Infosys Win in the flat world

Model Based Software Test Plan Automation

Ravi Gorthi, Ph D

Test Automation Research Lab

Software Engineering and Technology Labs

Infosys Technologies Limited, Bangalore, India
email:

Topics

* An overview on Test Case and Regression Test Case Creation and
Maintenance
— Test Plan vs Test Execution
— Creation and maintenance of test scenarios, cases, data and scripts

— What are regression test cases? Creation and maintenance of regression test
cases

* The relevance of this area to the Total-Cost-of-Ownership (TCO) of
medium to large s/w applications
— Typical number of test scenarios and cases in a medium / large s/w application

— Efforts and costs involved in the creation and maintenance of test cases and
regression test cases

@ L] [
Inf()SYS Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Topics

* The state-of-the-art research and practices of this field

— Model based (UML Activity Diagram, State Diagram based) manual and
automated creation and maintenance of test and regression test cases

* Some interesting work done by the speaker and his team in this area
for the last three years
— The concept of ‘Unit of Behavior’

— Techniques for automatic generation of test cases and regression test cases from
UML Activity Diagrams

— Results of field trials of these techniques

Q& A

@ L] [
Inf()SYS Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Background

» Software Testing
— Functional and non-functional testing
— Planning phase and Execution phase

* Planning phase of functional testing: creation and maintenance
of,
— Test scenarios: correspond to UML use-cases
— Test cases: correspond to ‘input, expected output’ patterns

— Test data: correspond to actual input and expected output values
— Test scripts: correspond to code that the execution phase teams can use

» Execution phase of functional testing:
— Creation and maintenance of required test execution environments
— Execution of required test scenarios (include test cases, data and scripts)

@ L] [
Inf()SYS Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

What are Test Scenarios, Cases and Data?

» Test Scenarios

— Testing needs of a logical unit of SRS (e.g. use-case / a logical path in a
use-case)

 Test Cases

— Test requirement descriptions related to each unit of stimuli-response

— Typically described in terms of <Inputs to software system, A set of
conditions, Outputs from software system>

* E.g. <Input: user-id and password; Condition: incorrect password; Output:
error message-1>

» Test Data (corresponding to each test case)

— Specifications of test inputs, conditions and expected output

* E.g. <Inputs: ravi_gorthi and abc2$password; Condition: abc2$password is an
incorrect password; Output: “Invalid Password - enter password again”>

@ L] [
Inf()SYS Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Background

* Regression Testing
— Arises out of changes made to a software application
— Functional and non-functional testing
— Planning phase and Execution phase

e Planning phase of regression testing: creation and

maintenance of,

— Find changes (additions, modifications and deletions) to functional test scenarios,
cases, data and scripts

— Effect the required changes

» Execution phase of functional testing:
— Find out the changes required to the test execution environments
— Execution of required test scenarios (include test cases, data and scripts)

@ L] [
Inf()SYS Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Relevance of Test Planning

* NIST report 2002
— Software Errors Cost U.S. Economy $59.5 Billion Annually

— More than a third of these costs ($22.2 b) could be eliminated by an improved
testing infrastructure

— An undetected defect, post software deployment, costs $14K to fix

* Medium to large s/w applications are observed to have anywhere
between 5K to 100K test cases

» Typically consumes 30 to 50% of total testing efforts (testing typically
consumes 40 to 60% of total software TCO)

* Every 10% improvement in productivity and quality of testing can lead
to saving of millions of dollars

@ L] [
Inf()SYS Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Current state of affairs

* Planning phase of functional testing:
— Functional and regression test planning is manual

» Execution phase of functional and regression testing:

— Tools exist that aid creation, maintenance and execution of test scenarios leading
to productivity and/or quality improvements

®
In-ms Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Model Transformations in Test Plan Automation

®
In-ﬁ)sys Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Unified Modeling Language

