Topic-wise Grouping of
GVCL Publications

Consolidated List
Lab Theme: Human-Centric Spatio-Temporal Data Science
Topics involved:
[Back
to the publications page]
Geospatial Data:
B.
B. Desai, Y.
A. Rajapur, A.
Mundayatt, and
J.
Sreevalsan-Nair,
CityAQVis:
Integrated
ML-Visualization
Sandbox Tool
for Pollutant
Estimation in
Urban Regions
Using
Multi-Source
Data (Software
Article),
Under
editorial hold
at arXiv
Preprints,
2025.
A. Mundayatt
and J.
Sreevalsan-Nair,
Large-scale
hazard
susceptibility
mapping using
machine
learning and
deep learning
techniques,
(accepted) as
the Graduate
Forum, the
Sixth Indian
Symposium on
Machine
Learning
(IndoML 2025),
2025.
K. K. Htay and
J.
Sreevalsan-Nair,
“Attention-
and
Uncertainty-based
Enhancements
to U-Net Model
for Semantic
Segmentation
of Aerial
Imagery for
Land Cover
Classification,”
in (accepted)
in the IEEE
International
Conference on
Robotics and
Mechatronics,
IEEE, 2025.
J.
Sreevalsan-Nair,
A. Mundayatt,
B. Gnanaraj,
A. Thomas, N.
C. Kumar, G.
G. Sabhahit,
S. Joshi, and
T. K.
Srikanth,
“Mental
Healthcare in
the Times of
Climate Change
Action and
Data Science,”
in Data-Driven
Insights and
Analytics for
Measurable
Sustainable
Development
Goals,
Elsevier,
2025, pp.
59-82. https://doi.org/10.1016/B978-0-443-33044-5.00010-3.
[Online].
Available: Elsevier
webpage
S. Kothari, S.
Murali, S.
Kothari, U.
Verma, and J.
Sreevalsan-Nair,
Adversarial
Robustness of
Deep Learning
Models for
Inland Water
Body
Segmentation
from SAR
Images, arXiv
Preprints,
2025.
[Online].
Available: https://arxiv.org/abs/2505.01884
J.
Sreevalsan-Nair,
“Data-Driven
Framework for
Enhanced Flash
Flood
Preparedness
and Building
Urban
Resilience,”
in Proceedings
of the 2025
IEEE Bangalore
Humanitarian
Technology
Conference
(B-HTC), pp
1-6, IEEE,
2025. https://doi.org/10.1109/B-HTC64616.2025.11116113
J.
Sreevalsan-Nair
and A.
Mundayatt,
Evolution of
Data-driven
Single- and
Multi-Hazard
Susceptibility
Mapping and
Emergence of
Deep Learning
Methods, arXiv
Preprints,
2025.
[Online].
Available: https://arxiv.org/abs/2502.09045
V. Arora, S.
Gupta, A.
Kudupu, A.
Priyadarshi,
A. Mundayatt,
and J.
Sreevalsan-Nair,
CCESAR:
Coastline
Classification-Extraction
From SAR
Images Using
CNN-U-Net
Combination,
arXiv
Preprints,
2025.
[Online].
Available: https://arxiv.org/abs/2501.12384
J.
Sreevalsan-Nair,
A. Mundayatt,
B. Gnanaraj,
A. Thomas, N.
C. Kumar, G.
G. Sabhahit,
S. Joshi, and
T. K.
Srikanth,
“Mental
Healthcare in
the Times of
Climate Change
Action and
Data Science
(accepted),”
in Data-
Driven
Insights and
Analytics for
Measurable
Sustainable
Development
Goals,
Elsevier,
2024.
V.
Jaisankar and
J.
Sreevalsan-Nair,
“SuP-SLiP:
Subsampled
Processing of
Large-scale
Static LIDAR
Point Clouds,”
in Proceedings
of the 3rd ACM
SIGSPATIAL
International
Workshop on
Searching and
Mining Large
Collections of
Geospatial
Data, ser.
GeoSearch ’24,
ACM, 2024,
40–47. (doi)(URL)
P.
Nileshbhai
Butani, J.
