
The Knight's Tour -
Evolutionary vs. Depth-First Search

V. Scott Gordon
Califomia State University, Sacramento

6000 J st., Sacramento, C A 95819
Email: gordonvs@ecs.csus.edu

AbstrM- A genetic algorithm is used lo find solutions b the
standard 8x8 knight's tour problem, and its performance is
compared against standard depth-first seareh with
backtracking. The binary encoding is described, along with a
simple repair technique which can be used to extend burs that
have reached impasse. The repair method is powerful enough
on its own to find complete tours, given randomly generated
bitstrings. But when used in coajuoctiou with a genetic
algorithm, considerably more solutioos are found. Depth-first
search is shown to find more solutious under certain
conditions, but the genetic algorithm finds solutioos more
consistently for arbitrary initial conditions.

I. THE KNIGHT'S TOUR

The Knight's Tour is as follows: given a chessboard of
specified size and dimension, find a sequence of legal
knight moves such that the knight touches every square
once and only once. Mordecki [I] shows that on an 8x8
board, an upper bound on the number of tours is
approximately 1 . 3 0 S ~ 1 0 ~ ~ . Lobbing and Wegener [Z]
computed the exact number of re-entrant, or cyclic tours
(those that end on the start square) as being
13,267,364,410,532. But the number of blind alleys is
significantly greater.

The problem has captured the imagination of chess
players and mathematicians for centuries. Taylor, Euler
and Lagrange. for example, all worked on the knight's tour,
Taylor often being credited for proposing it as a
mathematical problem in the early-I700s, and Euler for
giving it serious analysis in the mid-1700s after several of
his contemporaries had already found solutions [3]. The
Belgian chess master Koltanowski made a career of
performing knight's tour exhibitions. Audience members
would fill a chessboard with names or dates, and after a
minute of study, Koltanowski would recite a knight's tour
calling out the names on the squares, while blindfolded.

Much like the well-known "traveling salesman"
problem, it can be solved using depth-first search with
backtracking, simply by trying every possible sequence,
backing up when reaching an impasse and trying a
different route. Other algorithms have also been used.
Wamsdorff (1823) devised a method [4] which does not
require backtracking and finds one solution immediately,
but fails for n>75. Parbeny [SI used both divide-and
conquer, and a neural network, for building larger tours out
of smaller ones.

Terrill J. Slocum
Quartenvave Corporation

5780 Labath Ave., Rohnert Park, C A 94928
Email: terry@quarterwave.com

11. GmEjlc ALGORITHMS

Genetic algorithms are search algorithms based loosely
on the principles of natural evolution, particularly genetic
evolution. They have been useful for optimization
problems, such as finding the shortest path through a set of
cities. By applying simplified notions of selection,
crossover, mutation, and survival of the fittest to an
artificial population of candidate solutions, a genetic
algorithm can, with relatively little tailoring of the solution
method to the problem domain, evolve solutions. The
concept of the genetic algorithm was described by Holland
in 1975 [6], but the technique did not become popular until
the mid-1980s.

The genetic algorithm used here is the Simple Genetic
Algorithm (SGA) described by Holland [6] and later by
Goldberg [7]. In an SGA. the genetic operators are applied
successively to random members of the population until a
new population of size equal to the old population is
generated. Gradual improvement in the quality of the
solutions is achieved by selecting strings for recombination
that tend to be more fit; i.e., that themselves represent
better solutions than the other strings in the population.

We chose to use an elitist version of the SGA. In our
version of elitism, after a new population is generated, the
most fit individual from the previous generation is always
copied over the least fit individual in the new generation.
Elitism guarantees that the fitness of the most fit individual
found so far, plotted over time, never decreases.

111. ENCODING
The binary encoding described here was also developed

independently by Miler Lee [8] at Stanford University.
Both Lee and present author Slocum introduced their
encoding methods in class projects. Lee used a different
repair method than Slocum (described here).

Assuhing a fixed starting square, a complete knights
tour is a sequence of 63 moves. A cyclical knights tour is a
sequence of 64 moves. Although we did not consider
whether or not a tour was cyclical, we utilized an encoding
that represented 64 moves, to allow for the possibility of
considering cyclical tours in the future.

