
On Basic Financial Decimal
Operations on Binary Machines

Abhilasha Aswal, M. Ganesh Perumal, and G.N. Srinivasa Prasanna, Senior Member, IEEE

Abstract—Financial transactions are specified in decimal arithmetic. Until the introduction of IEEE 754-2008, specialized software/

hardware routines were used to perform these transactions but it incurred a penalty on performance. In this paper, we show that if

binary arithmetic is used to emulate decimal operations, then arbitrary error sequences can be generated by carefully chosen

sequences of transactions which can lead to monotonically increasing/decreasing capitalization errors. In addition, we describe

methods for correctly performing basic decimal operations, such as addition, subtraction, multiplication, and division, on binary

machines, which are not conformant with IEEE 754-2008 decimal floating point standard (ISO/IEC/IEEE 60559:2011), at high speed.

Index Terms—Floating-point arithmetic, IEEE 754 standards, computer arithmetic.

Ç

1 INTRODUCTION

MANY early computers used decimal arithmetic at the
hardware level, but binary computing in hardware

soon took over after Von Neumann et al. [6] pointed out the
advantages of simplified hardware. In 2008, the IEEE
Standard 754-1985 [23] was revised to define standards for
decimal floating-point arithmetic (IEEE 754-2008, ISO/IEC/
IEEE 60559:2011) [24], [25], yet most general purpose
computers still implement binary arithmetic. Financial
calculations, which are specified in decimal arithmetic, are
required to be exact both by the law and to keep the account
books free of inconsistencies. If we use binary floating-point
arithmetic to perform the decimal calculations in financial
transactions, then errors that are legally unacceptable may
creep in [3], [4]. Although, machines that are pre IEEE 754-
2008 compliant can use specialized software libraries to
perform decimal calculations exactly on the underlying
binary hardware, it comes with a penalty on performance.
In this paper, we show that blindly using binary hardware
will result in unacceptable errors and also present an
alternative approach that shows how high speed decimal
arithmetic can be implemented on a binary machine
conformant with IEEE 754 for binary floating point, but
not with IEEE 754-2008 for decimal floating point.

1.1 Contributions of the Paper

Beginning with financial transaction properties, we

1. Devise an appropriate computational model:

a. Compared to previous work [3], [4], we system-
atically categorize financial transactions and
show the existence of arbitrary error patterns by
a suitable choice of transaction amounts.

2. Investigate the impacts of using standard computer
architectures without modification, for financial
applications:

a. Our results are based on examination of the
error ð�Þ which is defined as the difference
between the answer produced using arbitrary
precision decimal arithmetic, and that produced
by the IEEE 754 binary arithmetic, after financial
rounding rules are applied.

b. We show using a matrix representation of
possible errors, that extensive errors can appear
for certain sequences of transaction values. Such
special sequences of transactions can lead to
monotonically increasing/decreasing errors
which are erroneously attributed to wrong
implementation rather than the limitations of
using binary arithmetic for decimal calculations.
We show that it is possible to design sequences of
transactions which can yield an error at every
step making the total error increase/decrease
arbitrarily, when computing using binary arith-
metic. We show that such error sequences can be
deliberately triggered by analyzing the possible
errors. The errors are typically very small in
magnitude, but sequences of transactions exist,
whose cumulative error is significant, and we
show that almost any required error process can
be generated.

3. Investigate appropriate modifications required to
contemporary architectures, if any (compliant with
IEEE 754, not IEEE 754-2008 decimal floating point):

a. We show in this paper that existing binary
hardware in conjunction with arbitrary precision
software libraries are capable of exact decimal
calculations as encountered in finance, at high
speed.

1084 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

. A. Aswal and M.G. Perumal are with the International Institute of
Information Technology-Bangalore and the Education and Research
Department at Infosys Limited, 26/C Electronics City, Hosur Road,
Bangaluru 560100, Karnataka, India.
E-mail: {abhilasha.aswal, ganesh_perumal}@iiitb.ac.in.