Sreevalsan-Nair,
and N. Kamat,
“CMA: An
End-to-End
System for
Reverse
Engineering
Choropleth Map
Images,” IEEE
Geoscience and
Remote Sensing
Letters, vol.
21, pp. 1–5,
2024, also
presented in
the GRSL
Special Stream
at the 37th
Conference on
Graphics,
Patterns and
Images
(SIBGRAPI
2024). (doi)(URL)
J.
Sreevalsan-Nair,
A. Kiran, A.
Bhattacharya,
B. D. Sagar,
G. KN, U.
Verma, K.
Lanka, and S.
K. Meher,
“InGARSS 2023
in Bangalore:
Striking a
Balance,” IEEE
Geoscience and
Remote Sensing
Magazine, vol.
12, no. 3, pp.
180–187, 2024.
(doi)
A.
Mundayatt and J. Sreevalsan-Nair, “Scaling up Study Area
Size in Flood Susceptibility Mapping,” in Proceedings of
2024 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS) (accepted), IEEE, 2024.
L. S. Liang, J. Sreevalsan-Nair, and B. S. D. Sagar,
“Multispectral Data Mining: A Focus on Remote Sensing
Satellite Images,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, e1522, October 2023. (doi)(eprint)
L.-T. Tay and J. Sreevalsan-Nair,
“Disaster Susceptibility Analysis in Remote Sensing,” in Cognitive
Sensing Technologies and Applications, G. R. Sinha, B. Subudhi,
C.-P. Fan, and H. Nisar, Eds., Stevenage, UK: Institute of
Engineering and Technology (IET), 2023 (doi)(url).
J. Sreevalsan-Nair, Co-Association
Matrices in Ensemble Clustering:
Diverse Applications and Extensions,
Preprint available at SSRN, May
2023. (url)
S. Singh and J.
Sreevalsan-Nair, “Visual Exploration of LiDAR Point Clouds,” in
Advances in Scalable and Intelligent Geospatial Analytics:
Challenges and Applications, Chapter 12, K. Kurte, S. Durbha, J.
Sanyal, L. Yang, S. Chaudhari, U. Bhangale, and U. Bharambe,
Eds., Florida, USA: CRC Press, 2023, p. 19. (doi)
J.
Sreevalsan-Nair,
“Interpolation,”
in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Eigenvalues
and
Eigenvectors,”
in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Independent
Component
Analysis,” in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Laplace
Transform," in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Expectation-Maximization
Algorithm,” in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Simulated
Annealing,” in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“K-Medoids,”
in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Fuzzy
C-Means
Clustering,"
in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Proximity
Regression,”
in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Normal
Distribution,”
in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Virtual
Globe,” in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“K-Means
Clustering,”
in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair, “K-Nearest
Neighbors,” in
Encyclopedia of
Mathematical
Geosciences,
Encyclopedia of
Earth Sciences
Series, B. S. Daya
Sagar, Q. Cheng, J.
McKinley, and F.
Agterberg, Eds.,
Cham: Springer
International
Publishing, 2022. (doi)
J.
Sreevalsan-Nair,
P. Mohapatra,
and S. Singh,
“IMGD:
Image-based
Multiscale
Global
Descriptors of
Airborne LIDAR
Point Clouds
Used for
Comparative
Analysis,” in
Smart Tools
and Apps in
Graphics (STAG
2021) -
Eurographics
Italian
Chapter
Conference, P.
Frosini, D.
Giorgi, S.
Melzi, and E.
Rodolá, Eds.,
The
Eurographics
Association,
October 2021,
pp 61--72,
ISBN:
978-3-03868-165-6.(doi)
R.
Thangavel and J.
Sreevalsan-Nair,
“CV4FEE: Flood
Extent Estimation
Using Consensus
Voting in Ensemble
of Methods for
Change Detection
in Sentinel-1 GRD
SAR Images,” in
7th Asia-Pacific
Conference on
Synthetic Aperture
Radar (APSAR
2021), IEEE, 2021,
pp. 1–6.
(doi)
S.
Singh, and J.
Sreevalsan-Nair,
“Adaptive
Multiscale
Feature
Extraction in
a Distributed
System for
Semantic
Classification
of Airborne
LiDAR Point
Clouds,” IEEE
Geoscience and
Remote Sensing
Letters, July
2021.