 UML is a popular modeling language widely used by software
engineering professionals, especially suited to engineer MIS

applications

» A semi-formal language
— Structured but NOT a language to unambiguously specify the expected
behavior of a software application
— Offers methodologies and models to perform analysis and design of
software applications

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 10 Wm II] thB ﬂat Wﬂl'ld

Model Based Approach to Test Plan Automation

e Generation of
— system test, regression test and integration test

e scenarios, cases, data and scripts

from

— Analysis models

 UML Use-Case Activity Diagrams, State Diagrams, Communication,
Collaboration Diagrams

— Design Models
« Class Diagrams, Sequence Diagrams

@ L] [
Inf()SYS Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Test Case Generation

 From UML Use-Case Activity Diagrams (UCAD)

— UCAD: Directed Cyclic Graph

— Automatic Generation of Test Scenarios

* One can automatically generate test scenarios through a DFS with
restrictions on traversal of cyclic paths

— Automatic Generation of Test Cases

* One can automatically generate test cases by slicing each scenario
into tuples of <Inputs, Processing, Conditions, Expected Output>

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 12 WIH II] thB ﬂat Wﬂl'ld

Sample UML Use Case Activity Diagram (UCAD)

¢
© el lzardotons>
Entar Product D

ooyt PR

W
| FPopulste shperan det page =
sapl by ipfGrEmElnn o TR product
L
cabizard cisans
| Dipcide whest e or Aot 10 add
_I=h prodsct Lo the parfioho
|
! colerigsns>
* .
YES
—r —_ - — l
Oesas the e Wi okt Hhe

Eroatact o balh portic
K

ElmmapA s>

"Producd Dwlaily ware no
__added 1o tha portiohio
1

¥

cllecismnas —

s echyninm O] »>
. Mo fields are
pEopaulsssd

Chpemny _I?T—' ;
i 1ol parouhe.

o ot e ey 10 B e e
“"Product detads are
aded fo tha prl1_"|||n'

|
i

®
In-bsys Copyrighted material of Infosys Technologies Lirdite

cclilamricTmons
Firnd prosduct v pakfola ink
with "Prodiaci D" Sold e

) e -
<= Igarirficn= =
Pogp-uir listing of all

prodiscls = displased

= <[lgciasanrs

i oiceT

-

Sancel”

W
o SysfemiOupul =
Fapulals none of The fislds and
prom ihe wser o enter manaaihy

|
i
®

Win in the flat world

Sample UML Use Case Activity Diagram (UCAD)

‘& Microsoft Photo Editor
Eile Edit Mew Image Effects Tools ‘Wwindow Help

ERSE A E

Dk &% & By
E'Graph 2.ipg

.—l—., CSlekihs = e
TEE0 TMent

h=ade" nan=
Hr= der-ab "

1

-

= e . //“--_ et [
EnlE iA=L fil wueez el ing oy] e " - T o | PelCk IR Chatzel iz zlay wam ng
hecdel-alals " [on zlewan: fizld ﬁt bﬁ'f?"m Izl U] ’C: ; '9:':! 'u"j _:3'] 20 MES = AlF
. L e odin
2 2 P S 5 7
‘es p=a
a5 = 3
5 inlate Iz ade Sheknn s ate Sl on Sawe A T lmpoar
ARtz EullZiin buton Szt gblue | ® [[etofelel [ST R

= 2 a 10 Proceed Wih,%;
.

Y
sl

E

GHensrates an:

o
diEnlagE s kil ek n| T o 1= lay ey aues by lebni-
“umbsrin enesie| 4 Bl e il T L] FrIC 25002 p=ndi-g s AnE
i >aE e : B
e s 14 1
= 3 ves
-
i Drlschay mzin
Shu= bu uln — ¥ POz = BT =1 4@'
dsla ntsbles [.
16 [N ik an In~e =
L 2ot
18
e
Display optizntz
Wil TUI=TR A
nz¥ gatz o Home !
Fayy
17
o 5
aplse hul e praa=w Nl o she = T ¥ Pr-th . llesdn

