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Topics

• An overview on Test Case and Regression Test Case Creation and 
Maintenance

– Test Plan vs Test Execution
– Creation and maintenance of test scenarios, cases, data and scripts 
– What are regression test cases? Creation and maintenance of regression test 

cases
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• The relevance of this area to the Total-Cost-of-Ownership (TCO) of 
medium to large s/w applications

– Typical number of test scenarios and cases in a medium / large s/w application
– Efforts and costs involved in the creation and maintenance of test cases and 

regression test cases



Topics

• The state-of-the-art research and practices of this field 
– Model based (UML Activity Diagram, State Diagram based) manual and 

automated creation and maintenance of test and regression test cases

• Some interesting work done by the speaker and his team in this area 
for the last three years
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– The concept of ‘Unit of Behavior’
– Techniques for automatic generation of test cases and regression test cases from 

UML Activity Diagrams
– Results of field trials of these techniques

Q& A



Background

• Software Testing
– Functional and non-functional testing
– Planning phase and Execution phase

• Planning phase of functional testing: creation and maintenance 
of,

– Test scenarios: correspond to UML use-cases
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– Test scenarios: correspond to UML use-cases
– Test cases: correspond to ‘input, expected output’ patterns
– Test data: correspond to actual input and expected output values
– Test scripts: correspond to code that the execution phase teams can use

• Execution phase of functional testing: 
– Creation and maintenance of required test execution environments
– Execution of required test scenarios (include test cases, data and scripts)



What are Test Scenarios, Cases and Data?

• Test Scenarios

– Testing needs of a logical unit of SRS (e.g. use-case / a logical path in a 
use-case)

• Test Cases

– Test requirement descriptions related to each unit of stimuli-response

– Typically described in terms of <Inputs to software system, A set of 
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– Typically described in terms of <Inputs to software system, A set of 
conditions, Outputs from software system>

• E.g. <Input: user-id and password; Condition: incorrect password; Output: 
error message-1>

• Test Data (corresponding to each test case)

– Specifications of test inputs, conditions and expected output

• E.g. <Inputs: ravi_gorthi and abc2$password; Condition: abc2$password is an 
incorrect password; Output: “Invalid Password - enter password again”>



Background

• Regression Testing
– Arises out of changes made to a software application
– Functional and non-functional testing
– Planning phase and Execution phase

• Planning phase of regression testing: creation and 
maintenance of,
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maintenance of,
– Find changes (additions, modifications and deletions) to functional test scenarios, 

cases, data and scripts
– Effect the required changes

• Execution phase of functional testing: 
– Find out the changes required to the test execution environments
– Execution of required test scenarios (include test cases, data and scripts)



Relevance of Test Planning

• NIST report 2002

– Software Errors Cost U.S. Economy $59.5 Billion Annually

– More than a third of these costs ($22.2 b) could be eliminated by an improved 
testing infrastructure 

– An undetected defect, post software deployment, costs $14K to fix

• Medium to large s/w applications are observed to have anywhere 
between 5K to 100K test cases
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between 5K to 100K test cases

• Typically consumes 30 to 50% of total testing efforts (testing typically 
consumes 40 to 60% of total software TCO) 

• Every 10% improvement in productivity and quality of testing can lead 
to saving of millions of dollars 



Current state of affairs

• Planning phase of functional testing: 
– Functional and regression test planning is manual

• Execution phase of functional and regression testing: 
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• Execution phase of functional and regression testing: 
– Tools exist that aid creation, maintenance and execution of test scenarios leading 

to productivity and/or quality improvements



Model Transformations in Test Plan Automation
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Unified Modeling Language

• UML is a popular modeling language widely used by software 
engineering professionals, especially suited to engineer MIS 
applications

• A semi-formal language 
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• A semi-formal language 
– Structured but NOT a language to unambiguously specify the expected 

behavior of a software application
– Offers methodologies and models to perform analysis and design of 

software applications



Model Based Approach to Test Plan Automation

• Generation of
– system test , regression test  and integration test 

• scenarios, cases, data and scripts

from

– Analysis models
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– Analysis models
• UML Use-Case Activity Diagrams, State Diagrams, Communication, 