. G.N.S. Prasanna is with the International Institute of Information
Technology-Bangalore, 26/C Electronics City, Hosur Road, Bangaluru
560100, Karnataka, India. E-mail: gnsprasanna@iiitb.ac.in.

Manuscript received 15 Sept. 2011; revised 4 Apr. 2012; accepted 9 Apr. 2012;
published online 19 Apr. 2012.
Recommended for acceptance by E. Antelo, D. Hough, and P. Ienne.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2011-09-0654.
Digital Object Identifier no. 10.1109/TC.2012.89.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Our methods rely on an analysis of the possible errors in
using binary for decimal calculations, and the very coarse
rounding grid for currencies (which may not be the case for
general applications utilizing decimal arithmetic). In rare
cases, when our methods are detected to be potentially
erroneous, we safely take recourse to a standard decimal
calculation software library (e.g., BigDecimal, decNumber).

We need no special hardware decimal instructions. The
results will enable the vast majority of pre-IEEE 754-2008
binary processors to be used for financial calculations, at
high speed. Power limited mobiles can be employed using
our techniques for financial computations also.

4. Our methods can generalize to implementing arith-
metic in any radix, given hardware implementing
any other radix with sufficient extra precision.

In the rest of this paper, we discuss these ideas in detail.
Section 2 discusses some generic issues in handling decimal
financial calculations on binary machines. Section 3 dis-
cusses a mathematical model of transactions. Based on this,
Section 4 presents an analysis of the error process and
Section 5 does a worst case analysis of error patterns, and
shows that sequences of transaction volumes exist which can
cause errors in each transaction. Section 6 presents software
optimizations that will enable us to use binary hardware to
perform exact decimal calculations faster than the software
libraries. Here, we show how binary arithmetic compliant
machines can do high-speed decimal financial calculations,
without using decimal hardware. Section 7 concludes.

2 FINANCIAL CALCULATIONS ON FINITE PRECISION

MACHINES

The IEEE 754 floating point standard defines the rules for the
approximation of real numbers in finite precision machines,
as well as for arithmetic operations like addition, subtraction,
multiplication, division, etc. Floating-point representations
of a number define a base� and a precision p. IEEE 754-1985 is
a binary standard where � ¼ 2 and p ¼ 24 (7.22 decimal
digits) for single precision and p ¼ 53 (15.95 decimal digits)
for double precision. Length of a word in single precision is
32 bits, 23 bits for the significand, and 8 bits for the exponent
and 1 sign bit. In double precision a word is 64 bits long,
52 bits for the significand, and 11 bits for the exponent and
1 sign bit. In 2008 this standard was updated to IEEE 754-
2008, where the radix can be either 2 or 10. IEEE 754-2008
defines the interchange formats, rounding algorithms,
operations, and exception handling. It also includes the
recommendations for sophisticated exception handling,
other operations such as logarithmic and trigonometric,
expression evaluation and to achieve reproducible results.
Although the IEEE standard was revised in 2008, partial
hardware support for decimal arithmetic (not compliant with
IEEE 754-2008) has existed for a long time, for example, in
IBM Z9 mainframes at microcode level, and in IBM Z10 and
POWER6 and later POWER processors at hardware level.

Whenever the result of an operation is inexact then by
default IEEE standards rounding rule approximates the
answer to the nearest representable number. There are two
rounding to nearest schemes for this. The standard defines
three other rounding modes, called directed roundings,

round toward 0, round toward þ1 (ceiling function), and
round toward �1 (floor function). The exact result lies
between result rounded toward þ1 and result rounded
toward �1. Let X be the exact value and X̂ be the
approximate value, which follows:

X̂ 2 ½floorðXÞ; ceilingðXÞ�:

The difference between the exact value and the rounded
value is known as the rounding error, � ¼ X � X̂. Financial
regulations define more rounding rules (Standard round-
ing, Swiss rounding, Argentine rounding, etc.), to round the
results to the nearest representable currency unit. These
rounding rules do not always round to two decimal places,
but sometimes may round to three decimal places as in the
case of Argentine rounding. In this case, the rule states that
if the third digit after the decimal is less than three, it is
dropped, otherwise, if the third digit is between two and
eight, it is changed to five, otherwise, if the third digit is
greater than seven, then the third digit is dropped and the
second is incremented by 1 [17].

