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Visual Analytics of Three-dimensional Airborne
LiDAR Point Clouds in Urban Regions

Jaya Sreevalsan-Nair

Abstract

Airborne LiDAR datasets, in the form of 3-dimensional point clouds, provide geometric information, owing to their spatial
nature. Their popularity as a geospatial data acquistion technique is owing to its characteristics of low noise and high point density.
Our work is a step toward 3-dimensional analysis of the point clouds, where we discuss the role of visual analytics in point cloud
processing. We discuss two different scenarios/applications: (a) unsupervised classification of point clouds; and (b) local geometry
analysis of point clouds. For classification, we discuss both structural as well as semantic classification of the points. Structural
classes are points, lines, and surfaces; and semantic classes are buildings, ground (asphalt), ground (natural), and vegetation.
Owing to the nature of the object classes we focus on, the datasets of our interest pertain to urban regions, where structures
belonging to these object classes are found in plenty. The local geometric descriptor is formulated by using tensor voting and
gradient energy tensor, where it is comparable to the conventionally covariance matrix. Overall, our research demonstrates how
adding elements of user interactivity and visualizations in a data science workflow enables users to perform first cut exploration
of large scale point clouds from airborne LiDAR.

I. INTRODUCTION

Data science workflows [1] involves its four steps, namely, data preparation, analysis, reflection, and dissemination. Guo [1]
has quoted [2] – “Scientific computing is more than number crunching.” – to elucidate how data organization is a bottleneck
in performing substantive analysis. In this paper, we revisit the processing of airborne LiDAR (Light Detection and Ranging),
to which some of the findings seen in modern data science workflows can be applied. While analysis of LiDAR imagery
has been matured over time, the interest in working with geometry-aware 3-dimensional point clouds is more recent [3]. The
LiDAR point cloud acquisition is an outcome of advent in sensor technology used in LiDAR. Specifically in urban regions,
extensive study is ongoing on building detection and reconstruction and road extraction from LiDAR imagery as well as point
clouds. Rottensteiner has discussed how LiDAR point clouds are significant in combination with imagery to combat issues of
occlusions, shadows, and non-detection of building smaller than 30m2.

Given this premise, we discuss how we have incorporated visualization in the data science workflow to process airborne
LiDAR point clouds in urban regions. In two different methodologies proposed by our research group in [4] and in [5], [6],
visual analytics is the key aspect of the data science workflow. Keim et al. [7] have defined visual analytics as an intermix
of conventional data mining and interactive visualizations in a data science/analytic workflow, which unifies sense-making,
inferential understanding, and decision-making support for big data. Big data itself is characterized by the five V’s – volume,
variety, veracity, velocity, and value.

Conventionally, processing of airborne LiDAR point clouds starts with identifying local neighborhood for each point. This is
followed by the computation of covariance matrix C(p) = ∑

y∈N(p)
(y− p)T .(y− p), at each point p∈R3. The covariance matrix is

referred to as the structure tensor, or broadly, local geometric descriptor of the point. Most of the data mining for classification
include semantic classification where features at each point are extracted and used in supervising learning techniques, such
as conditional random forest classifier, support vector machines, etc. In this background, we have attempted to answer two
questions –

1) How can we classify points if we do not have training dataset to execute supervised or semi-supervised learning
algorithms?

2) How good is the geometric description provided by the local geometric descriptor?
In order to answer these questions we used visual analytics in combination with appropriate data modeling. Kumari and
Sreevalsan-Nair [4] have used hierarchical (divisive) clustering of the point cloud to answer the issue on unsupervised
classification technique. Sreevalsan-Nair and Kumari [5] have proposed a novel local geometric descriptor for LiDAR point
clouds using tensor voting [8]. They have proposed processing local geometric descriptors in its form of positive semidefinite
symmetric second-order tensors. Sreevalsan-Nair and Jindal [6] have further improved on the novel descriptor using gradient
information. Tensor voting is a voting scheme [8] for detection and classification of feature points using proximity and continuity
principles of Gestalt psychology for vote propagation.
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II. LITERATURE SURVEY

In this section, we describe the relevant literature on the key topics of semantic classification as well as local geometric
descriptors. Semantic classification of LiDAR data has been widely studied. We discuss some of the work which is relevant to
the visual analytic framework, proposed in [4]. Further, we describe relevant work on local geometric descriptors, its tensor
representations, and its uses in LiDAR research community.

