Diophantine Equations

Manisha Kulkarni

IIIT, Bangalore

June 25, 2012

Outline

- Introduction
- Diophantine equations of the type $f(x)=g(y)$
- Current Research in Diophantine Equations

Introduction

- Theory of Diophantine equations is a branch of Number Theory which deals with the solutions of polynomial equations in either integers or rational numbers.
$\diamond 3 x+7=y$
$\diamond x^{2}+18 x+81=y^{2}$
$\diamond x^{2}+y^{2}=z^{2}$, where x, y and z are positive integers.
\diamond The famous Pythagorean triples $(3,4,5), \quad(5,12,13)$ etc.
$\diamond x=k\left(n^{2}-m^{2}\right), \quad y=2 k n m, \quad z=k\left(n^{2}+m^{2}\right)$ generates all Pythagorean triples
$\diamond n=2, m=1, k=1$ gives $x=3, y=4, z=5$

Characteristics of Diophantine Equations

- Easy to state
- Extremely difficult to guess if it is trivial to solve or needs deep mathematics
- No general method to solve

Example : Fermat's Last Theorem

Theorem

If $n \geq 3$ is an integer then the equation

$$
x^{n}+y^{n}=z^{n}
$$

does not have any solutions x, y, z in nonzero positive Integers. In other words, the only solutions in rational numbers of the equation $x^{n}+y^{n}=1$ have either $x=0$ or $y=0$.

- Unsolved for more than 350 years
- Proved by Andrew Wiles in 1994 using Algebraic Geometry, Modular forms, Algebraic Number Theory

Example : Elliptic Curves

- Curves given by cubic equations of the form

$$
y^{2}=f(x)=x^{3}+a x^{2}+b x+c
$$

such that the roots of $f(x)$ are different.

- Think of an Elliptic Curve as a set of solutions (x, y) to its equation together with an extra point O (point at infinity)

Outline

- Introduction
- Diophantine equations of the type $f(x)=g(y)$
- Current Research in Diophantine Equations

Problem Statement

Diophantine equations of the form $f(x)=g(y)$ where $f(x)$ and $g(y)$ are polynomials with integer or rational coefficients.

Does the equation $f(x)=g(y)$ has infinitely many rational solutions with a bounded denominator?

The equation $f(x)=g(y)$ has infinitely many rational solutions with a bounded denominator if there exists a positive integer Δ such that $f(x)=g(y)$ has infinitely many rational solutions x, y satisfying $\Delta x, \Delta y \in Z$.

Motivation

- Erdos and Selfridge(1975) : Finite product of consecutive integers can never be a perfect power. In other words, the Diophantine equation

$$
x(x+1)(x+2) \cdots(x+m-1)=y^{n}
$$

does not have any nontrivial solution in integers when $m, n>1$.

Generalization and Finiteness

This leads to the general problem

$$
x(x+1)(x+2) \cdots(x+m-1)+r=y^{n}
$$

where r is any rational number.
Surprisingly, except for the two values of $r \in\{1,1 / 4\}$, we get that this equation has only finitely many solutions.

$x(x+1)(x+2) \cdots(x+m-1)+r=y^{n}$

Theorem (With B. Sury and Y. Bilu (Acta Arithmetica))

Let r be a nonzero rational number which is not a perfect power in Q. Then the equation $x(x+1)(x+2) \cdots(x+m-1)+r=y^{n}$ has at most finitely many solutions (x, y, m, n) satisfying $(x, m, n) \in Z$ and $y \in Q$, $m, n \geq 2$. Moreover, all the solutions can be calculated effectively.

Outline of proof

- $x(x+1)(x+2) \cdots(x+m-1)+r=y^{n}$
- Used Schinzel - Tijdeman theorem to get bounds on x, y and n.
- Bound on m using elementary methods.

Schinzel - Tijdeman Theorem

In $f(x)=g(y)$ when $g(y)=y^{n}$, one can use Schinzel - Tijdeman Theorem and get the result.

Schinzel - Tijdeman's Theorem.

$f(x) \in Q[x]$ has at least three simple roots and $n>1$ or $f(x)$ has at least two simple roots and $n>2$. Then $f(x)=y^{n}$ has only finitely many solutions in $x \in Z, y \in Q$.

Also there exists an effective constant $N(f)$ such that for any solution of $f(x)=y^{n}$ in $x, n \in Z, y \in Q$ satisfies $n \leq N(f)$. (Note that here n is variable)

Bilu - Tichy

In Diophantine equation $x(x+1)(x+2) \cdots(x+m-1)+r=y^{n}$, we applied Schinzel - Tijdeman theorem to get finiteness of x, y and n.

However, one can not apply Schinzel - Tijdeman if $g(y)$ is not of the form y^{n}.

In 2000, Bilu and Tichy gave a remarkable theorem in which they obtained explicit finiteness criterion for the equation $f(x)=g(y)$.

- five families of pairs of polynomials (f, g) such that $f(x)=g(y)$ has infinitely many solutions.
- each pair (f, g) for which $f(x)=g(y)$ has infinitely many solutions with bounded denominator can be determined from the above pairs (standard pairs).

Bilu - Tichy Theorem.

Bilu - Tichy Theorem.

For non-constant polynomials $f(x)$ and $g(x) \in \mathbf{Q}[x]$, the following are equivalent:

- The equation $f(x)=g(y)$ has infinitely many rational solutions with a bounded denominator.
- We have $f=\phi\left(f_{1}(\lambda)\right)$ and $g=\phi\left(g_{1}(\mu)\right)$ where $\lambda(x), \mu(x) \in \mathbf{Q}[X]$ are linear polynomials, $\phi(x) \in \mathbf{Q}[X]$, and $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair over \mathbf{Q} such that the equation $f_{1}(x)=g_{1}(y)$ has infinitely many rational solutions with a bounded denominator.