Depending on the square on which the knight resides.
there can be from 2 to 8 possible moves. Thus, a move can
be represented in three bits using binary encoded values
such as shown below in Figure 1.

0-7803-851 5-2/04/$20.00 02004 IEEE 1435

mailto:gordonvs@ecs.csus.edu
mailto:terry@quarterwave.com

. 4 . 3 - . 100 . 011 .
5 . . . 2 101 . . . 010
. . x x . .
6 . a . 1 110 . . * 001
. 7 . 0 . . 111 . 000 .

Rgure 1. numeric npresentations for legd knight moves from
square x

A series of 64 knight moves can thus be represented
with a binary suing of length 64x3=192 bits. A starting
square is chosen, and moves then proceed relative to the
current square. Thus, for start square FA (the center of the
board) a string which staTts:

110110001010101
is decoded into the series of digits:

110-110-001-010-101 . . . = 66125 . . .
which, in algebraic chess notation. represents the tour
fragment:

(E4) - C3 - A2 - C1 - E2 - C3 . . .
Note that in this example, square C3 is visited twice.

already violating the definition of a legal tour. This gives
rise to a natural method for evaluating the fitness of
strings: by simply counting the number of legal moves it
represents. That is, it is decoded and its path traversed until
the knight makes an illegal move (jumps off the board) or
the knight revisits a square already visited. m e number of
legal moves made up to that point. thus an integer from 1
to 63. is the fitness of the string. In the previous example,
the value of the string is 4, since four legal moves:

- C3 - A2 - C1 - E2

were made. The bits which follow an illegal move are
ignored. A fully legal tour is thus known ahead of time to
have a fitness value of 63. We always ignore the last three
bits, since we are not at this time wncemed with whether
the tour is cyclic.

An interesting property of this encoding is that it gives a
heavy bias to bits that appear early in the suing. A change
in a string alters the starting point for all subsequent
moves. Thus a change in the first few moves of a low
fitness string could result in a substantial increase in
fitness. and vice-versa, whereas a change after the first
illegal move may have no effect at all. If a string has near
optimum fitness, a change in the beginning of the string
could decrease its fitness drastically. This is one of the
reasons that we chose to use an elitist genetic algorithm.

IV. EXTENDING PARTIAL TOURS USING REPAIR

Our first experiments using the implementation
described above did not yield any legal tours even when
several million strings were evaluated over the course of
many thousands of generations. Lee [8] also made this
observation, and therefore limited his runs to smaller
boards, We instead devised a simple method of repairing,
or extending the tour using the rightmost, as yet unused
portion of the partial solutions. as follows.

For each string in the population, the point at which it
was no longer evaluated (i.e., where the knight jumped off
the board or back onto a previous square) is where repair
occurs. At that point, the move indicated (the 3-bit chunk)
is checked to see if substituting another 3-bit pattern will
allow the tour to proceed. Since there are only 7 possible
replacement values, this is not overly expensive. If a
substitution cannot be made which extends the tour,
evaluation of that string stops. If a replacement can be
made which extends the tour, the evaluation then can
proceed to the right, as before. No backtracking is
performed.

For instance, in the previous example, evaluation of the
string reached an impasse when square C3 was
encountered for a second time. Thus, the string:

1 1 0 1 1 0 0 0 1 0 1 0 ~ . . .
having reached impasse at the rightmost substring 101.
would consider using 000 instead. From E2. this would
represent a move off of the board, so substring 001 would
be considered. From E2, this represents a move to GI,
which has not yet been visited and is therefore a legal
move. The string therefore continues to be evaluated,
having been changed to:

1 1 0 1 1 0 0 0 1 0 1 0 ~ . . .
Each string is therefore still evaluated left-to-right,

repairing when an impasse is reached. Since the repair
actually modifies the string, the population is altered due
to the process of fitness evaluation. The implications of
altering a population during fitness evaluation has been
explored by Whitley et. al(1994) [91.

Starting at square E4, our first run found a tour at
generation 60, and is shown in Figure 2 (the bitstring has
been translated to octal for readability, along with a
chessboard showing the sequence of moves)

Although we were not concemed with cyclic tours. we
did note that the third solution found (at generation 99 of
the first run), was in fact cyclic (shown in Figure 3).