Collaboration Diagrams

– Design Models
• Class Diagrams, Sequence Diagrams



Test Case Generation

• From UML Use-Case Activity Diagrams (UCAD)

– UCAD: Directed Cyclic Graph

– Automatic Generation of Test Scenarios

• One can automatically generate test scenarios through a DFS with 
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• One can automatically generate test scenarios through a DFS with 
restrictions on traversal of cyclic paths

– Automatic Generation of Test Cases

• One can automatically generate test cases by slicing each scenario 
into tuples of <Inputs, Processing, Conditions, Expected Output>



Sample UML Use Case Activity Diagram (UCAD)
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Sample UML Use Case Activity Diagram (UCAD)
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Test Case Generation from UCADs: Methodology

Develop one or more use-case
activity diagrams based on a 
predefined set of rules 

Automatically check consistency

Develop one or more use-case 
Diagrams from requirements

15Copyrighted material of Infosys Technologies Limited

Automatically check consistency
of the use-case activity diagrams

Validate the consistent 
use-case activity diagrams
with one or more users

Generate one or more functional
test cases from the validated
use-case activity diagrams



Test Case Generation from UCADs: Case Study

– Consider the following use case from ‘Automatic Teller Machine (ATM) 
System’:  With-draw Cash using a debit-card from ATM

• System displays the msg: “Enter the debit card number (Swipe the card)”

• User inputs the debit-card number (swipes the card)

• System validates the card (assume the card number is valid)

• System displays the msg: “Enter the PIN”

• User enters the PIN 
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• User enters the PIN 

• System Validates the PIN (assume the PIN is valid)

• System displays the menu of choices and the msg: “Choose from the Menu”

• User selects the Menu option: “With-draw Cash from SB Account”

• System displays the msg: “Enter the amount”

• User enters the amount

• System validates the amount (assume the amount is correct)

• System displays the msg: “Take the amount; Thank you!”



Test Case Generation from UCADs: Case Study

– Add the following exceptions to the ATM Use Case

• Debit-card swiped by the user is invalid

• PIN entered by the user is invalid (the 1st time error) 

• PIN entered by the user is invalid (the 3rd consecutive time error)
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• PIN entered by the user is invalid (the 3rd consecutive time error)

• Amount entered by the user is invalid (amount > current balance)

• Amount entered by the user is invalid (amount > daily upper-limit)



Test Case Generation from UCADs: Case Study
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Results of TCG in a few Real-world Projects

PRODUCTIVITY FIGURES 
FROM FIELD TRIALS

Healthcare-
Claims

Internet 
Banking

Retail –
Ecommerce

No of test cases generated 1082 1772 23366

No of task flows involved 32 48 586
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No of task flows involved 

Effort estimated for manual 
procedure (Person Days) 

23 38 465.9

Effort spent using our tool 
(Person Days) 

13.5 17.6 132

% Effort Saving 41% 54% 72%



Test Case Generation

• From UML Use-Case Activity Diagrams (UCAD)

– Peter Zielczynski [8] and Jim  Heumann [9] offer the basics on the 
analysis of use-cases to manually generate test cases; good to start with.

– Lionel Briand and Yvan Labiche [12], Clementine et al [10], Chen et al 
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– Lionel Briand and Yvan Labiche [12], Clementine et al [10], Chen et al 
[11], Linzhang et al [13] and Chen et al [14] offer the next level of detail 
on semi-auto / auto generation of test cases from use-cases

– Ravi Gorthi et al [1] use a novel concept from Paul Gerrard [15] called 
‘unit of behavior’ to automatically generate test scenarios and test cases 
from UCADs



Test Case Generation

• From System Requirements Specifications (SRS)
– SRS is typically semi-structured

– Structured SRS

• First break a given SRS into a set of Use-Cases

• Express each Use-Case as ordered sequence of tuples of <Inputs, Conditions, Expected 
Output>

• One can automatically generate Use-Case Activity Diagrams (UCADs) from the 
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• One can automatically generate Use-Case Activity Diagrams (UCADs) from the 
Structured SRS

– Automatic Generation of Test Scenarios

• One can automatically generate test scenarios through a DFS with restrictions on 
traversal of cyclic paths

– Automatic Generation of Test Cases

• One can automatically generate test cases by slicing each scenario into tuples of <Inputs, 
Conditions, Expected Output>