(doi)(preprint)
J.
Sreevalsan-Nair,
“Maximum
Likelihood,”
in
Encyclopedia
of
Mathematical
Geosciences,
Encyclopedia
of Earth
Sciences
Series, B. S.
Daya Sagar, Q.
Cheng, J.
McKinley, and
F. Agterberg,
Eds., Cham:
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“Minimum
Entropy
Deconvolution,”
in Earth
Sciences
Series,
Encyclopedia
of
Mathematical
Geosciences
(accepted), B.
S. D. Sagar,
Q. Cheng, J.
McKinley, and
F. Agterberg,
Eds., Springer
International
Publishing,
2022.
(doi)
J.
Sreevalsan-Nair, “Data
Visualization,”
in Earth
Sciences
Series,
Encyclopedia
of
Mathematical
Geosciences
(accepted), B.
S. D. Sagar,
Q. Cheng, J.
McKinley, and
F. Agterberg,
Eds., Springer
International
Publishing,
2022.
(doi)
J.
Sreevalsan-Nair,
“Multiscaling,”
in Earth
Sciences Series,
Encyclopedia of
Mathematical
Geosciences
(accepted), B.
S. D. Sagar, Q.
Cheng, J.
McKinley, and F.
Agterberg, Eds.,
Springer
International
Publishing,
2022. (doi)
J.
Sreevalsan-Nair,
“LiDAR,” in
Earth Sciences
Series,
Encyclopedia of
Mathematical
Geosciences
(accepted), B.
S. D. Sagar, Q.
Cheng, J.
McKinley, and F.
Agterberg, Eds.,
Springer
International
Publishing,
2022. (doi)
S.
Singh, and J.
Sreevalsan-Nair,
"A Distributed
System for
Optimal Scale
Feature
Extraction and
Semantic
Classification
of Airborne
LiDAR Point
Clouds," in
Distributed
Computing and
Internet
Technology,
Proceedings of
the 17th
International
Conference on
Distributed
Computing and
Internet
Technology (ICDCIT), January 2021, Sequence Number
18, Lecture
Notes in
Computer
Science,
Springer
International
Publishing. (doi)(preprint)
S.
Singh, and J.
Sreevalsan-Nair,
"A Distributed
System for
Multiscale
Feature
Extraction and
Semantic
Classification
of Airborne
LiDAR Point
Clouds,"
accepted at
the IEEE
International
India
Geoscience and
Remote Sensing
Symposium
(InGARSS)
2020, pp
74-77,
December 2020.
(doi)(pdf)
(Best Paper
Award)
J.
Sreevalsan-Nair, and P. Mohapatra, “Augmented Semantic Signatures
of Airborne
LiDAR Point
Clouds for
Comparison,”
in arXiv
(2020), May
2020, https://arxiv.org/abs/2005.02152
J.
Sreevalsan-Nair
and P.
Mohapatra,
“Influence of
Aleatoric
Uncertainty on
Semantic
Classification
of Air-borne
LiDAR Point
Clouds: A Case
Study with
Random Forest
Classifier
Using
Multiscale
Features”,
accepted in
the
Proceedings of
the 2020 IEEE
International
Geoscience and
Remote Sensing
Symposium
(IGARSS 2020),
pp 1066-1070,
September
2020. (doi)(pdf)
J.
Sreevalsan-Nair,
"Visual
Analytics of
3D Airborne
LiDAR Point
Clouds in
Urban
Regions," in
Sarda, N.,
Acharya, P.,
Sen, S. (eds)
Geospatial
Infrastructure,
Applications
and
Technologies:
India Case
Studies, pp
313-325,
Springer
Singapore,
November 2018.
(doi)(pdf)
J.
Sreevalsan-Nair,
A. Jindal, and
B. Kumari,
``Contour
Extraction in
Buildings in
Airborne LiDAR
Point Clouds
Using
Multi-scale
Local
Geometric
Descriptors
and Visual
Analytics,''
in IEEE
Journal of
Selected
Topics in
Applied Earth
Observations
and Remote
Sensing
(JSTARS),
11(7), pp
2320-2335,
June 2018. (doi)(pdf)
J.
