6.25m) 0.3384 85.68%
160×160 voxels (3.12m×3.12m) 0.3391 85.60%
320×320 voxels (1.56m×1.56m) 0.3520 85.72%

The metric size of each voxel is given in parentheses in the leftmost column.

III. EXPERIMENTS, RESULTS, AND DISCUSSION

For our experiments, we have used the recently published Dayton Annotated Laser Earth Scan (DALES) dataset [13], which
is of the City of Surrey, Canada. The dataset with 0.5 billion points, covering 10 km2 of area. It contains 40 tiles of dense,
labeled point data, including urban regions, of which 29 are training and remaining, testing files. Each tile is of size 0.5km,
with a point density of 50ppm (points per metre) as average, and 20ppm as minimum. The eight semantic classes available in
DALES are: ground, vegetation, cars, trucks, poles, power lines, fences and buildings. We split the data for training and testing
for the Random Forest Classifier (RFC) in the Spark MLlib (Table I). We split the testing data used for the RFC further, as
training and testing the binary logistic regression model (LRM), also implemented using Spark MLlib. We have used four tiles
for training the RFC, and two tiles for RFC testing, which are used again for LRM training and testing (Table I). We have used
a ∼70/30 split for training and testing on the RFC. For multiscale feature extraction, we have used ten uniformly distributed
scales with cubical neighborhood sizes l=1m, at minimum, l=10m at maximum, and ∆l=1m as the scale increment.

For the distributed system, we have used Apache Spark 2.4 and Cassandra 3.0., with five executor nodes on Spark. Of the
five Spark nodes, one executor node runs on the master node. Each of the five nodes uses Intel i7 processor @2.80 GHz, 4
cores, 8 logical processors, and 8GB RAM. We have additionally used AWS (Amazon Web Services) S3 bucket for storing the
model and raw point cloud. In terms of performance, our distributed system takes 2.287s for per-point processing, followed
by 117µs for per-voxel processing.

Table II gives results for both point- and voxel-wise classification. We observe from the pointwise results that the averaging
approach by itself significantly outperforms the optimal scale approach. Hence, we use a conservative success rate threshold τs=
90% here. We first explore our hypothesis of the implementation of adaptive strategy of multiscale averaging and voxelization
improving the classification accuracy. The accuracy at point-level using ground truth analysis is the baseline (Table II). We see
that, as the voxel size reduces the accuracy improves, but at the same time, the point density is influenced by the voxel size.
At 320×320 voxelization, we have an average of ∼900 points per voxel, that describes spatial locality sufficiently. We expect
that any further increase in the number of voxels will not improve results owing to the reduction in point density.

We observe that running LRM in the voxelized test data, at different voxel sizes, gives comparable results to that of the ground
truth analysis, thus demonstrating that our choice of logistic regression model is effective. We have repeated the experiment
after swapping the LRM training and testing tiles (Table I). However, this swap deteriorates classification to 73.45% OA with
0.3032 IOU for optimal scale, and 74.84% OA with 0.2825 IOU for averaging. We observe that the tile 5080_54400 has
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relatively more class imbalance, in comparison to the tile 5150_54325. Overall, the class balance of the tile for LRM training
is a determinant of the success of our proposed method.

We have also repeated these experiments for the Vaihingen benchmark dataset [14], for proof of concept. The dataset has
an average point density of 5-7 ppm, with total of 1.2 billion points. The experiments could not be run for more than 20×20
voxelization owing to the high sparsification of the voxels. The voxel selection using ground truth analysis gives 69.02% OA
and 0.2059 IOU; and using LRM gives 68.73% OA with 0.2078 IOU, when using Area-3 (323,895 points) as training and
Area-2 (266,674 points) as testing. We have used three scales with sizes l={3.78m, 4.20m, 4.62m}, based on our previous
work [3]. We observe that the high point density is indeed a determinant of the success of our proposed method.
Discussion: Our proposed workflow has revealed salient observations on the dependency of the voxel size on the classification
accuracy, when using our control strategy and adaptive multiscale method. Further analysis of the voxelization for automated
decision-making using logistic regression is required.

Our work opens up novel adaptive methods of extracting hand-crafted features to be used in different learning methodologies,
namely, unsupervised and supervised learning. Recently, the choices made for the extraction of appropriate hand-crafted features,
e.g. radial neighborhood, to be used in an RFC, have been reused for building the convolution function in deep learning
methods [15] for point classification.

Our work also demonstrates how the big data technology frameworks can be harnessed effectively for solving large-scale
point cloud processing problems. Our proposed workflow shows that novel engineering methods of using available features in
these frameworks pave way for more complex data science workflows for spatial data.

IV. CONCLUSIONS

In this work, we have demonstrated that adaptive use of different multiscale feature extraction methods within a single
point cloud yields effective feature vectors for classification using supervised learning. We have designed a control strategy
to implement the adaptive method on an Apache Spark – Cassandra integrated distributed system, building on our previous
work [5]. Our results show that the use of voxelization to exploit spatial locality of multiscale aggregation, and logistic regression
to predict the success of the RFC have been effective. Our proposed strategy demonstrates how extracted features can be used
in multiscale methods using optimal scale approach or averaging, to improve classification accuracy. Our contributions pave
way for novel workflows to be implemented on the big data framework for large-scale point cloud analysis. Generalizing our
adaptive method to terrestrial and mobile LiDAR datasets requires further study.
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