Semantic (or Object-based or Contextual) Point Classification: Song et al. [9] have determined the effectiveness of using
LiDAR intensity data for land-cover classification, where a uniform grid derived from point cloud is used. Chehata et al. [10]
have given a classification of parameters used for semantic classification and results from using multiple classifiers using random
forest classifiers. Niemeyer et al. [11] have performed supervised classification using conditional random fields (CRFs), using
geometrical features and an intensity value. These results have been improved by using random forests with the CRFs in [12].
Niemeyer et al. [13] have proposed inclusion of context of spatial locality, as an additional cue to the supervised classification.

Other Similar Methodologies: Ramiya et al. [14] have used curvature and colorimetric distance for segmenting colored
LiDAR data. Other unsupervised classification techniques, such as [15], [16], exist, which use density-based clustering and
graph-cut based methods. We have found applications of interactive agglomerative clustering, which is bottom-up approach
of merging clusters. Preiner et al. [17] have used hierarchical agglomerative Expectation Maximization clustering for surface
reconstruction from point cloud data, unlike the divisive clustering method used in [4].

Covariance Analysis: Covariance analysis of local neighborhoods based on centroid is a robust method for normal estima-
tion [18], but not necessarily for finding the shape of the neighborhoods. Tombari et al. [19] have made the argument of
lack of repeatability of sign of a local reference frame when using the covariance matrix, and have proposed a weighted
covariance matrix based on the point itself instead of the centroid, for surface matching. Local tensor-based techniques are a
tradeoff between computational complexity and accuracy in feature detection; e.g. use of tensor voting [20], [21] for feature
classification.

Tensor Representation of Local Geometric Descriptor: Knutsson [22] has defined a structure tensor as a tensor definition
for based on differentiation of functions. Structure tensor has been used as a descriptor in 3-dimensional space. Knutsson et
al. [23] have discussed different descriptors used for images, with a potential for extension to 3D point clouds.

Structural Classification: Structural (or geometric or feature) classification of point clouds has been less explored [20], [24].
Structural classification is implicitly used in semantic classification through the use of eigenvalue-based features obtained from
the local geometric descriptor, such as covariance matrix in LiDAR point clouds [25], [4].

Multi-scale Classification: Pauly et al. [26] have proposed the use of multi-scale surface variation, estimated using covariance
matrix of local neighborhood. There, surface variation at a user-defined scale gives feature weights, which on appropriate
thresholding gives features. Keller et al. [27] have used a similar multi-scale approach, for LiDAR point clouds, in determining
feature weights from covariance matrix of local neighborhoods. However, the difference between the methods in [26] and [27]
is that a single adaptive scale and averages across multiple scales have been used, respectively. Algorithms for finding optimal
neighborhood size or scale has been of interest to the LiDAR community [25], [28], [29]. Blomley et al. [30] have used multi-
scale approach using shape distribution features for point classification, as opposed to covariance features, proposed by Keller
et al. [27]. Park et al. [20] have used tensor voting and surface variation to classify and detect line features in point clouds,
where th surface variation function is computed using a multi-scale method. An approach based on anisotropic diffusion is
used in [21], where anisotropic diffusion is performed after tensor voting for feature classification and extraction in polygonal
mesh data, and subsequent mesh segmentation.

