
Correctness of Abstract Interpretation

Deepak D’souza and K. V. Raghavan

Summary: What is an abstract interpretation (AI)?

• Given:
• A complete join semi-lattice D. This is the “abstract”

semantic domain.
• A monotonic “abstract” transfer functions fMN : D → D for

each arc M → N in the control-flow graph.

• Output: A map D from program points to elements in D.

• Ideal output: JOPD

• for any program point p JOPD [p] is the join of all values
obtained by propagating initial value d0 ∈ D through transfer
functions of all paths in the CFG that end at p, where

• transfer function of a path is the composition of the transfer
functions of the arcs on the path.

Summary: What does Killdall’s algorithm compute?

• In general JOPD is not computable.

• Killdall’s algorithm computes LFPD(F), which is the least fix

point of the vectorized transfer function F .
• Killdall requires D to contain no infinite ascending chains.

• In general LFPD ≥ JOPD .
• They are equal when lattice is finite and functions are

distributive.

Summary: Theorems

• Knaster-Tarski theorem:
• Guarantees presence of a fix point.
• Fix points form a complete lattice.
• LFPD(f) ≥

⊔
i≥0

(f i(⊥)), if f is monotonic.

• LFPD(f) =
⊔

i≥0
(f i(⊥)), if f is continuous.

• D needs to be a complete join semi-lattice. D may contain
infinite ascending chains.

Summary: Theorems

• Knaster-Tarski theorem:
• Guarantees presence of a fix point.
• Fix points form a complete lattice.
• LFPD(f) ≥

⊔
i≥0

(f i(⊥)), if f is monotonic.

• LFPD(f) =
⊔

i≥0
(f i(⊥)), if f is continuous.

• D needs to be a complete join semi-lattice. D may contain
infinite ascending chains.

Exercise: Consider example in slide 51 in data-flow analysis slide

set. Compute
⊔

i≥0
(F

i
(⊥)).

Static (i.e., collecting) semantics

• Lattice of values: (Val⊥,≤Val⊥ ,⊔Val⊥)

0 1 2 3−1−2−3

⊥

⊤

ff tt

• Env is (normally) a map e : Var → Val⊥. However, in general,

it can be any semantic domain.

• Program semantics is given by the nstate function:

nstate(M,S1 ∈ 2Env) = (N,S2 ∈ 2Env).

M

N

nstate

S1

S2

Static (i.e., collecting) semantics – contd.

• Initial environment S0 is given. Normally, it is: {λx .⊥}.

• Static semantics SS is a map ProgramPoints → 2Env .

• At each program point N,

SS(N) = {e | nstatep(E ,S0) = (N,S), p is a path E N , e ∈ S}

where E is entry point of CFG.

Static (i.e., collecting) semantics – contd.

• Initial environment S0 is given. Normally, it is: {λx .⊥}.

• Static semantics SS is a map ProgramPoints → 2Env .

• At each program point N,

SS(N) = {e | nstatep(E ,S0) = (N,S), p is a path E N , e ∈ S}

where E is entry point of CFG.

• Static semantics can also be phrased as an AI:
• Concrete lattice C : (2Env ,⊆), ⊥ = φ, ⊤ = Env , ⊔ = ∪.
• Initial value: {λx .⊥}
• Transfer function = nstate

• Static semantics = JOPC ; i.e., SS(N) = JOPC [N].
• Notice that framework is distributive:

nstate(S1 ⊔ S2) = nstate(S1) ⊔ nstate(S2)

• Hence, JOPC = LFPC (nstate)

Sample program

JOPC =

A

B

D

x := 1

x:=x+1

C

E

2

0

x <= 100
3

4

1

F

{λx.⊥}

{1}

{101}
{2, · · · , 101}

{1, · · · , 101}

{1, · · · , 100}

Sample program

JOPC =

A

B

D

x := 1

x:=x+1

C

E

2

0

x <= 100
3

4

1

F

{λx.⊥}

{1}

{101}
{2, · · · , 101}

{1, · · · , 101}

{1, · · · , 100}

Exercise: Find a non-minimal fixpoint of this program.

Conditions for correctness of an AI

Should exist maps

• α : C → D (abstraction)

• γ : D → C (concretization)

such that

• α and γ are
monotonic

• γ(α(e)) ≥ e

• α(γ(d)) = d

γ

C α

γ

α

D

Conditions for correctness of an AI

Should exist maps

• α : C → D (abstraction)

• γ : D → C (concretization)

such that

• α and γ are
monotonic

• γ(α(e)) ≥ e

• α(γ(d)) = d

γ

C α

γ

α

D

In this case (α, γ) are said to form a Galois connection.

Illustration of Galois connection

For constant propagation, the following mappings form a galois
connection:

α(S) = {(x , c) | c = ⊔Val⊥({e(x)|e ∈ S})}

γ(P) = {e ∈ Env | for each (x , c) ∈ P : e(x) ≤Val⊥ c}

Corollaries

If (α, γ) form a Galois connection then the concrete and abstract
join operators satisfy the following properties.