—4] | wAthalszetong and
LTI R T
20

b lurn = ..(_\‘.
. o2

(R
4 Liikenn -he
pried 2 DUEOH

s

[Cursor: (900,137) [Selection: 0,0:1347,797 Wi, H: 1348,798

Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Test Case Generation from UCADs: Methodology

Develop one or more use-case
Diagrams from requirements

y

Develop one or more use-case
activity diagrams based on a
predefined set of rules

y

Automatically check consisten
of the use-case activity diagrams

y

Validate the consistent
use-case activity diagrams
with one or more users

y

Generate one or more functional
test cases from the validated
use-case activity diagrams

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 15 Wm II] thB ﬂat Wﬂl'ld

Test Case Generation from UCADs: Case Study

— Consider the following use case from ‘Automatic Teller Machine (ATM)
System’: With-draw Cash using a debit-card from ATM
« System displays the msg: “Enter the debit card number (Swipe the card)”
e User inputs the debit-card number (swipes the card)
« System validates the card (assume the card number is valid)
« System displays the msg: “Enter the PIN”
* User enters the PIN
« System Validates the PIN (assume the PIN is valid)
« System displays the menu of choices and the msg: “Choose from the Menu”
» User selects the Menu option: “With-draw Cash from SB Account”
e System displays the msg: “Enter the amount”
» User enters the amount
» System validates the amount (assume the amount is correct)

« System displays the msg: “Take the amount; Thank you!”

®
In-ms Copyrighted material of Infosys Technologies Lirdite 16 Wm II] thB ﬂat Wﬂl'ld

Test Case Generation from UCADs: Case Study

— Add the following exceptions to the ATM Use Case

Debit-card swiped by the user is invalid

PIN entered by the user is invalid (the 15t time error)

PIN entered by the user is invalid (the 3" consecutive time error)

Amount entered by the user is invalid (amount > current balance)

Amount entered by the user is invalid (amount > daily upper-limit)

@ L] [
Inf()SYS Copyrighted material of Infosys Technologies Lirdite WIH II] thB ﬂat Wﬂl'ld

Test Case Generation from UCADs: Case Study

Scenario #1

Preconditioniz):

nore

User Input

1|Erter Product ID and tabs ot

~ Find product in portfolio hink with

VPodoet IV field bemg enptyr

Popap bistmg of all produacts 1

3 displayed and select desmed
product and chick on alink.

Dercide whether or not to add teh

4 product tothe portfolo

Scenario #2
HOHE

User Input

1|Erter Product ID and tabs ot

Fand ramdiiet 1 reeH- e liwle arth

®
In-ms Copyrighted material of Infosys Technologies Lirdite 18

Conditi
Does the product ID excist mm

teh product peatfolie? =
IIHOII

UserChaios? = nia

Dwoes the user want to add the
product toteh potfoloy =
II?ES n

Conditi
Does the product ID exist mm

teh product peatfolie? =
"H[::l"

Expecied Choput

Mo fields are populated

Populate shiprmert details
page with infommation on
the product.

\"Product details ave added
tn the portfoliot”

Expecied Owopuit
Mo fields are populated

Win in the flat world

Results of TCG In a few Real-world Projects

Healthcare- |Internet |Retall —
Claims Banking |Ecommerce
PRODUCTIVITY FIGURES
FROM FIELD TRIALS
No of test cases generated 1082 1772 23366
No of task flows involvel 32 48 586
Effort estimated for manual 23 38 465.9
procedure (Person Days)
Effort spent using our tool 13.5 17.6 132
(Person Days)
0% Effort Saving 41% 04% 2%

®
In-ms Copyrighted material of Infosys Technologies Lirdite

Win in the flat world

Test Case Generation

 From UML Use-Case Activity Diagrams (UCAD)

— Peter Zielczynski [8] and Jim Heumann [9] offer the basics on the
analysis of use-cases to manually generate test cases; good to start with.

