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Algorithmic problem solving

Connotations of problem solving

The term “Problem Solving” takes on different meanings when it is
used colloquially and when it is sought to be formalized.
Computational or algorithmic problem solving is the activity of
problem solving using a computer (machine or mechanical
methods).
Some connotations of algorithmic problem solving:

Decision
Computation
Search
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Algorithmic problem solving

Connotations of problem solving

Decision
Decision is formally defined as a function of the form:

f : I → {yes,no}

where I is the problem space.

The “decision” problem solving assigns a value of either yes or no
to every element in the problem space.
Related connotation of Recognition that assigns a value yes to
every valid element of the problem space.
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Algorithmic problem solving

Computation, Search

Computation

f : I → O

Computation maps a problem from a given “problem space” I to a
solution in the “solution space” O.

Search

f : S ×Q → 2S

Qiven a “query space Q, Search can be represented as a mapping
from a search space S to one of its subsets s ∈ S.
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Algorithmic problem solving

Algorithmic problem solving

Problem solving processes that can be written as closed-form
functions (as in the previous examples) are also called algorithmic
problem solving
An algorithm represents a step-wise mechanical procedure that
can compute the function f represented by the problem solving
process
For theoretical analyses, all algorithmic problem solving questions
are reduced to the decision problem. For instance, the function:

f : I → O

can be reduced to a decision problem as follows:

f : I ×O → {yes,no}
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Algorithmic problem solving

Algorithms and sets

The decision problem that is the cornerstone of algorithmic
problem solving, can also be represented as the “subsethood”
problem in set theory
For instance, given a problem domain I, a decision problem of the
form:

f : I → {yes,no}

can be written as a set of the form:

If = {x | x ∈ I, f (x) = yes}
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Algorithmic problem solving

Algorithms and logic

Axiomatic set theory from its genesis from Russel and
Whitehead’s Principia Mathematica, establishes close bindings
between sets and First-order Predicate Logic statements
A set of the form

X = {x | P(x)}

is said to encapsulate elements of a given type whose properties
are defined by the FoL predicate P(x)

Given that algorithmic problem solving corresponds to the
subsethood problem, we can now see that it corresponds to the
problem of logical entailment of P(If ) that defines the properties of
If starting from P(I).
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Algorithmic problem solving

Turing Machines

Turing Machines formalized the notion of effective computation or
algorithmic problem solving

Turing Machine
A Turing Machine (TM) is specified as:

TM = (S,Σ, s0, δ,H)

where
S is the state space of the computation
Σ is the input alphabet
s0 ∈ S is the starting state
δ : S × Σ→ S × Σ× {L,R} defines the TM dynamics
H ⊂ S defines the set of halting states
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Algorithmic problem solving

Turing Machines

Given an alphabet Σ, the Universe of Discourse for a TM
computation is defined as Σ∗ where ∗ is the Kleene closure
operator
A TM computation starts with the TM head on the left-most end of
an infinitely long tape. The tape comprises of a problem statement
w ∈ Σ∗ occupying finitely many cells from the start of the tape
The TM begins computation from state s0 and at each
computational step, makes a transition to one of the states s ∈ S,
optionally writes back a character c ∈ Σ onto the tape, and moves
the head one cell to the left or right, as defined by δ
The TM computation halts when it reaches one of the halting
states h ∈ H.
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Algorithmic problem solving

Turing Machines

Ironically Turing Machines were proposed to show that “effective
computation” (or algorithmic problem solving) is not possible for all
problems [Tur37]
Alan Turing posited this in response to Hilbert’s 10th problem,
famously called the Entscheidungsproblem (decision problem)
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Algorithmic problem solving

Church-Turing Thesis

The Church-Turing thesis states that if an effective computation
(algorithmic problem solving) process terminates then there is an
equivalent Turing Machine (or a λ-calculus or a recursive function) that
exists for the process.

