Correctness of Abstract Interpretation

Deepak D'souza and K. V. Raghavan

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Summary: What is an abstract interpretation (AI)?

- Given:
 - A complete join semi-lattice *D*. This is the "abstract" semantic domain.
 - A monotonic "abstract" transfer functions $f_{MN} : D \to D$ for each arc $M \to N$ in the control-flow graph.
- Output: A map \overline{D} from program points to elements in D.
- Ideal output: $JOP_{\overline{D}}$
 - for any program point p JOP_D[p] is the join of all values obtained by propagating initial value d₀ ∈ D through transfer functions of all paths in the CFG that end at p, where
 - transfer function of a path is the composition of the transfer functions of the arcs on the path.

Summary: What does Killdall's algorithm compute?

- In general $JOP_{\overline{D}}$ is not computable.
- Killdall's algorithm computes $LFP_{\overline{D}}(\overline{F})$, which is the least fix point of the vectorized transfer function \overline{F} .
 - Killdall requires *D* to contain no infinite ascending chains.

- In general $LFP_{\overline{D}} \ge JOP_{\overline{D}}$.
 - They are equal when lattice is finite and functions are distributive.

Summary: Theorems

- Knaster-Tarski theorem:
 - Guarantees presence of a fix point.
 - Fix points form a complete lattice.
 - LFP_D(f) $\geq \bigsqcup_{i\geq 0}(f^i(\bot))$, if f is monotonic.
 - LFP_D(f) = $\bigsqcup_{i\geq 0}^{-}(f^{i}(\bot))$, if f is continuous.
 - *D* needs to be a complete join semi-lattice. *D* may contain infinite ascending chains.

Summary: Theorems

- Knaster-Tarski theorem:
 - Guarantees presence of a fix point.
 - Fix points form a complete lattice.
 - LFP_D(f) $\geq \bigsqcup_{i\geq 0}(f^i(\bot))$, if f is monotonic.
 - LFP_D(f) = $\bigsqcup_{i\geq 0}^{-}(f^{i}(\bot))$, if f is continuous.
 - *D* needs to be a complete join semi-lattice. *D* may contain infinite ascending chains.

Exercise: Consider example in slide 51 in data-flow analysis slide set. Compute $\bigsqcup_{i\geq 0} (\overline{F}^i(\bot))$.

Static (i.e., collecting) semantics

• Lattice of values: $(Val_{\perp}, \leq_{Val_{\perp}}, \sqcup_{Val_{\perp}})$

 Env is (normally) a map e : Var → Val_⊥. However, in general, it can be any semantic domain.

ヘロト ヘ部ト ヘヨト ヘヨト

• Program semantics is given by the *nstate* function:

Static (i.e., collecting) semantics – contd.

- Initial environment S_0 is given. Normally, it is: $\{\lambda x. \bot\}$.
- Static semantics SS is a map $ProgramPoints \rightarrow 2^{Env}$.
- At each program point N,

 $SS(N) = \{e \mid nstate_p(E, S_0) = (N, S), p \text{ is a path } E \rightsquigarrow N, e \in S\}$

where E is entry point of CFG.

Static (i.e., collecting) semantics – contd.

- Initial environment S_0 is given. Normally, it is: $\{\lambda x. \bot\}$.
- Static semantics SS is a map $ProgramPoints \rightarrow 2^{Env}$.
- At each program point N,

 $SS(N) = \{e \mid nstate_p(E, S_0) = (N, S), p \text{ is a path } E \rightsquigarrow N, e \in S\}$

where E is entry point of CFG.

- Static semantics can also be phrased as an AI:
 - Concrete lattice $C : (2^{Env}, \subseteq), \perp = \phi, \top = Env, \sqcup = \cup.$
 - Initial value: $\{\lambda x. \bot\}$
 - Transfer function = *nstate*
 - Static semantics = $JOP_{\overline{C}}$; i.e., $SS(N) = JOP_{\overline{C}}[N]$.
 - Notice that framework is distributive:

$$\textit{nstate}(S_1 \sqcup S_2) = \textit{nstate}(S_1) \sqcup \textit{nstate}(S_2)$$

• Hence, $\operatorname{JOP}_{\overline{C}} = \operatorname{LFP}_{\overline{C}}(\overline{nstate})$

Sample program

 $\operatorname{JOP}_{\overline{C}} =$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

Sample program

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Exercise: Find a non-minimal fixpoint of this program.

