
Model Based Software Test Plan AutomationModel Based Software Test Plan Automation

Ravi Gorthi, Ph D
Test Automation Research Lab

Software Engineering and Technology Labs
Infosys Technologies Limited, Bangalore, India

email: ravi_gorthi@infosys.com

Topics

• An overview on Test Case and Regression Test Case Creation and
Maintenance

– Test Plan vs Test Execution
– Creation and maintenance of test scenarios, cases, data and scripts
– What are regression test cases? Creation and maintenance of regression test

cases

2Copyrighted material of Infosys Technologies Limited

• The relevance of this area to the Total-Cost-of-Ownership (TCO) of
medium to large s/w applications

– Typical number of test scenarios and cases in a medium / large s/w application
– Efforts and costs involved in the creation and maintenance of test cases and

regression test cases

Topics

• The state-of-the-art research and practices of this field
– Model based (UML Activity Diagram, State Diagram based) manual and

automated creation and maintenance of test and regression test cases

• Some interesting work done by the speaker and his team in this area
for the last three years

3Copyrighted material of Infosys Technologies Limited

– The concept of ‘Unit of Behavior’
– Techniques for automatic generation of test cases and regression test cases from

UML Activity Diagrams
– Results of field trials of these techniques

Q& A

Background

• Software Testing
– Functional and non-functional testing
– Planning phase and Execution phase

• Planning phase of functional testing: creation and maintenance
of,

– Test scenarios: correspond to UML use-cases

4Copyrighted material of Infosys Technologies Limited

– Test scenarios: correspond to UML use-cases
– Test cases: correspond to ‘input, expected output’ patterns
– Test data: correspond to actual input and expected output values
– Test scripts: correspond to code that the execution phase teams can use

• Execution phase of functional testing:
– Creation and maintenance of required test execution environments
– Execution of required test scenarios (include test cases, data and scripts)

What are Test Scenarios, Cases and Data?

• Test Scenarios

– Testing needs of a logical unit of SRS (e.g. use-case / a logical path in a
use-case)

• Test Cases

– Test requirement descriptions related to each unit of stimuli-response

– Typically described in terms of <Inputs to software system, A set of

5Copyrighted material of Infosys Technologies Limited

– Typically described in terms of <Inputs to software system, A set of
conditions, Outputs from software system>

• E.g. <Input: user-id and password; Condition: incorrect password; Output:
error message-1>

• Test Data (corresponding to each test case)

– Specifications of test inputs, conditions and expected output

• E.g. <Inputs: ravi_gorthi and abc2$password; Condition: abc2$password is an
incorrect password; Output: “Invalid Password - enter password again”>

Background

• Regression Testing
– Arises out of changes made to a software application
– Functional and non-functional testing
– Planning phase and Execution phase

• Planning phase of regression testing: creation and
maintenance of,

6Copyrighted material of Infosys Technologies Limited

maintenance of,
– Find changes (additions, modifications and deletions) to functional test scenarios,

cases, data and scripts
– Effect the required changes

• Execution phase of functional testing:
– Find out the changes required to the test execution environments
– Execution of required test scenarios (include test cases, data and scripts)

Relevance of Test Planning

• NIST report 2002

– Software Errors Cost U.S. Economy $59.5 Billion Annually

– More than a third of these costs ($22.2 b) could be eliminated by an improved
testing infrastructure

– An undetected defect, post software deployment, costs $14K to fix

• Medium to large s/w applications are observed to have anywhere
between 5K to 100K test cases

7Copyrighted material of Infosys Technologies Limited

between 5K to 100K test cases

• Typically consumes 30 to 50% of total testing efforts (testing typically
consumes 40 to 60% of total software TCO)

• Every 10% improvement in productivity and quality of testing can lead
to saving of millions of dollars

Current state of affairs

• Planning phase of functional testing:
– Functional and regression test planning is manual

• Execution phase of functional and regression testing:

8Copyrighted material of Infosys Technologies Limited

• Execution phase of functional and regression testing:
– Tools exist that aid creation, maintenance and execution of test scenarios leading

to productivity and/or quality improvements

Model Transformations in Test Plan Automation

9Copyrighted material of Infosys Technologies Limited

Unified Modeling Language

• UML is a popular modeling language widely used by software
engineering professionals, especially suited to engineer MIS
applications