1436

s t r i n g = 4 3 6 5 0 3 6 0 1 6 7 2 4 7 1 2 3 3 3 6 7 0 7 2 3 5 2 4 6 6
3 6 7 1 6 0 2 1 2 4 6 4 2 2 5 6 5 7 1 0 6 4 1 0 2 1 4 3 4 6 1 0 7 2

0 5 48 0 7 3 2 03 4 6 2 9 2 0
08 3 3 04 47 3 0 2 1 60 4 5
49 0 6 3 1 0 2 6 1 4 4 1 9 28
34 0 9 5 0 43 2 2 2 7 62 5 9
53 1 4 35 1 0 0 1 1 8 4 1 2 6
3 6 11 54 5 1 42 2 3 58 63
1 5 5 2 1 3 3 8 1 7 5 6 2 5 40
1 2 3 7 1 6 5 5 24 3 9 64 57

Figure 2. first knights tour found, at generation 60

string = 4 3 6 5 0 3 6 0 1 6 7 2 4 7 1 2 3 3 3 6 1 4 7 2 5 6 5 7 1 4
2 7 6 1 6 0 2 1 2 4 5 7 0 2 5 4 3 0 1 6 0 3 4 5 2 0 7 0 5 6 5 4 1 7

0 5 2a 07 3 2 03 26 23 20
08 3 1 0 4 2 7 48 2 1 56 2 5
2 9 06 3 3 02 55 24 1 9 22
34 0 9 30 47 42 4 9 54 5 7
63 1 4 35 1 0 01 1 8 4 1 50
3 6 11 6 4 43 4 6 5 1 5 8 5 3
1 5 62 1 3 38 1 7 60 4 5 40
1 2 3 1 1 6 6 1 4 4 3 9 5 2 59

Figure 3. first cyclic knights bur found, a1 generation 99.

v. TESTMFI1-1ODOU)Gt

A. Test Methodology -- CA + Repair

The elitist SGA with repair was used, with string length
192 encoded as previously described. The population size
was 50, with one-paint crossover at a rate of SO%, and
mutation rate of 1% (that is, each bit is flipped with
probability 0.01). We chose these GA parameters because
they were commonly used in other research literature.

We ran the algorithm for 20,000 generations, which
results in 1 million individuals being evaluated. Naturally,
it is possible (in fact, quite likely) for there to be duplicates
among the 1 million strings, since the process of selection
results in copying individuals from one generation to the
next. Therefore, the GA probably evaluated considerably
less than 1 million different strings.

This process took 50 seconds on a Dell Pentium 3
laptop running Windows 2000 and Visual C++. We ran the
experiment 5 times per start square. for each of the 64
possible start squares, recording the number of distinct
lours found in each of the 64x5=320 runs.

B. Test Methodology -- Repair only

As stated earlier, without repair the GA was unable to
find any tours. Since adding repair enabled solutions to be
found, it was necessary to determine whether the GA was
doing any useful work, or if repair alone would suffice.

Since the GA was generating 1 million strings o v a the
course of its 20,000 generations, we generated 1 million
strings randomly and applied repair to each of them,
counting the number of complete tours that were produced.
We also ran this experiment 5 times per start square for
each of the 64 possible stan squares, recording the number
of distinct tours found in each of the 64x5=320 runs. We
also noted that the time to complete these runs was
comparable to that of the GA. namely, about 50 seconds
per run.

C. Test Methodology -- Backtracking

Solving a knight's tour using backtracking is a simple
exercise commonly given as an undergraduate
programming exercise. Searchin,g the web provides
numerous examples of illustrative algorithm and class
assignments. We felt it was important to compare the
performance of the GA against this standard algorithm
under similar conditions.