Conditions for correctness of an AI

Should exist maps

- $\alpha: \mathcal{C} \to \mathcal{D}$ (abstraction)
- $\gamma: D \rightarrow C$ (concretization)

such that

- α and γ are monotonic
- $\gamma(\alpha(e)) \ge e$
- $\alpha(\gamma(d)) = d$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Conditions for correctness of an AI

Should exist maps

- $\alpha: \mathcal{C} \to \mathcal{D}$ (abstraction)
- $\gamma: D \rightarrow C$ (concretization)

such that

- α and γ are monotonic
- $\gamma(\alpha(e)) \ge e$
- $\alpha(\gamma(d)) = d$

▲日▼▲□▼▲□▼▲□▼ □ ののの

In this case (α, γ) are said to form a Galois connection.

Illustration of Galois connection

For constant propagation, the following mappings form a galois connection:

$$\alpha(S) = \{(x, c) \mid c = \sqcup_{Val_{\perp}}(\{e(x)|e \in S\})\}$$
$$\gamma(P) = \{e \in Env \mid \text{for each } (x, c) \in P : e(x) \leq_{Val_{\perp}} c\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Corollaries

If (α, γ) form a Galois connection then the concrete and abstract join operators satisfy the following properties.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conditions for correctness – continued

Transfer functions should satisfy one of the following (each of them implies the other):

$Conditions \ for \ correctness \ - \ continued$

Transfer functions should satisfy one of the following (each of them implies the other):

Exercise: Illustrate first condition above using constant propagation example. Let *n* be "z = x + y", and let + be strict on its arguments. Demonstrate a situation where $\alpha(f_{n,concrete}(S)) < f_{n,abstract}(\alpha(S))$

Theorem: Correctness of AI

If (α, γ) form a Galois connection and transfer functions satisfy the property mentioned above and $\alpha(S_0) \leq d_0$ then:

- $\overline{\alpha}(\operatorname{JOP}_{\overline{C}}) \leq \operatorname{JOP}_{\overline{D}}$
- $\operatorname{JOP}_{\overline{C}} \leq \overline{\gamma}(\operatorname{JOP}_{\overline{D}})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

More on correctness of AI

- We showed just now that $\overline{\gamma}(\operatorname{JOP}_{\overline{D}}) \geq \operatorname{JOP}_{\overline{C}}$.
- We have already shown that $LFP_{\overline{D}} \ge JOP_{\overline{D}}$ (see slide 74, data-flow analysis slides).

- We know γ is monotonic.
- Therefore, $\overline{\gamma}(LFP_{\overline{D}}) \geq JOP_{\overline{C}}$.

More on correctness of AI

- We showed just now that $\overline{\gamma}(\operatorname{JOP}_{\overline{D}}) \ge \operatorname{JOP}_{\overline{C}}$.
- We have already shown that LFP_D ≥ JOP_D (see slide 74, data-flow analysis slides).
- We know γ is monotonic.
- Therefore, $\overline{\gamma}(LFP_{\overline{D}}) \geq JOP_{\overline{C}}$.

In other words, the concretization of the result of abstract interpretation is an over-approximation of the collecting semantics.

Proof of corollaries

Proof of Corollary 2:

- $d_1 \sqcup d_2$ is \geq both d_1 and d_2 (property of join)
- Therefore, due to monotonicity of γ , $\gamma(d_1 \sqcup d_2)$ is \geq both $\gamma(d_1)$ and $\gamma(d_2)$.

• Therefore, by property of join, $\gamma(d_1 \sqcup d_2) \geq \gamma(d_1) \sqcup \gamma(d_2)$. \Box . Proof of Corollary 1:

• Using an argument similar to above it can be shown that $\alpha(c_1 \sqcup c_2) \ge \alpha(c_1) \sqcup \alpha(c_2).$

Proof of Corollary 1 – continued

We now need to show that $\alpha(c_1 \sqcup c_2) \leq \alpha(c_1) \sqcup \alpha(c_2)$. This would complete the proof.

- (Rightward arrows are α 's and leftward arrows are γ 's.)
- $\gamma(d_1) \ge c_1$ and $\gamma(d_2) \ge c_2$ (by defn. of Galois connection).
- c₄ = γ(d₃ = (d₁ ⊔ d₂)) is ≥ both γ(d₁) and γ(d₂) (by monotonicity of γ).
- Therefore, c_4 is \geq both c_1 and c_2 (by transitivity of \geq).
- Therefore, $c_4 \ge (c_3 = (c_1 \sqcup c_2))$ (by property of join).
- $\alpha(c_4) = d_3$ (by defn. of Galois connection). Therefore, $d_3 \ge \alpha(c_3)$ (by monotonicity of α). \Box

Proof of correctness theorem

We give a proof that $\overline{\alpha}(\operatorname{JOP}_{\overline{C}}) \leq \operatorname{JOP}_{\overline{D}}$.