• A semi-formal language

10Copyrighted material of Infosys Technologies Limited

• A semi-formal language
– Structured but NOT a language to unambiguously specify the expected

behavior of a software application
– Offers methodologies and models to perform analysis and design of

software applications

Model Based Approach to Test Plan Automation

• Generation of
– system test , regression test and integration test

• scenarios, cases, data and scripts

from

– Analysis models

11Copyrighted material of Infosys Technologies Limited

– Analysis models
• UML Use-Case Activity Diagrams, State Diagrams, Communication,

Collaboration Diagrams

– Design Models
• Class Diagrams, Sequence Diagrams

Test Case Generation

• From UML Use-Case Activity Diagrams (UCAD)

– UCAD: Directed Cyclic Graph

– Automatic Generation of Test Scenarios

• One can automatically generate test scenarios through a DFS with

12Copyrighted material of Infosys Technologies Limited

• One can automatically generate test scenarios through a DFS with
restrictions on traversal of cyclic paths

– Automatic Generation of Test Cases

• One can automatically generate test cases by slicing each scenario
into tuples of <Inputs, Processing, Conditions, Expected Output>

Sample UML Use Case Activity Diagram (UCAD)

13Copyrighted material of Infosys Technologies Limited

Sample UML Use Case Activity Diagram (UCAD)

14Copyrighted material of Infosys Technologies Limited

Test Case Generation from UCADs: Methodology

Develop one or more use-case
activity diagrams based on a
predefined set of rules

Automatically check consistency

Develop one or more use-case
Diagrams from requirements

15Copyrighted material of Infosys Technologies Limited

Automatically check consistency
of the use-case activity diagrams

Validate the consistent
use-case activity diagrams
with one or more users

Generate one or more functional
test cases from the validated
use-case activity diagrams

Test Case Generation from UCADs: Case Study

– Consider the following use case from ‘Automatic Teller Machine (ATM)
System’: With-draw Cash using a debit-card from ATM

• System displays the msg: “Enter the debit card number (Swipe the card)”

• User inputs the debit-card number (swipes the card)

• System validates the card (assume the card number is valid)

• System displays the msg: “Enter the PIN”

• User enters the PIN

16Copyrighted material of Infosys Technologies Limited

• User enters the PIN

• System Validates the PIN (assume the PIN is valid)

• System displays the menu of choices and the msg: “Choose from the Menu”

• User selects the Menu option: “With-draw Cash from SB Account”

• System displays the msg: “Enter the amount”

• User enters the amount

• System validates the amount (assume the amount is correct)

• System displays the msg: “Take the amount; Thank you!”

Test Case Generation from UCADs: Case Study

– Add the following exceptions to the ATM Use Case

• Debit-card swiped by the user is invalid

• PIN entered by the user is invalid (the 1st time error)

• PIN entered by the user is invalid (the 3rd consecutive time error)

17Copyrighted material of Infosys Technologies Limited

• PIN entered by the user is invalid (the 3rd consecutive time error)

• Amount entered by the user is invalid (amount > current balance)

• Amount entered by the user is invalid (amount > daily upper-limit)

Test Case Generation from UCADs: Case Study

18Copyrighted material of Infosys Technologies Limited

Results of TCG in a few Real-world Projects

PRODUCTIVITY FIGURES
FROM FIELD TRIALS

Healthcare-
Claims

Internet
Banking

Retail –
Ecommerce

No of test cases generated 1082 1772 23366

No of task flows involved 32 48 586

19Copyrighted material of Infosys Technologies Limited

No of task flows involved

Effort estimated for manual
procedure (Person Days)

23 38 465.9

Effort spent using our tool
(Person Days)

13.5 17.6 132

% Effort Saving 41% 54% 72%

Test Case Generation

• From UML Use-Case Activity Diagrams (UCAD)

– Peter Zielczynski [8] and Jim Heumann [9] offer the basics on the
analysis of use-cases to manually generate test cases; good to start with.