III. AUGMENTED SEMANTIC CLASSIFICATION

Semantic classification of LiDAR point clouds has been extensively studied. As discussed in Section II, many of the recent
methods rely on supervised learning methods [13], [31], [32]. Supervised learning methods require training datasets, which are
conventionally generated by a domain expert, data from the site measured using complementary processes, or other publicly
available alternative (albeit partial) sources, e.g. Openstreetmap [33] and Google Earth 1. In order to have a facility to visually
explore new airborne LiDAR datasets with a preliminary semantic classification, Kumari and Sreevalsan-Nair [4] have proposed
a visual analytics framework using unsupervised learning for semantic classification. The novelties of the method proposed
in [4] are: (a) the concept of augmented semantic classification, (b) interactive setting of parameters in the visualization
of the tree data structure, representing hierarchical clustering method, and (c) the use of visualizations to guide setting the
features to be considered for clustering at each level of hierarchy. They have demonstrated a prototypical tool implementing

1Google Earth at https://www.google.com/earth/ Last retrieved on January 09, 2018.
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Fig. 1: (Top) The graphical representation of hierarchical divisive clustering of airborne LiDAR point clouds, uses tree data
structure (left). Theactive leaf nodes of the tree, which are not dimmed/transparent, belong to four different object classes.
The points of a class can belong to multiple leaf nodes, e.g. red nodes correspond to building. The point rendering shows the
state of the active leaf nodes of the tree (right). (Bottom) The results of augmented semantic classification of Area-1 (left) and
Area-2 (middle) of Vaihingen dataset, as per the legend showing tuple of labels in a matrix (right). The bottom image hase
been modified from an image in [4].

the proposed visual analytics method, referred to as the tree visualizer (Figure 1). The experiments have been done on the
Vaihingen dataset [34], provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF)2

Unsupervised Semantic Classification Using Tree Visualizer: With the recent success seen with supervised learning, one
cannot discount the value of such a class of methods for semantic classification. However, as discussed earlier, the current state
of the art methods develop training models separately for different datasets. The reason for this could be that this work is fairly
recent, and additionally, it could take several experiments to derive a generic training model(s) owing to inherent differences
in built environments worldwide. Hence, for first-cut and quick exploration of new datasets, Kumari and Sreevalsan-Nair [4]
have proposed the use of unsupervised methods, in an adaptive manner to accommodate the high variability in environmental
data in airborne LiDAR point clouds. The idea is to provide several iterations of classifications and adaptiveness of the method
is provided by the choice of parameters or features to be used for an iteration of classification in different regions. Given these
requirements, hierarchical (divisive) clustering is the most appropriate unsupervised method that can be used for unsupervised
classification problem in this case.

Kumari and Sreevalsan-Nair further show the use of hierarchical EM clustering specifically. In this proposed method, the
classification is agnostic of the spatial locality. Hence, eventually the spatial locality information is added in a post-processing
step. This step involves a region-growing algorithm [35], which is used for correcting the labels of points based on the majority
vote of the label of the points in its local neighborhood.

Choice of Feature Vector for Hierarchical Clustering: The supervised learning methods for semantic classification have
shown the set of features that are required in the feature vector [10]. Kumari and Sreevalsan-Nair have chosen the commonly

2DGPF at http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html

http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html
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Fig. 2: The point rendering of (left-to-right) Area-1, Area-2, and Area-3 of Vaihingen benchmark dataset show differences in
structural classification based on the use of conventional (tangent) covariance matrix (top) with respect to the anisotropically
diffused tensor voting based local geometric descriptor (bottom). This image is a modified version of an image in [5].

used parameters or features, such as height, intensity, height variance, and height range. There are a set of features which
are derived from the covariance matrix of the local neighborhood of each point. The covariance matrix is the local geometric
descriptor [11], which we discuss further in more detail, in Section IV. The colormaps or heat maps of the different features
are then used for providing colors to the points with corresponding feature values. These visualizations allow the user to make
decisions on which parameter, according to their visual perception, gives the best binary clustering of the concerned subset of
points. The process entails the entire point cloud being clustered in the leaf nodes of the clustering hierarchy. Since the number
of leaf nodes in a binary tree, which need not be balanced, exceeds the number of semantic classes, some of the clusters are
appropriately merged to give the exact number of semantic classes.