AbstractConcrete

Corollary 1

Corollary 2

α

α α

γ

γ γ

d1 d2

c1 c2

Conditions for correctness – continued
Transfer functions should satisfy one of the following (each of
them implies the other):

Concrete Abstract

f

f

nstate

nstate

n n

d

n n

d′

α

γ

γ

α

Conditions for correctness – continued
Transfer functions should satisfy one of the following (each of
them implies the other):

Concrete Abstract

f

f

nstate

nstate

n n

d

n n

d′

α

γ

γ

α

Exercise: Illustrate first condition above using constant
propagation example. Let n be “z = x + y”, and let + be strict on
its arguments. Demonstrate a situation where
α(fn,concrete (S)) < fn,abstract(α(S))

Theorem: Correctness of AI

If (α, γ) form a Galois connection and transfer functions satisfy the
property mentioned above and α(S0) ≤ d0 then:

• α(JOPC) ≤ JOPD

• JOPC ≤ γ(JOPD)

α

γ

C

JOP
C

D

JOP
D

More on correctness of AI

• We showed just now that γ(JOPD) ≥ JOPC .

• We have already shown that LFPD ≥ JOPD (see slide 74,
data-flow analysis slides).

• We know γ is monotonic.

• Therefore, γ(LFPD) ≥ JOPC .

More on correctness of AI

• We showed just now that γ(JOPD) ≥ JOPC .

• We have already shown that LFPD ≥ JOPD (see slide 74,
data-flow analysis slides).

• We know γ is monotonic.

• Therefore, γ(LFPD) ≥ JOPC .

In other words, the concretization of the result of abstract inter-
pretation is an over-approximation of the collecting semantics.

Proof of corollaries

Proof of Corollary 2:

• d1 ⊔ d2 is ≥ both d1 and d2 (property of join)

• Therefore, due to monotonicity of γ, γ(d1 ⊔ d2) is ≥ both
γ(d1) and γ(d2).

• Therefore, by property of join, γ(d1 ⊔d2) ≥ γ(d1)⊔γ(d2). �.

Proof of Corollary 1:

• Using an argument similar to above it can be shown that
α(c1 ⊔ c2) ≥ α(c1) ⊔ α(c2).

Proof of Corollary 1 – continued
We now need to show that α(c1 ⊔ c2) ≤ α(c1) ⊔ α(c2). This
would complete the proof.

AbstractConcrete

c1 c2 d1 d2

c3

d3

c4

• (Rightward arrows are α’s and leftward arrows are γ’s.)

• γ(d1) ≥ c1 and γ(d2) ≥ c2 (by defn. of Galois connection).

• c4 = γ(d3 = (d1 ⊔ d2)) is ≥ both γ(d1) and γ(d2) (by
monotonicity of γ).

• Therefore, c4 is ≥ both c1 and c2 (by transitivity of ≥).

• Therefore, c4 ≥ (c3 = (c1 ⊔ c2)) (by property of join).

• α(c4) = d3 (by defn. of Galois connection). Therefore,
d3 ≥ α(c3) (by monotonicity of α). �

Proof of correctness theorem
We give a proof that α(JOPC) ≤ JOPD .

• Lemma: Consider any edge M → N. Let d be an abstract
value c be a concrete value at M such that α(c) ≤ d .
α(fMN,concrete (c)) ≤ fMN,abstract(d).
Proof: The first condition on transfer functions tells us that
α(fMN,concrete (c)) ≤ fMN,abstract(α(c)). Using the lemma’s
prerequisite α(c) ≤ d , and by monotonicity of fMN,abstract , we
get fMN,abstract(α(c)) ≤ fMN,abstract(d). Therefore
α(fMN,concrete (c)) ≤ fMN,abstract(d)

• Consider any path p in the CFG starting from the entry point
E . We will prove using induction that for any i >= 0, where
pi is the prefix of p containing i edges,
α(fpi

,concrete (S0)) ≤ fpi
,abstract(d0), where fpi

,concrete

(fpi
,abstract) is the composition of the concrete (abstract)

transfer functions of the edges in pi .
• Base case (i = 0): The property reduces to α(S0) ≤ d0. This

is a pre-requisite of the theorem.

Proof – continued

• Inductive case: The inductive hypothesis is that
α(fpi−1

,concrete (S0)) ≤ fpi−1
,abstract(d0). Let the i th edge of p

be L → M. Applying the lemma above on this edge we get
α(fLM,concrete (fpi−1

,concrete (S0))) ≤
fLM,abstract(fpi−1

,abstract(d0)). This reduces to
α(fpi

,concrete (S0)) ≤ fpi
,abstract(d0). The inductive case is done.

• From the result proved above we derive

α(cp) ≤ dp (1)

where p is any path, cp = fp,concrete (S0) and
dp = fp,abstract(d0).

• Let N be any program point, and let
PN = {p | p is a path from E to N}.

Proof – continued

• Property (1), plus the property of joins, gives us

⊔

p∈PN

(α(cp)) ≤
⊔

p∈PN

(dp) (2)

= JOPD [N] (3)

• By Corollary 1 we have

⊔

p∈PN

(α(cp)) = α(
⊔

p∈PN

(cp)) (4)

= α(JOPC [N]) (5)

• Using Properties 3 and 5, and extending over all program
points N we get

α(JOPC) ≤ JOPD

We are done.

More results

• From the previous result we can derive the other result in the
AI correctness theorem:

α(JOPC) ≤ JOPD (previous result)

γ(α(JOPC)) ≤ γ(JOPD) (monotonicity of γ)

JOPC ≤ γ(JOPD) (property of Galois connection)

• It can also be shown that

α(LFPC) ≤ LFPD

LFPC ≤ γ(LFPD)