– Lionel Briand and Yvan Labiche [12], Clementine et al [10], Chen et al

20Copyrighted material of Infosys Technologies Limited

– Lionel Briand and Yvan Labiche [12], Clementine et al [10], Chen et al
[11], Linzhang et al [13] and Chen et al [14] offer the next level of detail
on semi-auto / auto generation of test cases from use-cases

– Ravi Gorthi et al [1] use a novel concept from Paul Gerrard [15] called
‘unit of behavior’ to automatically generate test scenarios and test cases
from UCADs

Test Case Generation

• From System Requirements Specifications (SRS)
– SRS is typically semi-structured

– Structured SRS

• First break a given SRS into a set of Use-Cases

• Express each Use-Case as ordered sequence of tuples of <Inputs, Conditions, Expected
Output>

• One can automatically generate Use-Case Activity Diagrams (UCADs) from the

21Copyrighted material of Infosys Technologies Limited

• One can automatically generate Use-Case Activity Diagrams (UCADs) from the
Structured SRS

– Automatic Generation of Test Scenarios

• One can automatically generate test scenarios through a DFS with restrictions on
traversal of cyclic paths

– Automatic Generation of Test Cases

• One can automatically generate test cases by slicing each scenario into tuples of <Inputs,
Conditions, Expected Output>

Structuring SRS: Use Case Template

22Copyrighted material of Infosys Technologies Limited

ATM Example : Structuring SRS

23Copyrighted material of Infosys Technologies Limited

Automatic Generation of Use Case Activity
Diagrams (UCADs) from Structured SRS

24Copyrighted material of Infosys Technologies Limited

Test Case Generation from Structured SRS

25Copyrighted material of Infosys Technologies Limited

Test Case Generation

• From UML State Diagrams / Charts
– Philippe and Pascale [20], Supaporn and Wanchai [21] offer the basics

on automatically generating of test cases from UML state diagrams

– Stefania Gnesi et al [22] and Valdivino Santiago et all [23] offer the next
level of details on the automated generation of test cases from UML state

26Copyrighted material of Infosys Technologies Limited

diagrams

– Jeff Offutt et al [24] and Stefan Hildenbrand [25] offer great details on the
analysis of state-based specifications and finite state automata to
generate test cases.

Model Based Regression Test Case Selection

Some important issues related to regression testing:
– When a software application is modified due to ‘change requests’

received from business users, the application need to be tested to ensure
that the modified system meets all the functional (and non-functional)
requirements

– Typically, medium to large software applications are observed to involve,

27Copyrighted material of Infosys Technologies Limited

• a few tens of to a few hundreds of ‘o-o classes’

• A few thousands of to a few tens of thousands of ‘methods’

– In general, each cycle of software maintenance involves changes to
around 15 to 30% of methods

– There will be many classes and methods which remain unchanged
across maintenance cycles

– Do we need to test a modified application, completely? Answer is NO!

Model Based Regression Test Case Selection
• Input

– Two consecutive versions of UML Use-Case Activity Diagrams (UCADs)
• UCAD-v1 and UCAD-v2

• Processing
– Identify changed nodes in UCAD-v2 with respect to UCAD-v1

• Modified, newly added, deleted or shifted nodes

28Copyrighted material of Infosys Technologies Limited

– Select regression test suite
• Paths in the UCAD-v2 that are affected due to the above types of node

changes

– Paths in UCAD-v2 that are the same as those in UCAD-v1 need NOT be tested

• Output
– Selected regression test suite to test UCAD-v2

Model Based Regression Test Case Selection

29Copyrighted material of Infosys Technologies Limited

Model Based Regression Test Case Selection

• Identify changes to the nodes of UCAD-v2 with respect to UCAD-v1

– Nodes in a given UCAD are structured as

• Node type <Sequence-number.Version-number>
• E.g UA <1.0>; SP <2.3>; CO <3.1>; SO <1.4>

– All changes to the nodes of UCAD-v2 can be categorized as

30Copyrighted material of Infosys Technologies Limited

– All changes to the nodes of UCAD-v2 can be categorized as

• Modifications to an existing node
• Deletion of an existing node
• Shifting of an existing node
• Addition of a new node

• Generate Selected Regression Test Suite for UCAD-v2
– Paths that contain one or more changed nodes

Model Based Regression Test Case Selection

�Examples : UA: <1.0> , SO: <2.2>, CO: <3.0>, FI: <1.0>
�Structure of Node Version Number

UA : <1.0>

Node Type
• UA – User Action node

• SO – System Output node
• CO – Condition node

Node Version – The number after the period
• The version of the node itself – will

be incremented after each
modification.