The Church-Turing thesis is seen as the underpinning of what is
theoretically computable by any computer and has near-universal
acceptance
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Algorithmic problem solving

Uncomputability

A major cornerstone of the theory of computation is the proof of
existence of uncomputable problems
Uncomputable problems are functions of the form
f : I → {yes,no} for which a recursive function or a Turing
Machine is shown to not exist
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Algorithmic problem solving

Uncomputability

The proof of the existence of uncomputable problems derives
insight from a very significant result in Set Theory due to Cantor

The proof comprises of two parts:
1 Show that the set of all computable problems are countably infinite
2 Show that the set of all possible functions of the form

f : I → {yes,no} is uncountable when |I| =∞

This is shown by Cantor’s theorem1 that the power set of a set X
is always bigger than X even when X is infinitely large
Proof details out of the scope of this talk. (But I am always happy to
discuss more!)

1Wikipedia page for Cantor’s theorem:
http://en.wikipedia.org/wiki/Cantor%27s theorem
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Closed Worlds

Closed worlds

Classical axiomatic systems (and by implication, set theory and theory
of computation) are called constructivist, minimalist or closed-world
systems. The formalization of closed-worlds happen in different ways
in each of these domains. We shall briefly survey them in the next few
slides.

Srinath Srinivasa (IIIT-Bangalore) The open problem of open-world computing 15 / 41



Closed Worlds

The Closed-world Assumption

Axiomatic systems based on first-order logic is based on the presumption that
what is not known to be true is false.
Consider the following database table listing professors and their research
interests:

Name Research interest
R. Bera Quantum computing

K. V. Dinesha Software engineering
S. Rao Distributed computing
D. Das Wireless networks

S. Srinivasa Databases

Now, a database query (say written in SQL) of the form: “Does R. Bera has a
research interest in Intellectual Property Rights?” returns a response false.
Strictly speaking, the answer is unknown, as it is neither specified nor
proven to be false that R. Bera has a research interest in Intellectual Property
Rights.
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Closed Worlds

Atomic computations

A Turing Machine computation is said to be an atomic transition from
the start state s0 to the halt state as far as its observable behaviour is
considered. It also means the following assumptions:

The problem is specified in its entirety before the TM begins
computation
The problem statement does not change during the course of the
computation

In database systems, such criteria is explicitly invoked on transactions in the
form of the ACID (atomicity, consistency, isolation, durability) property.
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Closed Worlds

Well-founded Sets

Axiomatic set theory (based on the most popular Zermelo-Fränkel
axioms) are prevent circular subsethood conditions by the Axiom of
Foundation.
Informally, the Axiom of Foundation states the following:

Every non-empty set contains an element that is disjoint from the
set itself.

The Axiom of Foundation also entails that no set is a member of itself.
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Closed Worlds

Well-founded Sets

Because of the Axiom of Foundation, axiomatic sets require that any
system of sets be constructed from a basic set of atomic “elements.”
Every set theoretic construct that is possible in this world are only
those that can be constructed from the elements.
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Closed Worlds

Minimalist worlds

A closed world is also called a minimalist world, since ignorance is
assumed to be equivalent to falsity
In other words: In a closed world, everything is forbidden, unless
explicitly allowed (specified in the axioms or entailed by them
Totalitarian metaphor and similar metaphors from legal systems,
security policies, etc.
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Open-world problem solving

Computing in open worlds

Most real-world problems however are posed in an open-world
setting
Not only are problems not completely specified at the beginning of
a computation, problem statements may change even when the
computation is underway
Examples

Driving
Workflow
Logistics
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Open-world problem solving

Interactive Problem Solving

Interactive problem solving is a process of mapping from a
problem state to a solution state in the form of an interactive
dialogue
Each step of the interactive process is an atomic computation that
maps from one intermediate state of the process to another
Examples of interactive problem solving:

Control system
Reactive systems
Robotic navigation
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Open-world problem solving

Interactive Problem Solving

In an interactive dialogue, the computation at any interaction is
determined not only by the inputs, but also the current state – or
the history of previous interactions
Hence an important property of interactive problem solving is:
persistence of state across computations
This is in contrast to algorithmic problem solving, where each
computation starts afresh. For instance, a series of invocation of
the function sqrt(9) will give the same observable behaviour; but a
series of invocation of a function front(20) to a robot may not give
the same observable behaviour. The starting state of the second
invocation of the front() function is the ending state of the first
invocation, and so on..
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Open-world problem solving