Financial calculations are specified in decimal, and
significant rounding errors may occur due to conversion
to/from the binary representation. For example, the binary
representation of 0.1 lies strictly between two binary
floating-point numbers and cannot be exactly represented
by either of them so it is approximated to 1:1001100
110011001100110011001100110011001100110011010� 2�4 in
IEEE 754 double precision, which when converted back to
decimal gives 0.100000000000000005551115123126.

Indeed among the 10 quantities ½0:0; 0:1; 0:2; 0:3; . . . ; 0:9�,
only two (0.0, 0.5) have exact binary representations. Further
complications arise in financial calculations, due to huge
monetary volumes (1013 units or more), and legal require-
ments of accuracy to the last currency unit. Even small
relative errors in calculation may lead to large errors, with
possible legal consequences over a period of time and this
may have an impact on a banks balance sheet. As such,
financial calculations require specialized software libraries
which include implementations of the basic operations like
addition, subtraction, multiplication, and division to pre-
serve accuracy. These workarounds are typically slow
(because of lack of hardware support for decimal arithmetic
in majority of machines) [4] and hence the performance of
these systems may be affected. If IEEE 754 binary arithmetic
is used directly instead of specialized software/hardware
then we show that the results may not be accurate enough to
satisfy legal requirements. In addition to this, we show how
to correct such errors in an efficient manner. We also give an
algorithm for financial transactions involving multiplica-
tions and divisions which can be used to perform transac-
tions with sufficient accuracy using binary arithmetic.

3 MODEL OF FINANCIAL TRANSACTIONS

We precisely specify the operations of a financial system in
this section. We assume that all transactions begin with an
exactly representable account balance in decimal, in the
currency in which the account is specified. An exactly
representable decimal amount � is deducted from the payer,
in the payer’s currency, and an exactly representable decimal

ASWAL ET AL.: ON BASIC FINANCIAL DECIMAL OPERATIONS ON BINARY MACHINES 1085

amount is added to the payee, in the payee’s currency.

Intermediate calculations and representations may be in

either double precision binary or exact decimal arithmetic.

This financial model, while simplified, is adequate for

obtaining insight. Let x be a decimal amount specified in

currency c. Let �ðxÞ convert a x into its binary equivalent x̂ ,

�cðxÞ be the function to round the decimal amount x based on

the rounding rules for currency c and let �0ðx̂Þ convert a

binary number x̂ into its decimal equivalent.

3.1 Single Node

An account in a bank can act as a payer or a payee, and the

transactions are withdrawals and deposits. The transaction

amount � could be an arbitrary real value based on some

calculations like interest payment. This amount � may not

be exactly representable if IEEE 754 standard for binary

arithmetic is used. In this case, we are interested in �, the

error in the capitalization (difference between the exact

value, and that calculated using IEEE 754 followed by

currency specific rounding methods) at the node X (payer)

or Y (payee) as shown in Fig. 1.
For computing this in exact decimal arithmetic, we have

the relations between the initial and final quantities as

shown in (3.1) and (3.2). Let Xi and Yi represent the initial

balance amount at payer node and payee node, respec-

tively. Let Xf and Yf represent the final balance, after a

transaction, at payer node and payee node, respectively. We

assume that both the payer node and the payee node have

the same currency c.