31Copyrighted material of Infosys Technologies Limited

• CO – Condition node
• FI – Final node

Node Sequence – The number before the period
• The sequence of the node according to its type

� Newly added node will always receive
the next available node sequence

� Deleted node sequence will never be
used again

Model Based Regression Test Case Selection

• Some nodes are more critical than the others.
• Example: Verification of PIN number and account balance VS.

Verification of correct display of welcome message

• Assign criticality to nodes
– [H] – High criticality

32Copyrighted material of Infosys Technologies Limited

– [M] – Medium criticality
– [L] – Low criticality (Default setting)

Newly Added

nodes

Modified

nodes

33Copyrighted material of Infosys Technologies Limited
Original Influx Taskflow Diagram New Influx Taskflow Diagram

Deleted nodes
Newly Added

nodes

Modified

nodes

34Copyrighted material of Infosys Technologies Limited
Original Influx Taskflow Diagram New Influx Taskflow Diagram

Model Based Regression Test Case Selection

35Copyrighted material of Infosys Technologies Limited

Experimental Results from a few Real-World
Projects

Healthcare-
Claims

Internet
Banking

Retail Order
Management

No of UCAD paths involved 320 730 4300

No of regressiontestcasesselected 1610 4780 20410

36Copyrighted material of Infosys Technologies Limited

No of regressiontestcasesselected 1610 4780 20410

Effort estimated for manual
procedure (Person Days) 23 78 466

Effort spent using our tool (Person
Days) 13.5 37.6 186

Productivity gain 41% 52% 60%

Selective References

1. Ravi Gorthi et al., “Model-Based Automated Test Case Generation”, SETLabs Briefings, Vol 6, No
1, 2008, pp 39 – 46. http://www.infosys.com/research/publications/toc-software-validation.asp

2. Ravi Gorthi, Anjaneyulu Pasala, et al., Specification-based Approach to Select Regression Test
Suite to Validate Changed Software, accepted for publication at the 15th Asia-Pacific Software
Engineering Conference (APSEC - 2008), Dec. 3-5, 2008.

3. Anjaneyulu Pasala, Ravi Gorthi, et al., “Selection of regression test suite to validate software
applications upon deployment of upgrades”, 19th Australian Software Engineering conference
(ASWEC – 2008), 25-28 March 2008, pp 130-138.

4. Anjaneyulu P, et al. “An Approach for Test Suite Selection to Validate Applications on Deployment
of COTS Upgrades”, 12th IEEE Asia Pacific Software Engineering Conference, Dec. 2005, pp

37Copyrighted material of Infosys Technologies Limited

of COTS Upgrades”, 12th IEEE Asia Pacific Software Engineering Conference, Dec. 2005, pp
401–407.

5. Anjaneyulu P, et al “An Approach Based on Modeling Dynamic Behavior of the System to Assess
the Impact of COTS Upgrades”, 13th IEEE Asia-Pacific Software Engineering Conference
(APSEC), Dec. 2006, pp 19-26.

6. Anjaneyulu Pasala, Ravi Gorthi et al., “How to Select Regression Tests to Validate Applications
upon Deployment of Upgrades”, SETLabs Briefings, Vol 6, No1, 2008, pages 55 – 63.

7. Anjaneyulu Pasala et al., “On the validation of API execution-sequence to assess the correctness
of application upon COTS upgrades deployment”, 6th IEEE International conference on COTS
based software systems, (ICCBSS - 2007), February-March 2007, at Banff, Canada.