— Lionel Briand and Yvan Labiche [12], Clementine et al [10], Chen et al
[11], Linzhang et al [13] and Chen et al [14] offer the next level of detall
on semi-auto / auto generation of test cases from use-cases

— Ravi Gorthi et al [1] use a novel concept from Paul Gerrard [15] called
‘unit of behavior’ to automatically generate test scenarios and test cases

from UCADSs

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 20 Wm II] thB ﬂat Wﬂl'ld

Test Case Generation

* From System Requirements Specifications (SRS)

— SRS is typically semi-structured

— Structured SRS
» First break a given SRS into a set of Use-Cases

» Express each Use-Case as ordered sequence of tuples of <Inputs, Conditions, Expected
Output>

* One can automatically generate Use-Case Activity Diagrams (UCADSs) from the
Structured SRS

— Automatic Generation of Test Scenarios

* One can automatically generate test scenarios through a DFS with restrictions on
traversal of cyclic paths

— Automatic Generation of Test Cases

* One can automatically generate test cases by slicing each scenario into tuples of <Inputs,
Conditions, Expected Output>

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 21 WIH II] thB ﬂat Wﬂl'ld

Structuring SRS: Use Case Template

Hatme oc-om ..
Description The use case has ..
Fre-condition
Interaction Steps Input 1 The user ..
Process (optional) 2 The system ...
Decision (optional) 3 If (Condition 15 True) Goto 4
Else
(roto 3
Crutput 4 The system Displays ..
Decision (optional) 3 If (.. Goto ...
Else
atop
Fost-Condition
Hon-Functional <keywords such as frequency, petformance, priority, fault tolerances
RequitementsUptional) Requitement Description

@ L] []
In-ms Copyrighted material of Infosys Technologies Lirdite 22 WIH n thB ﬂat Wlll'ld

ATM Example : Structuring SRS

:%? Infosys TA Tool E]@

System Mame: epefdency nciddge YalldaieF i Use Case.
Llzer:

Precondition: ATh is idle, displaying a YWelcome message.

Llsecase Mame:

Crescription:

Fequirerment:

Input id="1": User selects withdrawal, enters the amount and selects
Frocess id="2": Perfarm all system checks to carry aut the transactio
Crecision id="23"

If: ATh is out of funds

Description:
1. Include YwalidatePIM use case.

2 Customer selects Withdrawal, enters the amount, and selects the accounttumber.

Goto: 4 3. Bvstermn checks whether customer has enough funds in the account and whether the d
Else: Ay
Goto: 5

Decision id="5": litrit weill not be exceeded.

If: Customer has enough balance and has not exceedeaed daily limit —

ot B 4_If all checks are successful, system autharises dispensing of cash.
Else: .
Goto: stop 5. Bystermn dispenses the cash amount.
Cutput id="6": Dispense the amount and print a receipt) _)))) 5
Goto: stop 6. Systern prints a receipt showing transaction number, transaction type, amount withdra| =
Cutput id="4"; Display apology message .
Stop
and account balance.
7. Bystermn ejects card.
£l
2. Systermn displays Welcome message.
witernatives:
| | ITthe systermn determines that the account number is invalid, it displays an error messag
4 Il e

HNew Usecase and ejects the card.

SAVE - ; ; ; .

qocount, it il

@ L] []
In-bsys Copyrighted material of Infosys Technologies Lirdite 23 WII] n thB ﬂﬂt Wl]l'ld

Automatic Generation of Use Case Activity

Diagrams (UCADs) from Structured SRS

s Infosys TA Tool

| f=0{ >

[user action 1 |

h 3
| Sy=stem Process 2 |

3

(=2 Li]

System Output 4 5

Bs5

[sSwstem output 6

<] I

User Action 1: User selects withdraweal,
enters the amount and selects the account
number.