Sreevalsan-Nair,
and A. Jindal,
``Using
Gradients and
Tensor Voting
in 3D Local
Geometric
Descriptors
for Feature
Detection in
Airborne LiDAR
Point Clouds
in Urban
Regions,'' in
the
Proceedings of
the 2017 IEEE
International
Geoscience and
Remote Sensing
Symposium
(IGARSS 2017),
July 2017. (doi)(pdf)
J.
Sreevalsan-Nair,
and B. Kumari,
``Local
Geometric
Descriptors
for
Multi-Scale
Probabilistic
Point
Classification
of Airborne
LiDAR Point
Clouds,'' in
``Modeling,
Analysis and
Visualization
of
Anisotropy,''
Mathematics
and
Visualization
Series,
Springer,
Cham, pp
175-200,
October 2017.
(from
Proceedings of
Dagstuhl
Seminar 16142)
(doi)(pdf)
B. Kumari, and
J.
Sreevalsan-Nair,
``An
interactive
visual
analytic tool
for semantic
classification
of 3D urban
LiDAR point
cloud,'' In
Proceedings of
the 23rd
SIGSPATIAL
International
Conference on
Advances in
Geographic
Information
Systems 2015
(p.
73:1--73:4),
ACM. (doi)(pdf)
B.
Kumari,
A.Ashe, and J.
Sreevalsan-Nair,
``Remote
Interactive
Visualization
of Parallel
Implementation
of Structural
Feature
Extraction of
Three-dimensional
Lidar Point
Cloud,'' in
the
Proceedings of
the Third
International
Conference on
Big Data
Analytics,
Lecture Notes
in Computer
Science (LNCS)
Series, Vol.
8883, 2014, pp
129-132,
Springer. (doi)(pdf)
[Back to
Consolidated List of Topics]
Population/Biomedical Data
V.
S. Bitra, R.
R. Vangimalla,
and J.
Sreevalsan-Nair,
“Network-based
Diseasome
Construction
from
Multi-omics
Data and
RadTrix
Visualization,”
IEEE
Transactions
on
Computational
Biology and
Bioinformatics
(to appear),
2025. https://doi.org/10.1109/TCBBIO.2025.3599771
J.
Sreevalsan-Nair,
A. Mundayatt,
B. Gnanaraj,
A. Thomas, N.
C. Kumar, G.
G. Sabhahit,
S. Joshi, and
T. K.
Srikanth,
“Mental
Healthcare in
the Times of
Climate Change
Action and
Data Science,”
in Data-Driven
Insights and
Analytics for
Measurable
Sustainable
Development
Goals,
Elsevier,
2025, pp.
59-82. https://doi.org/10.1016/B978-0-443-33044-5.00010-3.
[Online].
Available: Elsevier
webpage
K.
Sama, J.
Sreevalsan-Nair,
S. Choudhary,
S. Nagendra,
P. V. Reddy,
A. Cohen, U.
M. Mehta, and
J. Torous,
“mindLAMPVis
as a
Co-designed
Clinician-facing
Data
Visualization
Portal to
Integrate
Clinical
Observations
from Digital
Phenotyping in
Schizophrenia:
User-centered
Design Process
and Pilot
Implementation,”
JMIR Formative
Research, vol.
9:e70073,
2025, PMID:
40493647;
Preprint at https://preprints.jmir.org/preprint/70073
DOI: https://doi.org/10.2916/70073
[Online].
Available: https://formative.jmir.org/2025/1/e70073
R.
N. Laveti, J.
Sreevalsan-Nair,
and T.
Srikanth,
“EAMF: An
Entropy-enhanced
Attention-based
Ensemble
Metric
Few-Shot
Learning for
MRI Image
Classification,”
in Proceedings
of the 2025
47th Annual
International
Conference of
the IEEE
Engineering in
Medicine &
Biology
Society (EMBC)
(accepted),
IEEE, 2025.
B.
Gnanaraj, S.
Manivasagam,
and J.
Sreevalsan-Nair,
“To the Point:
From Dynamic
Heatmap Video
to Gaze
Points,” in
Proceedings of
the 2025
Symposium on
Eye Tracking
Research and
Applications,
ser. ETRA ’25,
New York, NY,
USA: ACM,
2025. https://doi.org/10.1145/3715669.3725873