8. Peter Zielczynski, “Traceability from Use Cases to Test Cases”,
http://www.ibm.com/developerworks/rational/library/04/r-3217/

Selective References

9. Jim Heumann, “Generating Test Cases from Use Cases”, the Rational Edge, June 2001
10. Clementine Nebut, et al, “Automatic Test Generation: A Use Case Driven Approach”, IEEE

Transactions on Software Engineering, vol 32, n 3, March 2006
11. Chen T Y, et al, “A Choice Relation Framework for Supporting Category-Partition Test Case

Generation”, IEEE Transactions on Software Engineering, vol 29, no 7, July 2003
12. Lionel Briand and Yvan Labiche, “A UML-Based Approach to System Testing”, Carleton University

TR SCE-01-01-Version 4, June 2002
13. Wang Linzhang, et al, “Generating Test Cases from UML Activity Diagram based on Gray-Box

Method”, Proceedings of APSEC 2004
14. Chen Mingsong, et al, “Automatic Test Case Generation for UML Activity Diagrams”, AST 06,

38Copyrighted material of Infosys Technologies Limited

14. Chen Mingsong, et al, “Automatic Test Case Generation for UML Activity Diagrams”, AST 06,
Shanghai, China, May 2006

15. Paul Gerrard, “Testing Requirements”, Systeme Evolutif,
http://www.evolutif.co.uk/testReqs/TESTREQS.html

16. Thomas Ostrand and Marc Balcer, “The Category Partition Method for Specifying and Generating
Functional Tests”, Communications of the ACM, vol 31, no 6, June 1988

17. Aynur Abdurazik and Jeff Offutt, “Generating Test Cases from UML Specifications”, ISE-TR-99-09,
Information and Software Engineering, George Mason University, May, 1999

18. James Clarke, “Automated Test Generation from a Behavioral Model”, Software Quality Week
Conference, May, 1998

Selective References

19. James Clarke, “Automated Test Generation from a Behavioral Model”, Software Quality Week
Conference, May, 1998

20. Philippe Chevalley and Pascale Thevenod-Fosse, “Automated Generation of Statistical Test
Cases from UML State Diagrams”, Proceedings of COMPSAC 2001

21. Supaporn Kansomkeat and Wanchai Rivepiboon, “Automated-Generating Test Case Using UML
Statechart Diagrams”, Proceedings of SAICSIT, 2003

22. Stefania Gnesi et al, “Formal Test-Case Generation for UML Statecharts”, Proceedings of 9th IEEE
Int Conf on Engineering Complex Computer Systems, 2004

23. A-Valdivino Santiago et al, “A Practical Approach for Automated Test Case Generation using
Statecharts”, Proceedings of COMPSAC 2006

39Copyrighted material of Infosys Technologies Limited

Statecharts”, Proceedings of COMPSAC 2006
24. Jeff Offutt et al, “Generating test data from state-based specifications”, in Software Testing,

Verification and Reliability, John Wiley & Sons Ltd, 2003
25. Stefan Hildenbrand, “Generation of Test Cases”, Semester Thesis, Summer of 2005, ETH Zurich
26. Basanieri F and Bertolino A, “A Practical Approach to UML-based derivation of integration tests”,

http://www1.isti.cnr.it/~antonia/publications2002.html
27. Richard DeMillo and Jefferson Offutt, “Constraint-Based Automatic Test Data Generation”, IEEE

Transactions on Software Engineering, vol 17, no 9, Sep 1991
28. Bogdan Korel, “Automated Software Test Data Generation”, IEEE Transactions on Software

Engineering, vol 16, no 8, August 1990

Selective References

29. Gregg Rothermel et al., “a safe, efficient regression test selection technique”, ACM transactions on
software engineering and methodology, Vol. 6, No. 2, April 1997, pp 173 – 210.

30. Greg Rothermel, et al., “Analyzing Regression Test Selection Techniques”, IEEE Transactions on
Software Engineering, Vol. 22, No. 8, August 1996, pp 529-551.

31. Zheng J, et al. “Applying Regression Test Selection for COTS-based Applications”, International
Conference on Software Engineering (ICSE), May 20-28, 2006, pp 512-521.

32. Briand, L.C.; Labiche, Y.; Soccar, G., “Automating impact analysis and regression test selection
based on UML designs”, International Conference on Software Maintenance, 3-6 October 2002, pp
252 – 261.

40Copyrighted material of Infosys Technologies Limited

