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Summary: What is an abstract interpretation (AI)?

e Given:
e A complete join semi-lattice D. This is the “abstract”
semantic domain.
e A monotonic “abstract” transfer functions fyy : D — D for
each arc M — N in the control-flow graph.

e Output: A map D from program points to elements in D.
e |deal output: JOP5
e for any program point p JOP5[p] is the join of all values
obtained by propagating initial value dy € D through transfer
functions of all paths in the CFG that end at p, where
o transfer function of a path is the composition of the transfer
functions of the arcs on the path.



Summary: What does Killdall’s algorithm compute?

e In general JOP is not computable.

e Killdall's algorithm computes LFP5(F), which is the least fix
point of the vectorized transfer function F.
o Killdall requires D to contain no infinite ascending chains.
e In general LFP5 > JOP5.

e They are equal when lattice is finite and functions are
distributive.



Summary: Theorems

e Knaster-Tarski theorem:

Guarantees presence of a fix point.

Fix points form a complete lattice.

LEPp(f) > |;so(f(L)), if £ is monotonic.

LFPp(f) = |iso(f'(L)), if f is continuous.

D needs to be a complete join semi-lattice. D may contain
infinite ascending chains.



Summary: Theorems

e Knaster-Tarski theorem:

e Guarantees presence of a fix point.

e Fix points form a complete lattice.

LEPp(f) > |;so(f(L)), if £ is monotonic.

LFPp(f) = |iso(f'(L)), if f is continuous.

D needs to be a complete join semi-lattice. D may contain
infinite ascending chains.

Exercise: Consider example in slide 51 in data-flow analysis slide
set. Compute UIZO(F'(J_)).



Static (i.e., collecting) semantics

Lattice of values: (Val ,<va,, I_lvau)

— N\,
\\V

Envis (normally) a map e : Var — Val,. However, in general,
it can be any semantic domain.

Program semantics is given by the nstate function:

| nstate

S
nstate(M, S; € 2En) = (N, S, € 2E).



Static (i.e., collecting) semantics — contd.

e Initial environment Sy is given. Normally, it is: {Ax.L}.
e Static semantics SS is a map ProgramPoints — 2.

e At each program point N,
SS(N) = {e| nstate,(E, So) = (N, S), p is a path E ~~ N,e € S}

where E is entry point of CFG.



Static (i.e., collecting) semantics — contd.

Initial environment Sy is given. Normally, it is: {Ax.L}.

Static semantics SS is a map ProgramPoints —

2Env

At each program point N,

SS(N) = {e| nstate,(E, So) = (N, S), p is a path E ~~ N,e € S}

where E is entry point of CFG.

Static semantics can also be phrased as an Al:

Concrete lattice C : (257, C), L = ¢, T = Env, U= U.
Initial value: {Ax.L}

Transfer function = nstate

Static semantics = JOP; i.e., SS(N) = JOP[N].
Notice that framework is distributive:

nstate(S; U Sp) = nstate(S1) U nstate(S,)

Hence, JOP¢ = LFP(nstate)



Sample program
JOPE _
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Sample program

JOP, =

Exercise: Find a non-minimal fixpoint of this program.



Conditions for correctness of an Al

Should exist maps

e a: C — D (abstraction)

e v: D — C (concretization)
such that

e o and vy are
monotonic

* Y(afe)) > e
e a(y(d)) =d




Conditions for correctness of an Al

Should exist maps
e a: C — D (abstraction)

e v: D — C (concretization)
such that

e o and vy are
monotonic

* Y(afe)) > e
e a(y(d)) =d

In this case (v, ) are said to form a Galois connection.



Lllustration of Galois connection

For constant propagation, the following mappings form a galois
connection:

a(S) ={(x,¢) | ¢ = Uva, ({e(x)le € 5})}

v(P) = {e € Env | for each (x,c) € P: e(x) <va, c}



Corollaries

If (cv,7y) form a Galois connection then the concrete and abstract
join operators satisfy the following properties.

Concrete Abstract
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Conditions for correctness — continued

Transfer functions should satisfy one of the following (each of
them implies the other):

Concrete Abstra




Conditions for correctness — continued

Transfer functions should satisfy one of the following (each of
them implies the other):

Concrete Abstra

Exercise: lllustrate first condition above using constant
propagation example. Let n be “z = x + y”, and let + be strict on
its arguments. Demonstrate a situation where

a(fn,concrete (S)) < fn,abstract(a(s))



Theorem: Correctness of Al

If (cv,7y) form a Galois connection and transfer functions satisfy the
property mentioned above and a(Sp) < dp then:




More on correctness of Al

We showed just now that 7(JOP5) > JOP¢.