Swsterm Process 2 Ferdoarm all system
checks to carry out the transaction

Decision 2 AT is out of funds=s
Swvsterm Output 4: Display apolody mMessade

Decision 9. Customer has enough balance
and has not exceedeaed daily limit

Systern Output 6: Dispense the amaunt and
print a receipt

®
In-ms Copyrighted material of Infosys Technologies Lirdite

24

Win in the flat world

Test Case Generation from Structured SRS

Scenario #1

Preconditioniz):

nore

User Input

1|Erter Product ID and tabs ot

~ Find product in portfolio hink with

VPodoet IV field bemg enptyr

Popap bistmg of all produacts 1

3 displayed and select desmed
product and chick on alink.

Dercide whether or not to add teh

4 product tothe portfolo

Scenario #2
HOHE

User Input

1|Erter Product ID and tabs ot

Fand ramdiiet 1 reeH- e liwle arth

®
In-ms Copyrighted material of Infosys Technologies Lirdite 25

Conditi
Does the product ID excist mm

teh product peatfolie? =
IIHOII

UserChaios? = nia

Dwoes the user want to add the
product toteh potfoloy =
II?ES n

Conditi
Does the product ID exist mm

teh product peatfolie? =
"H[::l"

Expecied Choput

Mo fields are populated

Populate shiprmert details
page with infommation on
the product.

\"Product details ave added
tn the portfoliot”

Expecied Owopuit
Mo fields are populated

Win in the flat world

Test Case Generation

 From UML State Diagrams / Charts

— Philippe and Pascale [20], Supaporn and Wanchai [21] offer the basics
on automatically generating of test cases from UML state diagrams

— Stefania Gnesi et al [22] and Valdivino Santiago et all [23] offer the next
level of details on the automated generation of test cases from UML state
diagrams

— Jeff Offutt et al [24] and Stefan Hildenbrand [25] offer great details on the
analysis of state-based specifications and finite state automata to
generate test cases.

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 26 Wm II] thB ﬂat Wﬂl'ld

Model Based Regression Test Case Selection

Some important issues related to regression testing:

— When a software application is modified due to ‘change requests’
received from business users, the application need to be tested to ensure
that the modified system meets all the functional (and non-functional)
requirements

— Typically, medium to large software applications are observed to involve,
» a few tens of to a few hundreds of ‘0-0 classes’
« A few thousands of to a few tens of thousands of ‘methods’

— In general, each cycle of software maintenance involves changes to
around 15 to 30% of methods

— There will be many classes and methods which remain unchanged
across maintenance cycles

— Do we need to test a modified application, completely? Answer is NO!

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 27 WIH II] thB ﬂat Wﬂl'ld

Model Based Regression Test Case Selection

* Input
— Two consecutive versions of UML Use-Case Activity Diagrams (UCADS)
« UCAD-v1 and UCAD-v2

* Processing
— ldentify changed nodes in UCAD-v2 with respect to UCAD-v1
* Modified, newly added, deleted or shifted nodes

— Select regression test suite

« Paths in the UCAD-Vv2 that are affected due to the above type$ node
changes

— Pathsin UCAD-v2 that are the same as those in UCAD-v1 id@d be tested

e Qutput
— Selected regression test suite to test UCAD-v2

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 28 Wm II] thB ﬂat Wﬂl'ld

Model Based Regression Test Case Selection

Selection of
igi regression test suite
Or_lglnal Structure Activity t
Requirements Di] i _
specifications 'agram Retrieve paths
(Version 1) and nodes
Recommended

Bucketing of regression test

different nodes suite

Compare and

Changed Structure Activity Identify affected
requirements . aths
specifications Diagram " P

(Version 2)
Select regression

tests

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 29 Wm II] thB ﬂat Wﬂl'ld

Model Based Regression Test Case Selection

* |dentify changes to the nodes of UCAD-v2 with respect to DSA

— Nodes in a given UCAD are structured as
* Node type <Sequence-number.Version-number>
« E.gUA<1.0>; SP<2.3>; CO<3.1>; SO <1.4>

