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Software development is hard

Average software-development project [Barry Boehm, ICSE ’06
keynote] incurs:

• 90% cost overrun

• 121% time overrun

• delivers only 61% of initially promised functionality



Software development lifecycle

For each release of the software:
Requirements
Analysis and Design
Coding
Testing
Production/deployment; feedback from users

Testing, finding and fixing bugs (i.e., Quality Assurance) com-
sumes 50% of total cost and time of software development.

The problem gets worse after multiple releases, because:

• People lose knowledge of the code

• Code becomes bigger, more complex, and poorer structured
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Why quality assurance takes so much effort

• Defects are common

• Are hard to find
• often, get identified only after release
• no good tools, and people don’t use ones that are there

• When a program crashes, or gives wrong answer, hard to
detect the root defect

• Defects in requirements or design should be found before
coding starts, else code will manifest it

• however, no widely used formal techniques for these

• Incorrect understanding of customers requirements



Kinds of software defects

• Crashes
• Null pointers, uninitialized values
• Array index out of bounds, buffer overrun
• Memory leaks
• Misuse of pointers and buffers (in languages like C)
• Unreachable code

• Does not interact with other software in the same way as the
previous version.

• Leaks information to unauthorized channels

• Performs poorly

• Logical errors (design-time errors)



What’s wrong with this program?

int middle(int x,
int y,
int z) {

int m = z;
if (y < z)
if (x < y)

m = y;
else if (x < z)

m = x;
else
if (x > y)

m = y;
else if (x > z)

m = x;
return m;

}

⇒ int middle(int x,
int y,
int z) {

int m = z;
if (y < z)
if (x < y)

m = y;
else if (x < z)

m = x;
else

if (x > y)
m = y;

else if (x > z)
m = x;

return m;
}

Tool BLAST identifies the two lines before return as unreachable
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A common approach to software validation: Testing

• A test suite (set of test cases) is created, and executed for
each version.

• Black box testing: Test cases are created manually by user,
or generated randomly.

• White box testing: Test cases are generated by an analysis of
the program code to increase code coverage.

• Typically needs tool support.

• What’s good about testing? All bugs found are real bugs.
• What’s bad about testing?

• 100% coverage of the program’s behavior is impossible.
• Therefore, cannot find all bugs or prove the absence of bugs.

• Very hard to test the portion inside the “if” statement!

input x
if (hash(x) == 10) {

...
}
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Program verification

The algorithmic discovery of properties of a program by inspection
of the source text.

– Manna and Pneuli, “Algorithmic Verification”

Also known as: static analysis, static program analysis, formal
methods, . . .
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Difficulty of program verification

• What will we prove?
• “Deep” specifications of complex software are as complex as

the software itself
• Are difficult to prove
• State of the art tools and automation are not good enough

• We will focus on “shallow” properties
• That is, we will prove “partial correctness”, or absence of

certain classes of errors (e.g., null pointer dereferences)
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Example: Determining whether variables are odd (o) or
even (e)

p = oddInput() (p,o)
q = evenInput() (p,o) (q,e)
if (p > q) (p,o) (q,e)

p = p*2 + q (p,e) (q,e)
write(p) (p,oe) (q,e)
if (p <= q) (p,o) (q,e)

p = p+1 (p,e) (q,e)
write(p) (p,e) (q,e)
q = q+2 (p,e) (q,e)



A verification approach: abstract interpretation

• A kind of program execution in which variables store abstract
values from bounded domains, not concrete values

• Input values are also from the abstract domains

• Program statement semantics are modified to work on
abstract variable values

• We execute the program on all (abstract) inputs and observe
the program properties from these runs



Example: The abstraction

• Possible values of each variable: {o, e, oe}.
• Modified statement semantics:

+ o e oe

o e o oe
e o e oe

oe oe oe oe

∗ o e oe

o o e oe
e e e e

oe oe e oe



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput()

<(p,o), (q,e)>

if (p > q)

<(p,o), (q,e)>

p = p*2 + q

<(p,e), (q,e)>

write(p)