The Proposed Augmented Semantic Classification: There are two types of classifications possible for the airborne LiDAR
cloud, namely, geometric (or structural) and object-based (or semantic). Semantic classification [13], [31], [32] is widely studied
than structural classification [27], [36]. Structural classification labels the points as belonging to line-, surface-, or (critical)
point-type features. The latter includes features like junctions. Conventionally, structural classification is obtained using the
eigenvalue analysis of the local geometric descriptors. Thus, structural classification is used as an intermediate step in semantic
classification, e.g. linear and areal anisotropies, which are indicative of structural classification. Kumari and Sreevalsan-Nair [4]
have proposed to preserve the structural classification by introducing a tuple of labels for each point in the point cloud, instead
of a singleton label. The tuple of labels includes both structural and semantic labels. The use of tuple of labels for each point
in the point cloud has been called augmented semantic classification. The benefit of the augmented classification [4] has been
in the improved rendering, as shown in Figure 1, where the line-type features make the rendering of the point cloud sharper.

Results: A domain expert user study was done on the results of unsupervised semantic classification of Vaihingen benchmark
dataset, in the absence of ground truth [4]. Visually, the domain expert has determined an overall accuracy of 80-85% in the
classification. The point rendering of the LiDAR dataset using color scheme based on augmented semantic classification is
visibly sharper than that of semantic classification, as shown in Figure 1.
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IV. LOCAL GEOMETRIC DESCRIPTORS

The decisive role of local geometric descriptors in both structural as well as semantic classifications begs further in-depth
research on them. This area of research has been under-represented in the LiDAR community, unlike the computer graphics
or geometric modeling communities [37]. Hence, we showcase work in deriving new local geometric descriptors in airborne
LiDAR point clouds, and its comparative analysis in [5], [6]. While covariance matrix is used ubiquituously for classification,
it has been found to not identify the sharp line-type features, e.g. gable line in the roofs. Hence, the motivation is to identify
a local geometric descriptor that behaves similar to the covariance matrix C, and at the same time, highlights sharp features.

Definition: A local geometric descriptor of a point, p, is defined as the data entity that captures the shape of the local
neighborhood of a point p, N (p). This is a descriptor, because it defines the type of geometric feature of which the point
itself belongs to. Say, a point with cylindrical neighborhood belongs to a line-type feature; with disc-shaped neighborhood,
to a surface-type feature; and with spherical neighborhood, to a critical point-type feature [27]. Thus, we can see how local
geometric descriptors are significant for structural classification. In order to determine the shape of the local neighborhood,
one has to find the eigenvalue decomposition of the descriptor. Thus, the eigenvalues of the local geometric descriptor are
required for both structural as well as semantic classification. The local neighborhood itself can be either defined in terms of
points within a specific Euclidean distance, which gives a spherical neighborhood; or in terms of the number of nearest points,
e.g. k-nearest neighbors, for k ∈ Z>0.

Tensor Voting for Local Geometric Descriptor: Inspired by the work by Wang et al. [21] on the use of tensor voting [8]
for extracting sharp (line) features in triangular meshes, Sreevalsan-Nair and Kumari [5] have used tensor voting to define
the local geometric descriptor for LiDAR point clouds. On comparative analysis of the tensor voting descriptor, V , computed
for unoriented points as discussed in [20], with the conventionally used covariance matrix, C. It has been determined that C
and V are both positive semi-definite and symmetric second-order tensors. One of the differences between C and V is that
they are generated in the tangent and normal space, respectively. Hence, this property of same type makes the local geometric
descriptors comparable and substitutable.

Visual Analytics: Visualization has been used for qualitatively comparing different descriptors in [5]. Two channels are required
for encoding the eigenvalues and eigenvectors, namely color and geometry. The eigenvalues gives the structural classification,
and the eigenvectors give the orientation of the tensor, which is a representative of the local geometric descriptor. Colormap
chosen has been based on the saliency maps of the point. The saliency map gives the likelihood of the point to belong to any of
the three structural classes. For geometry channel, both point rendering (Figure 2) as well as superquadric tensor glyphs [38].
The shape of the superquadric tensor glyphs and the color encoding based on saliency map redundantly give the perception
of the structural classification of the points [5].

