Speaker: Prof. C. S. Rajan (TIFR, Mumbai)
Title: On a converse to the Diophantus-Brahmagupta identity and unique factorization.

Abstract

: An instance of the Diophantus-Brahmagupta identity is that the product of two numbers each of which is a sum of two squares is again a sum of two squares. More generally, $\$ \$\left(x^{\wedge} 2+n y \wedge 2\right)\left(u^{\wedge} 2+n v \wedge 2\right)=(x u+n y v)^{\wedge} 2+n(x v-y u)^{\wedge} 2 \$ \$$. It was observed by Fermat that if a number is written as a sum of two coprime squares (a primitive representation), then their factors can also be written as a sum of two squares. However this property fails for the form $\$ x \wedge 2+5 y \wedge 2 \$$: the number $\$ 21=1 \wedge 2+5 \backslash$ times $4 \wedge 2 \$$, but its factors $\$ 3 \$$ and $\$ 7 \$$ cannot be written in the form $\$ x \wedge 2+5 y \wedge 2 \$$. We will discuss the failure of this property, the beginnings of abstract group theory, and how it is linked to the failure of unique factorization in quadratic number fields (time permitting).