A start square is selected, and a move is chosen from
the sequence shown in Figure 1. If the move is legal, the
process repeats from the new square. This continues until
the move either jumps off the board, or lands on a square
already visited. Then, the last move is retracted and the
next move in sequence is tried. This was run on the same
laptop, also for 50 seconds. Each of the 64 possible start
squares was considered, and the number of tours found in
50 seconds, for each start square, was recorded.
On the Internet, one finds a variety of descriptions

regarding the observed performance of this backtracking
algorithm on the knight's tour. Many such sources describe
the 8x8 problem as being too large for simple backtracking
to find solutions in such a short period of time; in fact, one
such academic site indicated that it would take over a
million years to even find one solution! Incorporating the
Warnsdorff technique mentioned earlier is a frequently-
mentioned way of speeding the discovery of solutions.
While true, we felt that it utilized too much chess-specific
information, as we wanted to use only generic search
techniques. Besides, to our surprise, we discovered that the
supposition of simple backtracking being infeasible for
finding 8x8 tours was incorrect -- given the right start
conditions, we were able to quickly find thousands.

VI. RESULTS

A. Results .- GA + Repair

The GA was run for 50 seconds, time enough for 20.000
generations and thus 1,000,oOO string evaluations
(including the repair algorithm). The number of distinct
complete tours were tallied for each run (duplicate tours,
which presumably could happen frequently due to genetic
selection, were not counted). The chessboard in Figure 4
shows, for each square, the average number of complete
tours found starting at that square, averaged over 5 runs
each. Figure 5 gives relevant statistics:

1437

C. Results -. Backtracking
Depth-first search with backtracking was run for 50

seconds, for each start square. The number of complete
tours were tallied for each square. The chessboard in
Figure 8 shows, for each square, the number of complete
tours found starting at that square. Figure 9 shows relevant
statistics:

Figure 4. GA+Reoair: Avg. #of lours found in 20,000
gens, starting at each square (min and m a values are

shown in boldface)

[Total number of runs (64x5) I 320
Average # of tours per run
Most tours found in one run

I 89
I 642

~~

Gist toGs found in one run
% of runs with no tours found

10
I 6% Figure 8. m g : Number of tours

found staning ateach square.
Figure 5 . GA+Reoair: Performance statistics.

Total number of runs

Most tours found in one run
Least tours found in one run

B. Results -- Repair only
One million strings were generated randomly for each

start square, and the repair algorithm was applied to each
string, taking about 50 seconds for each run. The number
of distinct complete tours were tallied for each run. The
chessboard in Fieure 6 shows. for each sauare. the average - . . -

Figure 9. Backtracking: Performance statistics.
number of complete tours found starting at that square,
averaged over 5 runs each. Figure 7 gives relevant
statistics:

Figure 6. Reoair only: Avg. #of toun in I.000.000 strings,
starting at each square (min and mar values shown in boldface)

Total number of runs (64x5)
Average # of tours per run

I 320
1 3

Most tours found in one run
Least tours found in one run
% of runs with no tours found

1 29

I 20%
IO

Figure 7. -: Performance (values
rounded IO the nearest integer)

We also repeated the backtracking runs for a different
sequence of moves. Each time a square is visited, the 8
possible knight moves must be tested in tum. For the
above runs, the order of moves tried is given in Figure I .
in which the moves are tested in circular order. We also
tried the following relative order: 0-4-2-5-1-7-3-6.

The chessboard in Figure 10 shows the number of
complete tours found staning at each square, for the new
search sequence. Figure 11 shows relevant statistics.

Figure IO. Backtracking: Number of tom found starting a1 each
square. Sequence used is 14-36-2-84-7 relative 10 Figure 1.

1438

Total number of runs

Most tours found in one run
Least tours found in one run
70 of ruiis with no tours found 1 95%

Figure 11. Backtracking: Performance statistics
for revised sequence.

VII. CONCLUSIONS

Consider the summary of data as shown in Figure 12.
The experiments yielded a number of surprises. We were
pleasantly surprised by the performance of the GA in
finding complete 8x8 tours so reliably, regardless of the
initial conditions. But we were equally intrigued by the
ability of simple backtracking to find large numbers of
tours, if one is willing to uy a variety of starting
conditions.

We presented a repair algorithm which was shown to
find individual tours reliably. In fact, given arbitrary initial
conditions, the repair algorithm alone applied to random
strings appears to be more likely to find a solution than
sample backtracking. It found tours 80% of the time,
whereas backtracking found tours only 5 to 17% of the
time for the initial conditions we considered.