Interactive Problem Solving

Intermediate inputs during an interactive process may depend on
the intermediate outputs provided by the computation
This makes it impossible to provide all possible inputs at the
beginning of the computation
Analogy with Heisenberg’s uncertainty principle
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Open-world problem solving

Interactive Problem Solving

Figure: Single-stream interactive computation
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Open-world problem solving

Interactive Problem Solving

Formalization

Interactive problem solving is defined by the following elements:

(S, I,O, δ)

where

S is a possibly infinite state space of the system in which the interaction happens

I is the set defining the input alphabet from the environment

O is the set defining the output alphabet from the machine

δ : S → (O × I → S) defines a computational transition from a given state, the
previous intermediate output and the input from the environment to a target state.

Given a system as above, an interactive process is a walk in the state space of the
form s1.s2, . . . sn where for any 1 ≤ i ≤ n, si ∈ S and for any si , si+1, ∃o ∈ O, i ∈ I
such that δ(si ) = f (·, ·) where f (o, i) = si+1.
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Open-world problem solving

Open-world assumptions

The challenge with interactive problem solving is that it is
impossible to determine the trajectory of computation at the start
of the process
At an intermediate state, the environment can provide any
possible input, unless we know explicitly that a specific input
cannot be provided at that stage
This encapsulates the open-world assumption:

A predicate P is deemed to be false iff it is explicitly stated as false or can be entailed
as false from the known set of axioms
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Open-world problem solving

Open-world computing

Axiomatic systems with the open-world assumption are called
“maximalist” systems
Colloquially: Everything is allowed unless explicitly forbidden
Analogies from democracies, legal systems, workflow policies, etc.
We survey the open-world assumption in different domains (logic,
sets and computing) in the next few slides
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Open-world problem solving

Reasoning in open-worlds

Logical deduction in closed worlds are monotonic in nature
Establishing a conclusion will not refute any previously established
conclusions
On the other hand, relaxing the closed-world assumption requires
reasoning processes to be non-monotonic. New observations that
enter the system after the reasoning process has begun, may
falsify previous conclusions and their entailments
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Open-world problem solving

Non-monotonic reasoning

Default Logics

One way to handle open worlds is to relax the tautological properties of axioms with
the “default” property.

Hence, if a classical logic axiom said: isBird(P)⇒ canFly(P) (All birds fly ), it can be
relaxed with default logics to say: By default, all birds fly (unless observed otherwise)

A default theory is a pair (D,W ), where W is the classical set of axioms forming the
background theory and D is a set of default rules. A default rule is of the form:
Prerequisite : Justification1, . . . Justificationn ⇒ Conclusion

For example, the default rule:

isBird(x) : ¬(¬canFly(x))⇒ canFly(x)

is read as: If x is a bird and there is no axiom (in W) or a prior conclusion that x
cannot fly, then we conclude that x can fly.
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Open-world problem solving

Non-monotonic reasoning

Abductive reasoning

Abductive reasoning is the process of building a hypothesis from a set of
observations, in contrast to reaching a conclusion from a set of axioms.

Open-world assumption and non-monotonicity are integral aspects of abductive
reasoning.

Given a base theory T and a set of observations O, abductive reasoning generates a
set of hypotheses E such that for any E ∈ E :

E and T entail O

E is consistent with T

Usually a “best theory” is chosen from the set of generated theories E based on
meta-heuristics like: maximum entropy, minimum description length, universality, etc.
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Open-world problem solving

Non-wellfounded Sets

Well-founded sets do not allow for recursive constructs in set-theoretic statements that
are essential for hypothesis construction.

For instance, when parsing a natural language text, consider that we represent each
sentence by a set representing all the entities that it refers to. Now consider a
sentence of the form:

Sentence P: This sentence P is a statement written in the English language.