— All changes to the nodes of UC/Vv2 can be categorized
* Modifications to an existing node
« Deletion of an existing node
« Shifting of an existing node
e Addition of a new node

* Generateselected Regression Test Suite for UCAD-v2
— Paths that contain one or matgnged nodes

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 30 WIH II] thB ﬂat Wﬂl'ld

Model Based Regression Test Case Selection

» Examples : UA: <1.0>, SO: <2.2>, CO: <3.0>, FI: <1.0>
» Structure of Node Version Number

UA: <1.0>

| ™

Node Version — The number after the period

Node Type _ The version of the node itself — will
* UA — User Action node be incremented after each
* SO — System Output node modification.

* CO — Condition node
* FI — Final node

v

Node Sequence — The number before the period
» The sequence of the node according to its type
% Newly added node will always receive
the next available node sequence

+ Deleted node sequence will never be
used again

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 31 WIH II] thB ﬂat Wﬂl'ld

Model Based Regression Test Case Selection

» Some nodes are more critical than the others.

« Example: Verification of PIN number and account balance VS.
Verification of correct display of welcome message

 Assign criticality to nodes
— [H] — High criticality
— [M] — Medium criticality
— [L] = Low criticality (Default setting)

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 32 WIH II] thB ﬂat Wﬂl'ld

v*'
K) S5Ci=2.0=

SystemTask2

l 4

UA=3.0=
UserTask3

% S0:=3.0=

SystemTaska

l B

33
LA =4.0=
LlserTaskd

7
'

@ Soi=4.0=

SystemTagkd

.

?

@{3 UA=1.0=

UserTaskl
1

¥

S
K) S50:=1.0=

SystermTaskl

l 2

&

Ua=2.0=
UserTagk2

3

!
% S0=8.0=

SystemTasks

8
K) So=5.0=

SystemTasks

l 9

&
LA =5 0=
UserTasks

10
+

&
K) SC=6.0=

SystemTaskh

l 11

&3
LA =B.0=
UserTaske

¢ 12

&
g) S0=T 0=

SystemTask?

.

.

Ig] Original Influx Taskflow Diagram

Newly Added

nodes

Modified

nodes

&

50=2.0-

SystemTask?

=

S0=30=

SystemTask3

G

)

©

A= 0=
UserTaskd

7
'

&

S0:=4.0-

SysternTaskd

g

|

8

A =8.0=
UserTask3a?

50: =10.0=
SystemTaskad

=

50; «11.02
SystemTaskad

14

?

@{& Ua=1.0=

UserTaskl
1

¥

A
Fx} 50:=1.0=

SystemTaskl

l 2

i@

UA=20=
UserTask2

&
@) S0=h.0=

SystemTaska

l il

&

UA=5.0=
UserTaska

10

UA=B.0=
UserTaske

12
!

-

Fe

50: =0.0-

SystemTaskar

i

I

8

LA <7.0=
UgerTask3t

16

I

=

S0:=8.0=

SystemTasks

14

New Influx Taskflow Diagram

8

Deleted nod ? Newly Added
eleted nodes
3 nodes
Lac=1.0= o
UserTaskl UA=110=
1 . UserTaski
¥ Modified 1
=5
Soe=1.0=
SysternTaski nOdeS
o
2
l S0:=2.0= K) 50; =8.0=
@5 SystemTask2 SystemTaskd?
LA =2.0= 4 2
UzserTask2 l
2
¥
o UA=31= A
= Sor=20= S0:=8.0= |serTaskd &) UA <702
SystemTask2 SystemTaskd serTaskdl
4 14 3
|
i é ¢
A =3.0= SO<30>
Heerlastd BystemTaska ¥
g S0:=80=
SystemTasks
%
& oo % soes0- G z 14
SystermTask3 SysternTaska Uk <805
l £ l : UzerTaskd1
&
@) g =4 0= [ﬁ:) LA =5 0= ¥
UserTasks
UzerTaskd ser 3510 ; . 0 1
7
1 I 50: <10.05 50 <110 S TE
5 SystemTaskda SystemTaskdd 11
& i L oo ! !
G SystemnTasks 8 §
SystemnTaskd ¥
5 11
l Uki<6.0=
@;\5 UserTaske
LA =6.0= 12
UserTaskB
12 % ¢
o
) J’ 50:=7.1=
S0n=T.0= SystemTask?
SysternTasky 13
13