We have already shown that LEP5 > JOP5
data-flow analysis slides).

We know ~ is monotonic.
Therefore, 7(LFP5) > JOP.

(see slide 74,



More on correctness of Al

We showed just now that 7(JOP5) > JOP¢.

We have already shown that LFP5 > JOP5 (see slide 74,
data-flow analysis slides).

We know ~ is monotonic.
Therefore, 7(LFP5) > JOP.

In other words, the concretization of the result of abstract inter-
pretation is an over-approximation of the collecting semantics.



Proof of corollaries

Proof of Corollary 2:
e di Udyis > both di and d, (property of join)
e Therefore, due to monotonicity of 7, v(d1 U d2) is > both
7(d1) and (db).
e Therefore, by property of join, v(di Uda) > ~(di)U~(d?). O.
Proof of Corollary 1:

e Using an argument similar to above it can be shown that
a(cl (] C2) > a(cl) (] Oz(Cz).



Proof of Corollary 1 — continued

We now need to show that a(c; U e2) < a(cr) Ua(cz). This
would complete the proof.

Concrete Abstract

(Rightward arrows are 's and leftward arrows are 7's.)

e v(d1) > c1 and y(d2) > ¢ (by defn. of Galois connection).

o ¢4 = ’}/(d3 = (dl (] d2)) is > both ’}/(dl) and ’}/(dQ) (by
monotonicity of ).

e Therefore, ¢4 is > both ¢; and ¢ (by transitivity of >).

e Therefore, ¢4 > (c3 = (c1 U z)) (by property of join).

e afcy) = ds (by defn. of Galois connection). Therefore,

dz > a(c3) (by monotonicity of o). O



Proof of correctness theorem
We give a proof that @(JOP#) < JOPp.

e Lemma: Consider any edge M — N. Let d be an abstract
value ¢ be a concrete value at M such that a(c) < d.
a(fMN,concrete(C)) < fMN,abstract(d)-

Proof: The first condition on transfer functions tells us that
a(fMN,concrete(C)) < fMN,abstract(a(c))' USing the lemma’s
prerequisite a(c) < d, and by monotonicity of fun apstract, We
get fMN,abstract(a(C)) < fMN,abstract(d)- Therefore
a(fMN,concrete(C)) < fMN,abstract(d)

e Consider any path p in the CFG starting from the entry point
E. We will prove using induction that for any i >= 0, where
p' is the prefix of p containing i edges,
a(fp",concrete(so)) < fp’,abstract(do)' where fp’,concrete

(o abstract) IS the composition of the concrete (abstract)
transfer functions of the edges in p'.
e Base case (i = 0): The property reduces to a(Sp) < dp. This

is a pre-requisite of the theorem.



Proof — continued

e Inductive case: The inductive hypothesis is that
a(fp"—I,concrete(SO)) < fp"—I,abstract(dO)' Let the i* edge of p
be L — M. Applying the lemma above on this edge we get
a(fLM,concrete(fp"—1,concrete(SO))) <
fLM,abstract(pr,abst,act(do)). This reduces to

Ufyi concrete(S0)) < i abstrace (do). The inductive case is done.

e From the result proved above we derive

a(cp) < dp (1)

where p is any path, ¢, = f; concrete(So) and
dp = f, 7abstract(dO)-

e Let N be any program point, and let
Py ={p | pis a path from E to N}.



e Property (1), plus the property of joins, gives us

Proof — continued

|_| (alcp)) < |_| (dp)

pEPyN pEPy

e By Corollary 1 we have

e Using Properties 3 and 5, and extending over all program

points N we get

We are done.

|

pPEPN

(a(cp)) = a( | ] (<))

pEPN
= a(JOPIN))

a(JOP¢) < JOP

(5)



More results

e From the previous result we can derive the other result in the
Al correctness theorem:

a(JOP¢) < JOP5 (previous result)
F(@(JOP¢)) < 7(JOPp) (monotonicity of )
JOP# < %(JOPp) (property of Galois connection)

e |t can also be shown that

a(LFPz) < LFPy
LFP¢ < 5(LFPyp)