The set-theoretic representation of P is given as:

P = {P,English}

While such a construct is perfectly meaningful, it is forbidden by axiomatic set theory
due to the Axiom of Foundation!
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Open-world problem solving

Non-wellfounded Sets

Hypersets

A Hyperset or a non-wellfounded set is a set that relaxes the foundation axiom (FA)
and replaces it with the anti-foundation axiom (AFA). AFA allows for circular and
infinite membership chains as long as they don’t lead to a paradox [Acz88].

Thus:

X = {x | x 6∈ x}
(Russel’s paradox) is an invalid Hyperset, while

X = {x | x ∈ x}
is a valid Hyperset

Circular membership is crucial for formalizing model building and for infinite
computational processes like reactive systems.
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Open-world problem solving

Reactive Systems

Reactive systems are systems that are meant to maintain an
interaction with the external environment [MP92]
Unlike classical connotations of problem solving, reactive systems
don’t have an end state and are not transformations
Examples: Control systems, embedded controllers,
listener/responders, etc.
The behavior of reactive systems cannot be reduced to a single
TM computation. Instead, they are modeled in the form of state
transition diagrams
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Open-world problem solving

Reactive Systems

Labeled transition system

A labeled transition system (LTS) is defined as:

LTS = (S,Σ,→)

where S is a (possibly infinite) state space, Σ is a set of labels (usually representing
I/O details) and→⊆ S × Σ× S denotes transitions between states.

An LTS is distinguished from a finite state machine in the following ways:
1 The state space (and the set of transitions) of an LTS need not be finite, or even

countable
2 The LTS does not start from the same start state for every computation

A reactive computation constitutes a (possibly infinite) walk in the state space of the
LTS. Conventional reasoning is not sufficient to reason about and compare reactive
systems. Dual mathematical models in the form of co-algebra and bisimulation have
been developed for this purpose.
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Open-world problem solving

Questions for open-world computing

Establishing liveness: When do we say that an interactive process
(especially an infinte process) has “succeeded”?
Providing guarantees: Can we say that a given interactive system
will “work” at all? Especially since anything may happen at any
time during the computation?
Expressiveness: Is interactive computing more expressive than
Turing Machines? For instance, can we solve a problem that is
provably uncomputable, using interactive computing?
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Hidden-adversary Systems

Multi-stream Interaction

The story of open-world computing becomes even more intriguing
when concurrent interactive computations are considered
A well-known result in the theory of computation is that a Turing
Machine having multiple tapes (MTM) is no more expressive than
a Turing Machine operating over a single tape
In 1997, Wegner and Goldin [WG97] contended that multi-stream
interactive computations are strictly more expressive than
single-stream interactive computations, as long as the open-world
assumption is considered.
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Hidden-adversary Systems

Multi-stream Interaction

Figure: Multi-stream interactive computation
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Hidden-adversary Systems

Multi-stream Interaction

A multi-stream interactive machine (MIM) interacts over multiple
streams at the same time
Since these processes operate in open worlds, they are not
atomic transitions nor isolated from one another
Observable behaviour on any one stream is determined by:

Inputs
History of interaction
Interactions happening on other channels

While history sensitive responses of single-stream interaction
machines are called hidden variable systems, MIMs are termed
hidden-adversary systems.
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Hidden-adversary Systems

Multi-stream Interaction

Although Wegner and Goldin did not provide a proof for their
conjecture, a number of examples help suspect that the assertion
is true:
Examples:

Interleaved and non-serializable transactions
Playing chess against two grandmasters
Passing Turing’s test with MIMs

While TMs are considered the mathematical foundation of
algorithms, MIMs are considered to be the mathematical
foundation (if and when a formalism is found) for database-backed
information systems [GST00]
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Hidden-adversary Systems

The Road Ahead

Interference schema
MIMs and the evolution of cooperation
Bridging open-world computing and multi-agent systems
Reasoning about MIMs
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Hidden-adversary Systems
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Hidden-adversary Systems

Why interaction is more powerful than algorithms?
Communications of the ACM, May 1997.

Srinath Srinivasa (IIIT-Bangalore) The open problem of open-world computing 41 / 41


	Algorithmic problem solving
	Closed Worlds
	Open-world problem solving
	Hidden-adversary Systems