<(p,o), (q,e)> <(p,e), (q,e)>

if (p <= q)

<(p,o), (q,e)> <(p,e), (q,e)>

p = p+1

<(p,e), (q,e)> <(p,o), (q,e)>

write(p)

<(p,e), (q,e)> <(p,o), (q,e)>

q = q+2

<(p,e), (q,e)> <(p,o), (q,e)>

Ideal results
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Another verification approach: Type systems

• Treat assignment statements as a set of mathematical
equations, and program variables as mathematical variables.

p = oddInput()
q = evenInput()
p = p*2 + q
p = p+1
q = q+2

• Let domain of variables be {o, e, oe}. Let operators “∗” and
“+” have the meanings as described in tables earlier.

• Solve the set of equations.

• Two solutions for the above equations: (1)
< p = oe, q = e >, (2) < p = oe, q = oe >.

• Solution (1) is more precise than solution (2).
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Comparing abstract interpretation and type systems

• Reminder: The type solution is < p = oe, q = e >.

• Type systems approach is “flow insensitive”: It gives each
variable a single value valid at all program points, whereas
abstract interpretation gives different values at different
points.

• The single value is a over-approximation (union) of values at
all program points. Therefore, type system approach is less
precise than flow-sensitive abstract interpretation.

• However, type system approach is more efficient.
Both approaches produce over-approximations of the ideal re-
sults. This is true of verification approaches in general. In
contrast, testing produces an under-approximation of the ideal
results.

• In other words, Flow-insensitive verification ⊇ flow-sensitive
verification ⊇ ideal results ⊇ testing.



Overview of PAV course

• Introduction (1 lecture) (durations are tentative)

• Specifying semantics of programming language formally. (1)

• Verification approaches
• Dataflow analysis (7)
• Abstract interpretation (3)
• Type inference (8)
• Assertional reasoning (2)

• Program slicing (6) (Time permitting)



Flavour of the course

• Semantics: associating a mathematical function with each
kind of statement in the language.

• Dataflow analysis
• Setting up a set of mathematical equations, and using a kind

of graph traversal to solve these equations
• Proving termination of the approach

• Abstract interpretation and type systems
• Examples of abstract domains and abstract statement

semantics
• Proving that the results computed are an over-approximation

of the ideal results
• Proving termination of the approach

• Assertional reasoning: A first-order predicate logic for deriving
facts about a program



Prerequisites

• Discrete structures such as sets, relations, partially ordered
sets, functions

• (Undergraduate level) algorithms

• Mathematical logic (propositional, first-order)

• General mathematical maturity: comfort with notation,
understanding and writing proofs

• Familiarity with imperative languages like C

• (Moderate) programming experience



What we will not cover

• Software engineering
• How to collect requirements from customers and prioritize

them
• Planning and management of software development
• Design, architecture, coding

• Programming languages

• Analysis of parallel/concurrent programs, distributed systems

Compilers course offered by Prof. Y. N. Srikant this semester
will cover applications of program analysis to compiling, among
other topics.
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Assignments and exams (tentative)

• Assignments
• 5-6 assignments
• Most of them written, some involve coding
• 50% weight

• Mid-sem exam (20%), End-sem exam (30%)



Misconduct policy

• Academic misconduct (e.g., copying) will not be tolerated

• Discussion in exams ⇒ automatic fail grade for both students

• Assignments
• Try to work individually.
• If you choose to discuss with other students

• You may discuss only with students registered in the class (or
with the Deepak or Raghavan)

• You must write your answer individually, in your own words.
No copying, no looking at the other person’s answer!

• For each violation of above policy ⇒ zero for the entire
assignment plus one grade-point reduction in final grade (for
the one who copied).

• Grade-point reductions over multiple violations will
accumulate.

• Grading: Your marks will be based on your written answer
and on a viva. (There will be a viva for each assignment.)



Late policy for assignments

• 10 “free” late days for use over all assignments.

• For each late day after free days have been exhausted ⇒ 25%
penalty on the assignment marks. (Weekends and weekdays
treated the same.)

• No late days allowed on final assignment.


