Determining Top-k Nodes in Social Networks using Shapley Value

Research Supervisor: Prof. Y. Narahari

Ramasuri Narayanam nrsuri@csa.iisc.ernet.in Electronic Commerce Laboratory Department of Computer Science and Automation Indian Institute of Science Bangalore, India

May 30, 2009

ECL, CSA, IISc

Outline of the Presentation

Influential Nodes in Social Networks

Shapely Value based Algorithm for Top-k Nodes Problem

1 Experimental Results

Social Networks

- *Social Networks:* A social structure made up of nodes that are tied by one or more specific types of relationships.
- Examples: Friendship networks, coauthorship networks, trade networks, etc.

Social Networks

- *Social Networks:* A social structure made up of nodes that are tied by one or more specific types of relationships.
- Examples: Friendship networks, coauthorship networks, trade networks, etc.

Social Networks

- *Social Networks:* A social structure made up of nodes that are tied by one or more specific types of relationships.
- Examples: Friendship networks, coauthorship networks, trade networks, etc.

• Real world social networks:

Orkut, wikis, blogs, etc.

• Social networks are modeled using a graph where nodes represent individuals and edges represents the relationships between nodes

Features of Social Networks

Research Supervisor: Prof. Y. Narahari (IISc)

ECL, CSA, IISc

・ロト ・回ト ・ヨト ・ヨト

Motivating Example 1: Diffusion of Information

- Social networks play a key role for the spread of an innovation or technology
- We would like to market a new product that we hope will be adopted by a large fraction of the network
- Which set of the individuals should we target for?
- Idea is to initially target a few influential individuals in the network who will recommend the product to other friends, and so on
- A natural question is to find a target set of desired cardinality consisting of influential nodes to maximize the volume of the information cascade

Motivating Example 2: Co-authorship Networks

- co-authorship network is concerned with the collaboration patterns among research communities
- nodes correspond to researchers and an edge exists if the two corresponding researchers collaborate in a paper
- interesting to find the most prolific researchers since they are most likely to be the trend setters for breakthrough

Linear Thresholds Model

- Call a node active if it has adopted the information
- Initially every node is inactive
- Let us consider a node i and represent its neighbors by the set N(i)
- Node *i* is influenced by a neighbor node *j* according to a weight w_{ij}. These weights are normalized in such a way that

$$\sum_{\in N(i)} w_{ij} \leq 1.$$

 Further each node *i* chooses a threshold, say θ_i, uniformly at random from the interval [0,1]

j

• This threshold represents the weighted fraction of node *i*'s neighbors that must become active in order for node *i* to become active

Given a random choice of thresholds and an initial set (call it S) of active nodes, the diffusion process propagates as follows:

- in time step t, all nodes that were active in step (t-1) remain active
- we activate every node *i* for which the total weight of its active neighbors is at least θ_i
- if A(i) is assumed to be the set of active neighbors of node *i*, then *i* gets activated if

$$\sum_{i\in A(i)} w_{ij} \geq \theta_i.$$

• This process stops when there is no new active node in a particular time interval

j

Illustrating Linear Threshold Model

Research Supervisor: Prof. Y. Narahari (IISc)

ECL, CSA, IISc

May 30, 2009 11 / 26

Image: A matrix and a matrix

- ∢ ∃ ▶

Illustrating Linear Threshold Model

Research Supervisor: Prof. Y. Narahari (IISc

ECL, CSA, IISc

Illustrating Linear Threshold Model

Research Supervisor: Prof. Y. Narahari (IISc)

ECL, CSA, IISc

Illustrating Linear Threshold Model

Research Supervisor: Prof. Y. Narahari (IISc)

ECL, CSA, IISc

Illustrating Linear Threshold Model

 $0.41 + 0.25 > \theta(= 0.64)$

→ Active Node

Research Supervisor: Prof. Y. Narahari (IISc)

ECL, CSA, IISc

Illustrating Linear Threshold Model

 $0.41 + 0.25 > \theta(= 0.64)$

→ Active Node

Research Supervisor: Prof. Y. Narahari (IISc)

ECL, CSA, IISc

Top-k Nodes Problem

• Top-*k* Nodes Problem:

- Let us define an objective function $\sigma(.)$ to be the expected number of active nodes at the end of the diffusion process
- If S is the initial set of target nodes, then σ(S) is the expected number of active nodes at the end of the diffusion process
- For economic reasons, we want to limit the size of the initial active set ${\cal S}$
- For a given constant k, the top-k nodes problem seeks to find a subset of nodes S of cardinality k that maximizes the expected value of σ(S)

Applications

- Viral Marketing
- Databases
- Water Distribution Networks
- Blogspace
- Newsgroups
- Virus propagation networks

- R. Akbarinia, F.E. Pacitti, and F.P. Valduriez. Best Position Algorithms for Top-k Queries. In VLDB, 2007.
- J. Leskovec, A. Krause, and C. Guestrin. Cost-effective outbreak detection in networks. In ACM KDD, 2007.
- N. Agarwal, H. Liu, L. Tang, and P.S. Yu. Identifying influential bloggers in a community. In WSDM, 2008.

Shapely Value based Algorithm for Top-k Nodes Problem

Research Supervisor: Prof. Y. Narahari (IISc)

ECL, CSA, IISc

May 30, 2009 14 / 26

3

< ロ > < 同 > < 三 > < 三

Our Algorithm

- *Influence of a Node:* expected number of other nodes that become active using this node
- we approach the top-k nodes problem using cooperative game theory
- we measure the influential capabilities of the nodes as provided by Shapley value
- our proposed algorithm is in two steps:
 - construction of RankList[]
 - 2 choosing the top-k nodes from RankList[]

Construction of Ranklist[]

- **1** Let π_i be the *j*-th permutation in $\hat{\Omega}$. **2** for i = 1 to t do for i = 1 to n. do 3 $MC[i] \leftarrow MC[i] + v(S_i(\pi_i) \cup \{i\}) - v(S_i(\pi_i))$ 4 end for 6 end for **o** for i = 1 to n, do compute $\Phi[i] \leftarrow \frac{MC[i]}{t}$ 8 end for
 - use an efficient sorting algorithm to sort the nodes in non-increasing order based on average marginal contribution values

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ の へ ()

Choosing Top-k Nodes

- Naive approach is to choose the first k in the RankList[] as the top-k nodoes
- Orawback: Nodes may be clustered
- RankList[]={5,4,2,7,11,15,9,13,12,10,6,14,3,1,8}
- Top 4 nodes are clustered
- Ochoose nodes satisfying
 - ranking order of the nodes
 - spreading over the network

k value	Greedy Algorithm	Shapley Value Algorithm	MDH based Algorithm	НСН	
1	Λ	A	A	2	
1	4	4	4	2	
2	8	7	7	4	
3	10	10	8	6	
4	12	12	8	7	
5	13	13	10	8	
6	14	14	13	8	
7	15	15	13	8	
8	15	15	13	8	
9	15	15	13	10	
10	15	15	13	11	
11	15	15	13	13	
12	15	15	13	13	
13	15	15	14	14	
14	15	15	15	15	
15	15	15	15	15	

Research Supervisor: Prof. Y. Narahari (IISc)

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ □
May 30, 2009

18 / 26

Experimental Results

・ロン ・四 と ・ ヨン ・ ヨン

Benchmark Algorithms for Top-k Nodes

- Greedy Algorithm
- Maximum Degree Heuristic based Algorithm
- Itigh Clustering Coefficient based Algorithm

Network Datasets

Datasat	N	
Dataset	Number of Nodes	
Sparse Random Graph	500	
Scale-free Graph	500	
Jazz	198	
NIPS	1061	
Netscience	1589	
HEP	10748	

Research Supervisor: Prof. Y. Narahari (IISc)

・ロン ・四 と ・ ヨン ・ ヨン

Experiments: Synthetic Datasets

Research Supervisor: Prof. Y. Narahari (IISc

ECL, CSA, IISc

May 30, 2009 22 / 26

Experiments: Real World Datasets

Research Supervisor: Prof. Y. Narahari (IISc

ECL, CSA, IISc

May 30, 2009 23 / 26

Visualization of Jazz Dataset

Visualization of NIPS Dataset

Research Supervisor: Prof. Y. Narahari (IISc)

May 30, 2009 25 / 26

Thank You

Research Supervisor: Prof. Y. Narahari (IISc)

ECL, CSA, IISc

May 30, 2009 26 / 26

3

< ロ > < 同 > < 三 > < 三