$x(x+1)(x+2) \cdots(x+m-1)=g(y)$

- $x(x+1)(x+2) \cdots(x+m-1)=g(y)$,
- Bilu - Tichy to get finiteness of x and y.
- Proved that m is bounded.

$x(x+1)(x+2) \cdots(x+m-1)=g(y)$

Theorem (With B. Sury (Indigationes Mathematicae))

- Fix $m \geq 3$ such that $m \neq 4$ and let $g(y)$ be an irreducible polynomial in $Q[y]$. Then there are only finitely many rational solutions (x, y) with bounded denominator of the equation $x(x+1)(x+2) \cdots(x+m-1)=g(y)$.
- When $m=4$ and $g(y)$ be an irreducible polynomial in $Q[y]$ then equation $x(x+1)(x+2) \cdots(x+m-1)=g(y)$ has infinitely many solutions only when $g(y)=\frac{9}{16}+b \delta(y)^{2}$ where $b \in Q^{*}$ and $\delta(y) \in Q[y]$ is a linear polynomial. Besides this, the above equation has only finitely many solutions.

$x(x+1)(x+2) \cdots(x+m-1)=g(y)$

More interesting part: we were able to bound m, the degree of f whenever $g(y)$ is an irreducible polynomial.

Theorem

Assume that $g(y)$ is an irreducible polynomial in $Q[y]$ and Δ be a positive integer. Then there exists a constant $C=C(\Delta, g)$ such that for any $m \geq C$, the equation $x(x+1)(x+2) \cdots(x+m-1)=g(y)$ does not have any rational solution with bounded denominator Δ. Moreover, C can be calculated effectively.

Idea of the Proof

Idea : if you take product of any d consecutive integers then that product is definitely divisible by d.

- 8.9.10.11 is divisible by 4
- 35.36.37.38.39.40.41 is divisible by 7

Idea of the Proof

- for any prime P, when $m \geq P$, $x(x+1)(x+2) \cdots(x+m-1)$ is divisible by P.

In other words, polynomial $x(x+1)(x+2) \cdots(x+m-1)$ has root modulo P for every P.

- Since $g(y)$ is an irreducible polynomial, there are infinitely many primes P such that $g(y)$ does not have root modulo P.
- Choose smallest and suitable prime P such that $g(y)$ does not have root modulo P. Then one can prove that for $m \geq P$, $f(x)=g(y)$ does not have root modulo P.
- $C=P$ will be the bound for m.

Diophantine Equation Reduced to Elliptic Curve

- $r+s+t=r s t=1$ where r, s, t are algebraic integers in the ring of the integers of quadratic field.

Theorem (With K. Chakraborty(Acta Arithmetica))

If $K=Q(\sqrt{d})$ is a quadratic field with d a square free integer, then except for $d=-1$ and 2, the equation $r+s+t=r s t=1$ has no solution in the ring of integers of K.

Diophantine Equation Reduced to Elliptic Curve

- $r+s+t=r s t=1$
- Used theory of elliptic curves to get the result.
- From the Diophantine equation, by doing the change of variable, one gets the elliptic curve $y^{2}=x^{3}+621 x+9774$. The result is proved by looking at the rational points on the elliptic curve.

Outline

- Introduction
- Diophantine equations of the type $f(x)=g(y)$
- Current Research in Diophantine Equations

Current Research in Diophantine Equations

T. N. Venkatramana (TIFR) in his paper(Proc.Int.Con.-Number Theory, No 1, 2004, pp. 155-161) has proved the following:

Let a and b be coprime positive integers and for an integer $n \neq 0$, let $\phi(n)$ be the number of positive integers not exceeding $|n|$ and coprime to n. Consider the infinite sequence $\phi(a x+b) ; x=\ldots .-2,-1,0,1,2,3 \ldots$. and let $g(a, b)$ denote the $g c d$ of the numbers occurring in the above sequence. Then $g(a, b)$ is bounded by 4 for all a and b.

We are trying to prove it for quadratic polynomials.

Current Research in Diophantine Equations

- We have $f(x)=a x^{2}+b X+c$ where $a, b, c \geq 0$,
- look at $f(0), \quad f(1), \quad f(2), \quad f(3), \ldots f(-1), \quad f(-2), \ldots$.
- calculate $\phi f(0), \phi f(1), \phi f(2), \ldots \phi f(-1), \phi f(-2), \ldots$.
- find the gcd of numbers occurring in the above sequence.

Current Research in Diophantine Equations

- for any prime $m \geq 5$, there exist a residue r mod m such that $f(r) \neq 0$ or $1 \bmod m$.
- get $s=m x+r$ such that
$f(s)=f(m x+r)=p$ for some prime p
- Is it true that for some $n \in Z$,
$a(m n+r)^{2}+b(m n+r)+c=p$ for some prime p.

Current Research in Diophantine Equations

Observations:

- b- even, monic polynomial $f(x)=x^{2}+b x+c$, takes values $n+1, n+4, n+9, n+16, \ldots, n+d^{2}$, for fixed n.
- for some $d \in Z, n+d^{2} \stackrel{?}{=} p$
- b - odd, monic polynomial $f(x)=x^{2}+b x+c$, takes values $n+2, n+6, n+12, \ldots, n+d+d^{2}$, for fixed n.
- for some $d \in Z, n+d+d^{2} \stackrel{?}{=} p$