Incorporating a genetic algorithm with repair was
shown to find roughly 30 times as many tours as using
repair alone. It found tows in 94% of the runs, also
considerably better than backtracking. Also, the GA
appears to be much less sensitive to the starting conditions
than is backtracking; the number of tours found ranged
from 19 to 420 for the GA, while for backtracking it
ranged from 0 to 4256 (with the vast majority of start
squares yielding no solutions with backtracking). Genetic
search seems to be considerably more reliable, if less
sporadically spectacular, for this application.

Simple backtracking often performed extremely well,
finding in one case over 40W 8x8 tours in less than one
minute. In fact, it found more tours than any other method.

This is in stark contrast to statements commonly made
on websites and undergraduate homework assignments.
But its performance is very sensitive to the start square,
and the order in which squares are tried. This explains why
so many computer programmers believe that it is incapable
of finding solutions to the 8x8 problem. since there is an
8 5 9 5 % chance that a particular run, for an initial set of
conditions, will find no tours even for lengthy runs. In
some ways. backtracking performed the best, but in other
ways, it performed the worst.

This discovery suggests a simple modification for using
backtracking to solve the knight’s tour quickly. Since it
was observed that certain start squares yield many tours
quickly, simply have the algorithm try each start square for
a few seconds, and if no tours are found, try the next start
square. Once a start square is found which yields some
solutions. allow that run to continue and many solutions
will be found.

The genetic algorithm was shown to be a particularly
reliable method of finding 8x8 knight’s tours. With a
population size of only 50, finding on average 89 tours
among the <I,WO,oM) candidates is indicative of a well-
directed search, especially for a space of this nature
tours in a search space of ZI9’ strings). Repair assists the
genetic algorithm dramatically. Yet, the hill-climbing
method used borrows no chess-specific knowledge, and
does no backtracking or look-ahead. Nor does repair alone
produce very good results. The two methods compliment
each other nicely, as neither does well alone.

VIII. “WORK

The work presented here utilized what seemed to us to
be the simplest and most obvious genetic encoding and
recombination operators. It is likely that other operators
may realize significant performance improvements. In
particular, we plan next to try Whitley’s edge
recombination operator [lo] which seems well-suited to
this application.

Figure 12. Summary of results

1439

REFERENCES

[I] Mordecki. E., "On the Number of Knight's Tours,''
Prepublicaciones de Malem6tica de la Universidad de la
Repliblica, 2001l57. 2001.

Liibbing. M. and Wegener. I., "Branching Programs and
Binary Decision Diagrams. Weory and Applications." in
SIAM Monographs on Discrete Mathematics and
Applications. Philadelphia, PA, 2000.

(21

[3] Ball, W.W.R. and Coxeter. H.S.M.. Mathematical
Recreations and Essays. 13' ed.. Dover, New York, 1987.

[4] Wamsdorff. H.C., "Des Rdsselsplungs einfachste und
allgcmeinsle uisung," Schmalkalden. IS23

Parberry. I., "An Efficient Algorithm for the Knight's Tour
Pmblem," Discrete Applied Mathematics, Vol. 73. pp. 251-
260.1997

[5]

[a] Holland. J.. Adaptation in Natural and Artificial Systems. I'
ed., Univ. of Michigan, 1975.2" ed. 1992 by MIT Press.

Goldberg. D., Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley. 1989.

Lee, M., "Finding Solutions to the Knighl's Tour Problem
Using Genetic Algorithms," Genetic Algorithms and Genetic
Programming at Stanford 2wO. Published by Koza, J. at
Stanford University, 2000.

Whitley, D., Gordon, V.S.. and Mathias. K.. "Lamarcldan
Evolution. the Baldwin Effect and Function Optimization."
Parallel Prob. Solving f" Nature 3. Israel, pp 6-15, 1994

[7]

[8]

[9]

[IO] Whitley, D., Slarkweather. T., and Shaner, D., 'me
Traveling Salesman and Sequence Scheduling: Quality
Solutions Using Genetic Edge Recombination." in Handbook
of Genetic Algorithms. Davis, editor. Van Nastrand
Reinhold. pp 320-372. 1991

1440

