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Social Networks

@ Social Networks: A social structure made up of nodes that are tied by
one or more specific types of relationships.

@ Examples: Friendship networks, coauthorship networks, trade
networks, etc.
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Social Networks : Introduction

@ Real world social networks:

facebook EE iR B

Orkut, wikis, blogs, etc.

@ Social networks are modeled using a graph where nodes represent
individuals and edges represents the relationships between nodes
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Features of Social Networks
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Influential Nodes in Social Networks
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Motivating Example 1: Diffusion of Information

@ Social networks play a key role for the spread of an innovation or
technology

@ We would like to market a new product that we hope will be adopted
by a large fraction of the network

@ Which set of the individuals should we target for?

@ Idea is to initially target a few influential individuals in the network
who will recommend the product to other friends, and so on

@ A natural question is to find a target set of desired cardinality
consisting of influential nodes to maximize the volume of the
information cascade
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Motivating Example 2: Co-authorship Networks

@ co-authorship network is concerned with the collaboration patterns
among research communities

@ nodes correspond to researchers and an edge exists if the two
corresponding researchers collaborate in a paper

@ interesting to find the most prolific researchers since they are most
likely to be the trend setters for breakthrough
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Linear Thresholds Model

Call a node active if it has adopted the information
Initially every node is inactive

Let us consider a node i and represent its neighbors by the set N(i)

e & ¢ ¢

Node / is influenced by a neighbor node j according to a weight wj;.
These weights are normalized in such a way that

Z wy < 1.
JeN()

@ Further each node i chooses a threshold, say #;, uniformly at random
from the interval [0,1]

@ This threshold represents the weighted fraction of node i's neighbors
that must become active in order for node / to become active
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Influential Nodes in Social Networks

Given a random choice of thresholds and an initial set (call it S) of active
nodes, the diffusion process propagates as follows:

@ in time step t, all nodes that were active in step (t — 1) remain active

@ we activate every node i for which the total weight of its active
neighbors is at least 6;

@ if A(/) is assumed to be the set of active neighbors of node 7, then i
gets activated if
Z Wij > 9,’.
JeA(D)

@ This process stops when there is no new active node in a particular
time interval
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Influential Nodes in Social Networks

lllustrating Linear Threshold Model

6=0.64

Research Supervisor: Prof. Y. Narahari (I1Sc ECL, CSA, IISc May 30, 2009 11 /26



Influential Nodes in Social Networks

lllustrating Linear Threshold Model

Research Supervisor: Prof. Y. Narahari (I1Sc ECL, CSA, IISc May 30, 2009 11 /26



Influential Nodes in Social Networks

lllustrating Linear Threshold Model

. > Active Node

Research Supervisor: Prof. Y. Narahari (I1Sc ECL, CSA, IISc May 30, 2009 11 /26



Influential Nodes in Social Networks
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Influential Nodes in Social Networks

lllustrating Linear Threshold Model
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lllustrating Linear Threshold Model
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Top-k Nodes Problem

@ Top-k Nodes Problem:

@ Let us define an objective function o(.) to be the expected number of
active nodes at the end of the diffusion process

o If S is the initial set of target nodes, then o(S) is the expected number
of active nodes at the end of the diffusion process

@ For economic reasons, we want to limit the size of the initial active set
S

o For a given constant k, the top-k nodes problem seeks to find a subset
of nodes S of cardinality k that maximizes the expected value of o(S)

Research Supervisor: Prof. Y. Narahari (I1Sc ECL, CSA, IISc May 30, 2009 12 /26



Applications

Viral Marketing

Databases

Water Distribution Networks
Blogspace

Newsgroups

e 6 6 ¢ ¢ ¢

Virus propagation networks

@ R. Akbarinia, F.E. Pacitti, and F.P. Valduriez. Best Position Algorithms for
Top-k Queries. In VLDB, 2007.

@ J. Leskovec, A. Krause, and C. Guestrin. Cost-effective outbreak detection
in networks. In ACM KDD, 2007.

@ N. Agarwal, H. Liu, L. Tang, and P.S. Yu. Ildentifying influential bloggers in
a community. In WSDM, 2008.
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Shapely Value based Algorithm for Top-k Nodes Problem
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Our Algorithm

@ Influence of a Node: expected number of other nodes that become
active using this node

@ we approach the top-k nodes problem using cooperative game theory

@ we measure the influential capabilities of the nodes as provided by
Shapley value

@ our proposed algorithm is in two steps:

© construction of RankList]]
@ choosing the top-k nodes from RankList]]
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Construction of Ranklist[]

A

Q Let 7 be the j-th permutation in 2.

Q forj=1totdo

Q for i =1 to n, do

o MC[i] — MC[i] + v(Si(m;) U{i}) — v(Si(m))

o end for

Q end for

@ fori=1ton, do

(%] compute ®[i] — @

O end for

@ use an efficient sorting algorithm to sort the nodes in non-increasing

order based on average marginal contribution values
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Choosing Top-k Nodes

© Naive approach is to choose the first k in the RankList[] as the top-k

nodoes
@ Drawback: Nodes may be clustered
© RankList[]={5,4,2,7,11,15,9,13,12,10,6,14,3,1,8}
@ Top 4 nodes are clustered
© Choose nodes satisfying

@ ranking order of the nodes
@ spreading over the network

8 7 8 12 15
4
5 9 11 13 14
1 2 3 19
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Shapely Value based Algorithm for Top-k Nodes Problem

k value Greedy Shapley Value MDH HCH
Algorithm Algorithm based Algorithm
1 4 4 4 2
2 8 7 7 4
3 10 10 8 6
4 12 12 8 7
5 13 13 10 8
6 14 14 13 8
7 15 15 13 8
8 15 15 13 8
9 15 15 13 10
10 15 15 13 11
11 15 15 13 13
12 15 15 13 13
13 15 15 14 14
14 15 15 15 15
15 15 15 15 15
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Experimental Results

Experimental Results
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Benchmark Algorithms for Top-k Nodes

© Greedy Algorithm

@ Maximum Degree Heuristic based Algorithm
© High Clustering Coefficient based Algorithm
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Network Datasets

Dataset Number of Nodes

Sparse Random Graph 500

Scale-free Graph 500

Jazz 198

NIPS 1061

Netscience 1589

HEP 10748
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Experiments: Synthetic Datasets
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Experiments: Real World Datasets
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Experimental Results

Visualization of Jazz Dataset
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Visualization of NIPS Dataset

B  this symbol represents influential node
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Thank You
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