Xf ¼ �cðXi � �cð�ÞÞ; ð3:1Þ

Yf ¼ �cðYi þ �cð�ÞÞ: ð3:2Þ

For calculations in double precision, we have an initial
step where the decimal account balances are converted
from their exact decimal values. Carets are used to refer to
binary approximations of decimal quantities.

X̂i ¼ �ðXiÞ; ð3:3Þ

Ŷi ¼ �ðYiÞ; ð3:4Þ

�̂ ¼ �ð�cð�ÞÞ; ð3:5Þ

Xf ¼ �cð�0ðX̂i � �̂ÞÞ; ð3:6Þ

Yf ¼ �cð�0ðŶi þ �̂ÞÞ: ð3:7Þ

The computations in (3.3) to (3.7) are in accordance to

IEEE 754 standards and include any IEEE 754 specific

rounding as the operands are binary numbers.

3.2 A Transaction Pair

A pair of accounts transacting with each other forms a
transaction pair. The nodes of the pair may have the same
base currency, in which case the transactions are single
currency transactions, or they could have different base
currencies, where the transactions are multicurrency. Of
interest here are the errors in the capitalization of the payer,
X or the payee, Y or the total, X þ Y . If the base currency of
both payer and payee is same ðcÞ as shown in Fig. 2, then
there is no currency conversion in the transaction and there
are no errors in decimal arithmetic if rounding is not applied.

Xf ¼ Xi � �cð�Þ; ð3:8Þ

Yf ¼ Yi þ �cð�Þ; ð3:9Þ

Xi þ Yi ¼ Xf þ Yf: ð3:10Þ

The error due to binary computation is derived using
(3.3) to (3.7) as

� ¼4 ðXf þ YfÞ � ðXi þ YiÞ:

Here, Xf and Yf are derived using (3.3) to (3.7).
Similarly, if the base currency of X and Y is different,

then there is a currency conversion step in the transaction,
which involves a multiplication by the exchange rate �XY to
convert currency of X into currency of Y , as shown in Fig. 3.

In this case, the transaction equations will change. There
is an additional currency specific rounding step which will
make the final total capitalization different from the exact
decimal answer. Due to difference in currencies, the total
capitalization is best calculated using infinite precision. Let
x, y be the currencies of X and Y , respectively.

Xf ¼ �xðXi � �xð�ÞÞ; ð3:11Þ

Yf ¼ �yðYi þ �yð�XY �xð�ÞÞÞ;

�XY Xi þ Yi ¼? �XYXf þ Yf:
ð3:12Þ

The use of binary arithmetic can cause additional error.
The binary equations will change to the following:

�̂ ¼ �ð�xð�ÞÞ
�̂ ¼ �ð�Þ

Xf ¼ �xð�0ðX̂i � �̂ÞÞ;
ð3:13Þ

Yf ¼ �yð�0ðŶi þ �ð�yð�0ð�̂XY �̂ÞÞÞÞÞ

�XYXi þ Yi ¼? �XYXf þ Yf:
ð3:14Þ

3.3 Interest Payments and Splits

Periodic interest payments result in a correlated sequence of
transaction volumes. A k-way split disbursement of funds is

1086 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

Fig. 1. A payer and payee—single sided.
Fig. 2. A payer and payee—single sided.

similar to a pairwise transaction, except that the initial
amounts are in general nonexactly representable (e.g.,
Rs. 1.00 split into three pieces). Additional errors beyond
the cases discussed above result. If an amount Z is to be
split into n parts, then an error between 0 and ModðZ; nÞ
can occur, i.e., the error, � 2 f0; 1; . . . ; n� 1g. Hence, for any
given n, the maximum error can be n� 1. A careful
selection of Z based on the information of the value of n
can be used to maximize ones gains.