Anisotropic Diffusion and Local Reference Frame Alignment: The qualitative comparison of the two local geometric
descriptors, C and V , has revealed that the structural classification given by them are not equivalent. This difference has been
attributed to the generation of C in the tangent space as opposed to V in normal space. At the same time, we see that Wang et
al. have used anisotropic diffusion, using Gaussian weights and reciprocal to flip the sorted order of eigenvalues. Thus, we see
that anisotropic diffusion performs two actions: (a) “corrects” the structural classification given by V to be similar to C, and (b)
slows down diffusion across sharp features and speeds it up along sharp features. The overall outcome of the anisotropically
diffused tensor voting based local geometric descriptor, VAD.

Multi-scale Aggregation: The LiDAR point cloud analysis is generally performed on multiple scales. Multiple scales are
assigned based on the definition of the local neighborhood. There are two ways of combining the analysis across multiple
scales. One is to use optimal scale, based on optimizing a property, e.g. entropy [39] or aggregation using saliency maps [27].

Further, Sreevalsan-Nair and Kumari have found that the orientations of the local geometric descriptors, based on their
eigenvectors need to be aligned in order to compare the descriptors effectively. Hence, they align the eigenvectors, thus, aligning
the local reference frame, for comparing two different local geometric descriptors. The descriptors with local reference frames
aligned are referred to as CLRF and V LRF−AD, respectively. Sreevalsan-Nair and Kumari have observed that the use of V LRF−AD

enables identification of gable roofs, by strengthening an otherwise weak line-type feature. However, this method reduces the
number of points belonging to critical point type features. The presence of both line- and point-type features are essential for
effective geometric reconstruction.

Improvement using Gradient Energy Tensor: To improve the identification of point-type features, Sreevalsan-Nair and
Jindal [6] have proposed the use of gradients. The gradients, from first- to third-order derivatives, are computed for each point
to give the gradient-energy tensor (GET) [40]. The use of GET has been proposed owing to two reasons: (a) it detects points
of interest, which are essentially junction points, and (b) in order to find derivatives, geometry of the point cloud must be
described as a function or a map. This is possible for LiDAR point clouds, as height is a function of (x,y), thus exploiting
the 2.5-dimensional nature of the point cloud data.
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The usage of GET tensor, however, requires post-processing, as it is a 2D tensor (which need not exist as positive semi-
definite second-order tensor, but can be used as positive semi-definite second-order tensor), which is to be used with a 3D
tensor, V LRF−AD. Exclusively for the points of interest detected by the 2D tensor, a mapping of the eigenvalues and eigenvectors
between the 2D and 3D tensors is performed to complete the correction. Testing this new tensor on the Vaihingen dataset,
shows improved results in detecting point-type features.

Results: For Area-1 of Vaihingen dataset, the local geometric descriptors classify the following percentages of points as (line,
surface, point) type features: covariance matrix C gives (24%, 60%, 16%); the proposed anisotropically diffused tensor voting
based local geometric descriptor, without GET correction gives (29%, 65%, 6%) and with GET correction gives (27%, 63%,
10%). We observe that, as per design, V LRF−AD identifies more line-type features than conventionally used C, as shown by
the higher red tinge in datasets with V LRF−AD in Figure 2. We also see that the point-type features reduce drastically. Further,
correction using GET tensor improves the percentage of point-type features.