New Influx Taskflow Diagram

Ig] Original Influx Taskflow Diagram

Model Based Regression Test Case Selection

Description New ID Description Status
Enters the operation to be performed N/A N/A Deleted
Presses button to Withdraw cash N/A N/A Deleted
Test Steps Input Conditions Expected Output
1 Enter the card Card inserted properly? =Yes 1. Display a message to enter the PIN
2 Enter the PIN Cash withdrawl? =yes 1. Display a message to continue with the trans:
3 Enter the amount Cash available? =Yes 1. Display a message to collect the cash
Description New ID Description Status
Enters the operation to be performed N/A N/A Deleted
Presses button to Withdraw cash N/A N/A Deleted

@ L] [
In-bsys Copyrighted material of Infosys Technologies Lirdite 35 WIH II] thB ﬂat Wﬂl'ld

Experimental Results from a few Real-World

Projects
Healthcare- |Internet Retail Order
Claims Banking Management
No of UCAD paths involved 320 730 4300
No of regressio tes case selecte 161(478([2041(
Effort estimated for manual
procedure (Person Days) P3 78 466
Effort spent using our tool (Person
Days) 13.5 37.9 186
Productivity gain 41% 52% | 60%

®
In-ms Copyrighted material of Infosys Technologies Lirdite

Win in the flat world

Selective References

1. Ravi Gorthi et al., “Model-Based Automated Test Case Generation”, SETLabs Briefings, Vol 6, No
1, 2008, pp 39 — 46.

2. Ravi Gorthi, Anjaneyulu Pasala, et al., Specification-based Approach to Select Regression Test
Suite to Validate Changed Software, accepted for publication at the 15" Asia-Pacific Software
Engineering Conference (APSEC - 2008), Dec. 3-5, 2008.

3. Anjaneyulu Pasala, Ravi Gorthi, et al., “Selection of regression test suite to validate software
applications upon deployment of upgrades”, 19" Australian Software Engineering conference
(ASWEC - 2008), 25-28 March 2008, pp 130-138.

4. Anjaneyulu P, et al. “An Approach for Test Suite Selection to Validate Applications on Deployment
of COTS Upgrades”, 12th IEEE Asia Pacific Software Engineering Conference, Dec. 2005, pp
401-407.

5. Anjaneyulu P, et al “An Approach Based on Modeling Dynamic Behavior of the System to Assess
the Impact of COTS Upgrades”, 13th IEEE Asia-Pacific Software Engineering Conference
(APSEC), Dec. 2006, pp 19-26.

6. Anjaneyulu Pasala, Ravi Gorthi et al., “How to Select Regression Tests to Validate Applications
upon Deployment of Upgrades”, SETLabs Briefings, Vol 6, No1, 2008, pages 55 — 63.

7. Anjaneyulu Pasala et al., “On the validation of APl execution-sequence to assess the correctness
of application upon COTS upgrades deployment”, 61" IEEE International conference on COTS
based software systems, (ICCBSS - 2007), February-March 2007, at Banff, Canada.

