
E0:227, Program Analysis and Verification
3:1, January - April 2009

E-Classroom, CSA, M-W 11:30am-1pm
http://www.csa.iisc.ernet.in/~raghavan/pav09/index.html

K. V. Raghavan and Deepak D’Souza



Software development is hard

Average software-development project [Barry Boehm, ICSE ’06
keynote] incurs:

• 90% cost overrun

• 121% time overrun

• delivers only 61% of initially promised functionality



Software development lifecycle

For each release of the software:
Requirements
Analysis and Design
Coding
Testing
Production/deployment; feedback from users

Testing, finding and fixing bugs (i.e., Quality Assurance) com-
sumes 50% of total cost and time of software development.

The problem gets worse after multiple releases, because:

• People lose knowledge of the code

• Code becomes bigger, more complex, and poorer structured



Software development lifecycle

For each release of the software:
Requirements
Analysis and Design
Coding
Testing
Production/deployment; feedback from users

Testing, finding and fixing bugs (i.e., Quality Assurance) com-
sumes 50% of total cost and time of software development.

The problem gets worse after multiple releases, because:

• People lose knowledge of the code

• Code becomes bigger, more complex, and poorer structured



Software development lifecycle

For each release of the software:
Requirements
Analysis and Design
Coding
Testing
Production/deployment; feedback from users

Testing, finding and fixing bugs (i.e., Quality Assurance) com-
sumes 50% of total cost and time of software development.

The problem gets worse after multiple releases, because:

• People lose knowledge of the code

• Code becomes bigger, more complex, and poorer structured



Why quality assurance takes so much effort

• Defects are common

• Are hard to find
• often, get identified only after release
• no good tools, and people don’t use ones that are there

• When a program crashes, or gives wrong answer, hard to
detect the root defect

• Defects in requirements or design should be found before
coding starts, else code will manifest it

• however, no widely used formal techniques for these

• Incorrect understanding of customers requirements



Kinds of software defects

• Crashes
• Null pointers, uninitialized values
• Array index out of bounds, buffer overrun
• Memory leaks
• Misuse of pointers and buffers (in languages like C)
• Unreachable code

• Does not interact with other software in the same way as the
previous version.

• Leaks information to unauthorized channels

• Performs poorly

• Logical errors (design-time errors)



What’s wrong with this program?

int middle(int x,
int y,
int z) {

int m = z;
if (y < z)
if (x < y)

m = y;
else if (x < z)

m = x;
else
if (x > y)

m = y;
else if (x > z)

m = x;
return m;

}

⇒ int middle(int x,
int y,
int z) {

int m = z;
if (y < z)
if (x < y)

m = y;
else if (x < z)

m = x;
else

if (x > y)
m = y;

else if (x > z)
m = x;

return m;
}

Tool BLAST identifies the two lines before return as unreachable



What’s wrong with this program?

int middle(int x,
int y,
int z) {

int m = z;
if (y < z)
if (x < y)

m = y;
else if (x < z)

m = x;
else
if (x > y)

m = y;
else if (x > z)

m = x;
return m;

}

⇒ int middle(int x,
int y,
int z) {

int m = z;
if (y < z)
if (x < y)

m = y;
else if (x < z)

m = x;
else

if (x > y)
m = y;

else if (x > z)
m = x;

return m;
}

Tool BLAST identifies the two lines before return as unreachable



A common approach to software validation: Testing

• A test suite (set of test cases) is created, and executed for
each version.

• Black box testing: Test cases are created manually by user,
or generated randomly.

• White box testing: Test cases are generated by an analysis of
the program code to increase code coverage.

• Typically needs tool support.

• What’s good about testing? All bugs found are real bugs.
• What’s bad about testing?

• 100% coverage of the program’s behavior is impossible.
• Therefore, cannot find all bugs or prove the absence of bugs.

• Very hard to test the portion inside the “if” statement!

input x
if (hash(x) == 10) {

...
}



A common approach to software validation: Testing

• A test suite (set of test cases) is created, and executed for
each version.

• Black box testing: Test cases are created manually by user,
or generated randomly.

• White box testing: Test cases are generated by an analysis of
the program code to increase code coverage.

• Typically needs tool support.

• What’s good about testing? All bugs found are real bugs.
• What’s bad about testing?

• 100% coverage of the program’s behavior is impossible.
• Therefore, cannot find all bugs or prove the absence of bugs.

• Very hard to test the portion inside the “if” statement!

input x
if (hash(x) == 10) {

...
}



Program verification

The algorithmic discovery of properties of a program by inspection
of the source text.

– Manna and Pneuli, “Algorithmic Verification”

Also known as: static analysis, static program analysis, formal
methods, . . .



Program verification

The algorithmic discovery of properties of a program by inspection
of the source text.

– Manna and Pneuli, “Algorithmic Verification”

Also known as: static analysis, static program analysis, formal
methods, . . .