V. THE ROLE OF VISUAL ANALYTICS IN POINT CLOUD PROCESSING

In Sections III and IV, we have seen two different applications of visual analytics in processing airborne LiDAR point
clouds. One has been in using visualizations to guide unsupervised (semantic) classification [4]; and the other has been in
using the same in comparing local geometric descriptors [5], [6], which can potentially impact both structural, and, subsequently,
semantic classifications. These works go to show that data analytics can be conducted in an iterative and interactive manner,
by introducing the feedback loop that is present in visual analytics workflow. These works also go on to show how using
visual analytics can bring further insights to the dataset. Using visualization for exploration allows the viewer to adapt analytic
processes for achieving better insights to the data. A visual analytic framework, as proposed in [4] allows the user to flexibly
move across different actions in a data science workflow.

These works have the potential to drive further research. The tree visualizer based unsupervised classification is yet to be
analyzed in terms of accuracy as well as adaptability. A richer analysis may be done based on cluster shapes which the human-
in-the-loop can perceive before choosing the parameters for clustering. Similarly, the use of new local geometric descriptors,
such as the one based on tensor voting, is yet to be tested for both classification as well as geometric reconstruction.

LiDAR point clouds can be considered as spatial big data [41] given the volume and variety in the data. In a specific
instance, Cugler et al. have discussed how spatial big data may use computational models to generate hypotheses, which can be
further used for answering questions for which the hypothesis applies. In [4], [5], [6], we observe that different visualizations
have been used to create hypotheses for questions on which features reduce the uncertainty of semantic classification of points,
can intensity be used as a reliable feature for classification in a given dataset, and which points are the best to be used for
extracting footprints of buildings. While the results of visualization are qualitative, the outcomes become quantitative as we
move through the data science workflow. Nonetheless, the quality of the outcomes is limited by the the ability of the viewer
to make relevant sense of the data.

In conventional LiDAR point cloud processing, visualizations are limited to rendering points based on height or semantic
class. In this paper, we have discussed two different applications where visualizations are used for visual exploration of datasets.
This is particularly useful in order to use the knowledge discovered by perception for further analysis of the data. This is a
thread which can be further pursued for research on what are different data models, like the local geometric descriptors, which
can have two-fold benefits, namely: (a) the data model influences appropriate visual representation of the dataset; and (b) the
data model can give insights of the data or enable big data analytics, in its own right. By data model, we refer to appropriate
representations of the whole or partial data, without distorting the overall understanding of the data. Appropriate choice of
data structures helps in determining apt data models. An example of a data model is the feature graph by Keller et al. [27],
which was instrumental in reducing the point cloud without losing significant features. Representing each point in the point
cloud as a second order tensor using local geometric descriptor is another example of data model.

In order to tackle the aspect of volume of the LiDAR point clouds, spatial data structures such as octree and kd-tree, are
used for storing the data and for speeding up search operations to compute local neighborhood in [4], [5], [6]. In addition to
this, the tree visualizer in [4] iteratively subdivide the point cloud as the hierarchical EM clustering is executed at each node
of the clustering tree. Thus, the leaf nodes of the tree visualizer correspond to subset of points with a specific label, and by
design, a point belonging to a leaf node, belongs to its parents up all the levels till the root node. The user can choose an
action of binary clustering at a leaf node, using the user-defined parameter(s). Thus, the tree visualizer is designed for the user
to interactively change the choice of feature/parameter for clustering, but this action does not process the entire point cloud
unless the root node is activated for modification. Hence, tree visualizer implements a divide-and-conquer approach.

VI. CONCLUSIONS

In this paper, we have summarized the combined significance of the works done in our research group in [4], [5], [6]
in visual analytics of airborne LiDAR point clouds. We have discussed how visualizations can guide decision making for
improving unsupervised classification in [4]. The new local geometric descriptor introduced in [5] using tensor voting, and its
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improvement using gradients [6] show how visualization can enable the substitutability of local geometric descriptors. Local
geometric descriptors are conventionally used for both structural as well as semantic classifications. We have shown how the
research on processing point clouds acquired by airborne LiDAR is a topic considered in spatial big data analytics. We have
briefly described how visualizations can be used beyond summarizations to make sense of the data. This is just the tip of
the iceberg on how the use of visualizations of the 3-dimensional LiDAR can usher in multidisciplinary approaches for data
analytics.
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