Structuring SRS: Use Case Template
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ATM Example : Structuring SRS
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Automatic Generation of Use Case Activity 
Diagrams (UCADs) from Structured SRS
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Test Case Generation from Structured SRS
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Test Case Generation

• From UML State Diagrams / Charts
– Philippe and Pascale [20], Supaporn and Wanchai [21] offer the basics 

on automatically generating of test cases from UML state diagrams

– Stefania Gnesi et al [22] and Valdivino Santiago et all [23] offer the next 
level of details on the automated generation of test cases from UML state 
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diagrams

– Jeff Offutt et al [24] and Stefan Hildenbrand [25] offer great details on the 
analysis of state-based specifications and finite state automata to 
generate test cases. 



Model Based Regression Test Case Selection

Some important issues related to regression testing:
– When a software application is modified due to ‘change requests’ 

received from business users, the application need to be tested to ensure 
that the modified system meets all the functional (and non-functional) 
requirements

– Typically, medium to large software applications are observed to involve,
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• a few tens of to a few hundreds of ‘o-o classes’

• A few thousands of to a few tens of thousands of ‘methods’

– In general, each cycle of software maintenance involves changes to 
around 15 to 30% of methods

– There will be many classes and methods which remain unchanged 
across maintenance cycles

– Do we need to test a modified application, completely? Answer is NO!



Model Based Regression Test Case Selection 
• Input

– Two consecutive versions of UML Use-Case Activity Diagrams (UCADs) 
• UCAD-v1 and UCAD-v2

• Processing
– Identify changed nodes in UCAD-v2 with respect to UCAD-v1

• Modified, newly added, deleted or shifted nodes
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– Select regression test suite
• Paths in the UCAD-v2 that are affected due to the above types of node 

changes

– Paths in UCAD-v2 that are the same as those in UCAD-v1 need NOT be tested

• Output
– Selected regression test suite to test UCAD-v2



Model Based Regression Test Case Selection
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Model Based Regression Test Case Selection

• Identify changes to the nodes of UCAD-v2 with respect to UCAD-v1

– Nodes in a given UCAD are structured as

• Node type <Sequence-number.Version-number>
• E.g UA <1.0>; SP <2.3>; CO <3.1>; SO <1.4>

– All changes to the nodes of UCAD-v2 can be categorized as
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– All changes to the nodes of UCAD-v2 can be categorized as

• Modifications to an existing node
• Deletion of an existing node
• Shifting of an existing node
• Addition of a new node

• Generate Selected Regression Test Suite for UCAD-v2
– Paths that contain one or more changed nodes



Model Based Regression Test Case Selection

�Examples : UA: <1.0> , SO: <2.2>, CO: <3.0>, FI: <1.0>
�Structure of Node Version Number

UA : <1.0>

Node Type  
• UA – User Action node

• SO – System Output node
• CO – Condition node

Node Version – The number after the period
• The version of the node itself – will 

be incremented after each 
modification.
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• CO – Condition node
• FI – Final node

Node Sequence – The number before the period
• The sequence of the node according to its type

� Newly added node will always receive 
the next available node sequence

� Deleted node sequence will never be 
used again



Model Based Regression Test Case Selection

• Some nodes are more critical than the others.
• Example: Verification of PIN number and account balance VS. 

Verification of correct display of welcome message

• Assign criticality to nodes
– [H] – High criticality
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– [M] – Medium criticality
– [L] – Low criticality (Default setting)



Newly Added 

nodes

Modified 

nodes
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Original Influx Taskflow Diagram New Influx Taskflow Diagram



Deleted nodes
Newly Added 

nodes

Modified 

nodes
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Original Influx Taskflow Diagram New Influx Taskflow Diagram



Model Based Regression Test Case Selection
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Experimental Results from a few Real-World 
Projects

Healthcare-
Claims

Internet
Banking

Retail  Order 
Management

No of UCAD paths involved 320 730 4300

No of regressiontestcasesselected 1610 4780 20410
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No of regressiontestcasesselected 1610 4780 20410

Effort estimated for manual
procedure (Person Days) 23 78 466

Effort spent using our tool (Person
Days) 13.5 37.6 186

Productivity gain 41% 52% 60%
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