Difficulty of program verification

• What will we prove?
• “Deep” specifications of complex software are as complex as

the software itself
• Are difficult to prove
• State of the art tools and automation are not good enough

• We will focus on “shallow” properties
• That is, we will prove “partial correctness”, or absence of

certain classes of errors (e.g., null pointer dereferences)



11

Elusive triangle

11

Large 
programs

Deep 
properties Automation

We will let 
go of this 
one!

Credit: Sriram Rajamani, Microsoft Research India



Example: Determining whether variables are odd (o) or
even (e)

p = oddInput() (p,o)
q = evenInput() (p,o) (q,e)
if (p > q) (p,o) (q,e)

p = p*2 + q (p,e) (q,e)
write(p) (p,oe) (q,e)
if (p <= q) (p,o) (q,e)

p = p+1 (p,e) (q,e)
write(p) (p,e) (q,e)
q = q+2 (p,e) (q,e)



A verification approach: abstract interpretation

• A kind of program execution in which variables store abstract
values from bounded domains, not concrete values

• Input values are also from the abstract domains

• Program statement semantics are modified to work on
abstract variable values

• We execute the program on all (abstract) inputs and observe
the program properties from these runs



Example: The abstraction

• Possible values of each variable: {o, e, oe}.
• Modified statement semantics:

+ o e oe

o e o oe
e o e oe

oe oe oe oe

∗ o e oe

o o e oe
e e e e

oe oe e oe



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput()

<(p,o), (q,e)>

if (p > q)

<(p,o), (q,e)>

p = p*2 + q

<(p,e), (q,e)>

write(p)

<(p,o), (q,e)> <(p,e), (q,e)>

if (p <= q)

<(p,o), (q,e)> <(p,e), (q,e)>

p = p+1

<(p,e), (q,e)> <(p,o), (q,e)>

write(p)

<(p,e), (q,e)> <(p,o), (q,e)>

q = q+2

<(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q)

<(p,o), (q,e)>

p = p*2 + q

<(p,e), (q,e)>

write(p)

<(p,o), (q,e)> <(p,e), (q,e)>

if (p <= q)

<(p,o), (q,e)> <(p,e), (q,e)>

p = p+1

<(p,e), (q,e)> <(p,o), (q,e)>

write(p)

<(p,e), (q,e)> <(p,o), (q,e)>

q = q+2

<(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q

<(p,e), (q,e)>

write(p) <(p,o), (q,e)>

<(p,e), (q,e)>

if (p <= q)

<(p,o), (q,e)> <(p,e), (q,e)>

p = p+1

<(p,e), (q,e)> <(p,o), (q,e)>

write(p)

<(p,e), (q,e)> <(p,o), (q,e)>

q = q+2

<(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,o), (q,e)>

<(p,e), (q,e)>

if (p <= q)

<(p,o), (q,e)> <(p,e), (q,e)>

p = p+1

<(p,e), (q,e)> <(p,o), (q,e)>

write(p)

<(p,e), (q,e)> <(p,o), (q,e)>

q = q+2

<(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,o), (q,e)> <(p,e), (q,e)>
if (p <= q)

<(p,o), (q,e)> <(p,e), (q,e)>

p = p+1

<(p,e), (q,e)> <(p,o), (q,e)>

write(p)

<(p,e), (q,e)> <(p,o), (q,e)>

q = q+2

<(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,o), (q,e)> <(p,e), (q,e)>
if (p <= q) <(p,o), (q,e)> <(p,e), (q,e)>

p = p+1

<(p,e), (q,e)> <(p,o), (q,e)>

write(p)

<(p,e), (q,e)> <(p,o), (q,e)>

q = q+2

<(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,o), (q,e)> <(p,e), (q,e)>
if (p <= q) <(p,o), (q,e)> <(p,e), (q,e)>

p = p+1 <(p,e), (q,e)> <(p,o), (q,e)>
write(p)

<(p,e), (q,e)> <(p,o), (q,e)>

q = q+2

<(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,o), (q,e)> <(p,e), (q,e)>
if (p <= q) <(p,o), (q,e)> <(p,e), (q,e)>

p = p+1 <(p,e), (q,e)> <(p,o), (q,e)>
write(p) <(p,e), (q,e)> <(p,o), (q,e)>
q = q+2

<(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,o), (q,e)> <(p,e), (q,e)>
if (p <= q) <(p,o), (q,e)> <(p,e), (q,e)>

p = p+1 <(p,e), (q,e)> <(p,o), (q,e)>
write(p) <(p,e), (q,e)> <(p,o), (q,e)>
q = q+2 <(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,o), (q,e)> <(p,e), (q,e)>
if (p <= q) <(p,o), (q,e)> <(p,e), (q,e)>

p = p+1 <(p,e), (q,e)> <(p,o), (q,e)>
write(p) <(p,e), (q,e)> <(p,o), (q,e)>
q = q+2 <(p,e), (q,e)> <(p,o), (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation

Abstract interpretation

p = oddInput() <(p,o)>
q = evenInput() <(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,o), (q,e)> <(p,e), (q,e)>
if (p <= q) <(p,o), (q,e)> <(p,e)X, (q,e)>

p = p+1 <(p,e), (q,e)> <(p,o)X, (q,e)>
write(p) <(p,e), (q,e)> <(p,o)X, (q,e)>
q = q+2 <(p,e), (q,e)> <(p,o)X, (q,e)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Another verification approach: Type systems

• Treat assignment statements as a set of mathematical
equations, and program variables as mathematical variables.

p = oddInput()
q = evenInput()
p = p*2 + q
p = p+1
q = q+2

• Let domain of variables be {o, e, oe}. Let operators “∗” and
“+” have the meanings as described in tables earlier.

• Solve the set of equations.

• Two solutions for the above equations: (1)
< p = oe, q = e >, (2) < p = oe, q = oe >.

• Solution (1) is more precise than solution (2).



Another verification approach: Type systems

• Treat assignment statements as a set of mathematical
equations, and program variables as mathematical variables.

p = oddInput()
q = evenInput()
p = p*2 + q
p = p+1
q = q+2

• Let domain of variables be {o, e, oe}. Let operators “∗” and
“+” have the meanings as described in tables earlier.

• Solve the set of equations.

• Two solutions for the above equations: (1)
< p = oe, q = e >, (2) < p = oe, q = oe >.

• Solution (1) is more precise than solution (2).



Comparing abstract interpretation and type systems

• Reminder: The type solution is < p = oe, q = e >.

• Type systems approach is “flow insensitive”: It gives each
variable a single value valid at all program points, whereas
abstract interpretation gives different values at different
points.

• The single value is a over-approximation (union) of values at
all program points. Therefore, type system approach is less
precise than flow-sensitive abstract interpretation.

• However, type system approach is more efficient.
Both approaches produce over-approximations of the ideal re-
sults. This is true of verification approaches in general. In
contrast, testing produces an under-approximation of the ideal
results.

• In other words, Flow-insensitive verification ⊇ flow-sensitive
verification ⊇ ideal results ⊇ testing.



Overview of PAV course

• Introduction (1 lecture) (durations are tentative)

• Specifying semantics of programming language formally. (1)

• Verification approaches
• Dataflow analysis (7)
• Abstract interpretation (3)
• Type inference (8)
• Assertional reasoning (2)

• Program slicing (6) (Time permitting)



Flavour of the course

• Semantics: associating a mathematical function with each
kind of statement in the language.

• Dataflow analysis
• Setting up a set of mathematical equations, and using a kind

of graph traversal to solve these equations
• Proving termination of the approach

• Abstract interpretation and type systems
• Examples of abstract domains and abstract statement

semantics
• Proving that the results computed are an over-approximation

of the ideal results
• Proving termination of the approach

• Assertional reasoning: A first-order predicate logic for deriving
facts about a program



Prerequisites

• Discrete structures such as sets, relations, partially ordered
sets, functions

• (Undergraduate level) algorithms

• Mathematical logic (propositional, first-order)

• General mathematical maturity: comfort with notation,
understanding and writing proofs

• Familiarity with imperative languages like C

• (Moderate) programming experience



What we will not cover

• Software engineering
• How to collect requirements from customers and prioritize

them
• Planning and management of software development
• Design, architecture, coding

• Programming languages

• Analysis of parallel/concurrent programs, distributed systems

Compilers course offered by Prof. Y. N. Srikant this semester
will cover applications of program analysis to compiling, among
other topics.



What we will not cover

• Software engineering
• How to collect requirements from customers and prioritize

them
• Planning and management of software development
• Design, architecture, coding

• Programming languages

• Analysis of parallel/concurrent programs, distributed systems

Compilers course offered by Prof. Y. N. Srikant this semester
will cover applications of program analysis to compiling, among
other topics.



Assignments and exams (tentative)

• Assignments
• 5-6 assignments
• Most of them written, some involve coding
• 50% weight

• Mid-sem exam (20%), End-sem exam (30%)



Misconduct policy

• Academic misconduct (e.g., copying) will not be tolerated

• Discussion in exams ⇒ automatic fail grade for both students

• Assignments
• Try to work individually.
• If you choose to discuss with other students

• You may discuss only with students registered in the class (or
with the Deepak or Raghavan)

• You must write your answer individually, in your own words.
No copying, no looking at the other person’s answer!

• For each violation of above policy ⇒ zero for the entire
assignment plus one grade-point reduction in final grade (for
the one who copied).

• Grade-point reductions over multiple violations will
accumulate.

• Grading: Your marks will be based on your written answer
and on a viva. (There will be a viva for each assignment.)



Late policy for assignments

• 10 “free” late days for use over all assignments.

• For each late day after free days have been exhausted ⇒ 25%
penalty on the assignment marks. (Weekends and weekdays
treated the same.)

• No late days allowed on final assignment.