- Lemma: Consider any edge $M \rightarrow N$. Let d be an abstract value c be a concrete value at M such that $\alpha(c) \leq d$. $\alpha(f_{MN,concrete}(c)) \leq f_{MN,abstract}(d)$. **Proof:** The first condition on transfer functions tells us that $\alpha(f_{MN,concrete}(c)) \leq f_{MN,abstract}(\alpha(c))$. Using the lemma's prerequisite $\alpha(c) \leq d$, and by monotonicity of $f_{MN,abstract}$, we get $f_{MN,abstract}(\alpha(c)) \leq f_{MN,abstract}(d)$. Therefore $\alpha(f_{MN,concrete}(c)) \leq f_{MN,abstract}(d)$
- Consider any path p in the CFG starting from the entry point E. We will prove using induction that for any $i \ge 0$, where p^i is the prefix of p containing i edges, $\alpha(f_{p^i,concrete}(S_0)) \le f_{p^i,abstract}(d_0)$, where $f_{p^i,concrete}(f_{p^i,abstract})$ is the composition of the concrete (abstract)

transfer functions of the edges in p^i .

Base case (i = 0): The property reduces to α(S₀) ≤ d₀. This is a pre-requisite of the theorem.

Proof – *continued*

- Inductive case: The inductive hypothesis is that $\alpha(f_{p^{i-1},concrete}(S_0)) \leq f_{p^{i-1},abstract}(d_0)$. Let the i^{th} edge of p be $L \rightarrow M$. Applying the lemma above on this edge we get $\alpha(f_{LM,concrete}(f_{p^{i-1},concrete}(S_0))) \leq f_{LM,abstract}(f_{p^{i-1},abstract}(d_0))$. This reduces to $\alpha(f_{p^i,concrete}(S_0)) \leq f_{p^i,abstract}(d_0)$. The inductive case is done.
- From the result proved above we derive

$$\alpha(c_{\rho}) \leq d_{\rho} \tag{1}$$

where p is any path, $c_p = f_{p,concrete}(S_0)$ and $d_p = f_{p,abstract}(d_0)$.

Let N be any program point, and let
 P_N = {p | p is a path from E to N}.

Proof – *continued*

• Property (1), plus the property of joins, gives us

$$\bigsqcup_{p \in P_{N}} (\alpha(c_{p})) \leq \bigsqcup_{p \in P_{N}} (d_{p}) \tag{2}$$

$$= \operatorname{JOP}_{\overline{D}}[N] \tag{3}$$

By Corollary 1 we have

$$\bigsqcup_{p \in P_{N}} (\alpha(c_{p})) = \alpha(\bigsqcup_{p \in P_{N}} (c_{p}))$$

$$= \alpha(\text{JOP}_{\overline{C}}[N])$$
(4)
(5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• Using Properties 3 and 5, and extending over all program points *N* we get

$$\overline{\alpha}(\operatorname{JOP}_{\overline{C}}) \leq \operatorname{JOP}_{\overline{D}}$$

We are done.

More results

• From the previous result we can derive the other result in the AI correctness theorem:

 $\begin{array}{ll} \overline{\alpha}(\operatorname{JOP}_{\overline{C}}) \leq \operatorname{JOP}_{\overline{D}} & (\text{previous result}) \\ \overline{\gamma}(\overline{\alpha}(\operatorname{JOP}_{\overline{C}})) \leq \overline{\gamma}(\operatorname{JOP}_{\overline{D}}) & (\text{monotonicity of } \gamma) \\ \operatorname{JOP}_{\overline{C}} \leq \overline{\gamma}(\operatorname{JOP}_{\overline{D}}) & (\text{property of Galois connection}) \end{array}$

It can also be shown that

$$\overline{\alpha}(\operatorname{LFP}_{\overline{C}}) \leq \operatorname{LFP}_{\overline{D}}$$

 $\operatorname{LFP}_{\overline{C}} \leq \overline{\gamma}(\operatorname{LFP}_{\overline{D}})$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●