8. Peter Zielczynski, “Traceability from Use Cases to Test Cases”,

@ L] [
Inf()5y5 Copyrighted material of Infosys Technologies Lirdite 37 WIH II] thB ﬂat Wl]l'ld

Selective References

9. Jim Heumann, “Generating Test Cases from Use Cases”, the Rational Edge, June 2001

10. Clementine Nebut, et al, “Automatic Test Generation: A Use Case Driven Approach”, IEEE
Transactions on Software Engineering, vol 32, n 3, March 2006

11. ChenTY, et al, “A Choice Relation Framework for Supporting Category-Partition Test Case
Generation”, IEEE Transactions on Software Engineering, vol 29, no 7, July 2003

12. Lionel Briand and Yvan Labiche, “A UML-Based Approach to System Testing”, Carleton University
TR SCE-01-01-Version 4, June 2002

13. Wang Linzhang, et al, “Generating Test Cases from UML Activity Diagram based on Gray-Box
Method”, Proceedings of APSEC 2004

14. Chen Mingsong, et al, “Automatic Test Case Generation for UML Activity Diagrams”, AST 06,
Shanghai, China, May 2006

15. Paul Gerrard, “Testing Requirements”, Systeme Evolutif,

16. Thomas Ostrand and Marc Balcer, “The Category Partition Method for Specifying and Generating
Functional Tests”, Communications of the ACM, vol 31, no 6, June 1988

17. Aynur Abdurazik and Jeff Offutt, “Generating Test Cases from UML Specifications”, ISE-TR-99-09,
Information and Software Engineering, George Mason University, May, 1999

18. James Clarke, “Automated Test Generation from a Behavioral Model”, Software Quality Week
Conference, May, 1998

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 38 WIH II] thB ﬂat Wl]l'ld

Selective References

19. James Clarke, “Automated Test Generation from a Behavioral Model”, Software Quality Week
Conference, May, 1998

20. Philippe Chevalley and Pascale Thevenod-Fosse, “Automated Generation of Statistical Test
Cases from UML State Diagrams”, Proceedings of COMPSAC 2001

21. Supaporn Kansomkeat and Wanchai Rivepiboon, “Automated-Generating Test Case Using UML
Statechart Diagrams”, Proceedings of SAICSIT, 2003

22. Stefania Gnesi et al, “Formal Test-Case Generation for UML Statecharts”, Proceedings of 9" IEEE
Int Conf on Engineering Complex Computer Systems, 2004

23. A-Valdivino Santiago et al, “A Practical Approach for Automated Test Case Generation using
Statecharts”, Proceedings of COMPSAC 2006

24. Jeff Offutt et al, “Generating test data from state-based specifications”, in Software Testing,
Verification and Reliability, John Wiley & Sons Ltd, 2003

25. Stefan Hildenbrand, “Generation of Test Cases”, Semester Thesis, Summer of 2005, ETH Zurich
26. Basanieri F and Bertolino A, “A Practical Approach to UML-based derivation of integration tests”,

27. Richard DeMillo and Jefferson Offutt, “Constraint-Based Automatic Test Data Generation”, IEEE
Transactions on Software Engineering, vol 17, no 9, Sep 1991

28. Bogdan Korel, “Automated Software Test Data Generation”, IEEE Transactions on Software
Engineering, vol 16, no 8, August 1990

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 39 WIH II] thB ﬂat Wl]l'ld

Selective References

29. Gregg Rothermel et al., “a safe, efficient regression test selection technique”, ACM transactions on
software engineering and methodology, Vol. 6, No. 2, April 1997, pp 173 — 210.

30. Greg Rothermel, et al., “Analyzing Regression Test Selection Techniques”, IEEE Transactions on
Software Engineering, Vol. 22, No. 8, August 1996, pp 529-551.

31. Zheng J, et al. “Applying Regression Test Selection for COTS-based Applications”, International
Conference on Software Engineering (ICSE), May 20-28, 2006, pp 512-521.

32. Briand, L.C.; Labiche, Y.; Soccar, G., “Automating impact analysis and regression test selection
based on UML designs”, International Conference on Software Maintenance, 3-6 October 2002, pp
252 — 261.

@ L] [
In-ms Copyrighted material of Infosys Technologies Lirdite 40 Wm II] thB ﬂat Wﬂl'ld