3.4 A Financial Network

A network is formed when accounts across multiple banks
or accounts are transacting with each other. Here, each
node (account) can have a different base currency so it is
basically a multicurrency network. Let there be N nodes
(accounts across various banks) in the network. Let Xji and
Xjf represent the initial and final balances, respectively, of
the jth account. The total capitalization of the network can
be computed by converting the account balances of all
the accounts into a common currency (say, $) and then
summing them up. Even if all computations are exact, the
total capitalization computed in this manner at two
different instances may differ. If there are N accounts in
the network and Let Xji and Xjf represent the initial and
final balances, respectively, of the jth account, then

XN
j¼1

Xji�Xj$ ¼
?
XN
j¼1

Xjf �Xj$

This is because first, the currency exchange rates are
specified only up to six significant figures and second, there
are currency specific rounding rules. Due to this, opportu-
nities for arbitrage exist. Whenever there are erroneous
computations, these differences may be magnified.

4 ANALYSIS OF ERROR PROCESS

We analyze the behavior of the error process using the
model of transactions discussed in Section 3. We discuss the
properties of the error in representing a single value,
followed by properties of error accumulation in basic
operations. Our analysis is general, and applies to approx-
imating arithmetic in one base, by computations in any other base.

4.1 Error in Representing a Single Value

First consider a single decimal value in D digits, and its
nearest binary representation in B bits. We assume that
default round to nearest rounding direction mode is being
used. We consider that all numbers are normalized to unity
(we need only consider this case for insight, if D and B are
suitably chosen). Let the decimal value be denoted by x and
its nearest binary equivalent y (see Fig. 4). Analysis of the
error between x and y yields insight into the behavior of
decimal arithmetic approximated by binary representation.
Below, we shall use the notation ½m10;m2� to represent a

pair ½x; y�, where the first component is the exact decimal
value (scaled by 10D), and the second its (approximate)
binary representation. We have:

x ¼ 10�Dm10; 0 � m10 < 10D

y ¼ 2�Bm2; 0 � m2 < 2B

10�Dm10 � 2�B�1 � 2�Bm2 � 10�Dm10 þ 2�B�1:

ð4:1Þ

Lemma 4.1 below gives information about decimal

values that are exactly representable in binary.

Lemma 4.1. The error between the decimal number and binary

approximations is periodic in 10�D and 2�B.

Proof. Let L be a generalized version of least common

multiple (LCM) for fractional numbers 10�D and 2�B

L ¼ lcmð10�D; 2�BÞ

Period in decimal; P10 ¼
L

10�D
;

ð4:2Þ

Period in binary; P2 ¼
L

2�B
: ð4:3Þ

Since L � 1, cycling through all possible decimal
fractions will encounter at least one full period of the
error. tu

This is used for analysis in Section 5.
For example (Fig. 5), for D ¼ 1 and B ¼ 3, (one decimal

digit and its nearest binary equivalent) L ¼ lcmð 1
10 ;

1
8Þ ¼ 1

2 .

. The decimal fractional numbers are 0,0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9.

. The binary fractional numbers are 0, 0.125, 0.25,
0.375, 0.5, 0.625, 0.75, and 0.875.

Every fifth decimal number is approximated with the

same error, with the binary number incrementing by four.

Example of the periodic behavior is in Fig. 9 in Section 5.
It is well known that read-write cycles have no errors if,

Lemma 4.2. The errors occur when the binary is rounded to the

next nearest decimal, i.e., the rounding boundary is crossed.

This can be avoided by encoding the decimal with sufficient

binary digits as given below.

B �
�
log210D

�
: ð4:4Þ

ASWAL ET AL.: ON BASIC FINANCIAL DECIMAL OPERATIONS ON BINARY MACHINES 1087

Fig. 5. Mapping decimal values (with one place of significance) to the
corresponding approximate binary values (of three significant bits).

Fig. 4. Error between decimal and binary values.Fig. 3. A payer-payee pair (multicurrency).

Proof. Using Lemma 4.1, we can see that for the choices of
values of B that satisfy (4.4), the binary window will be
smaller than the decimal window, hence ensuring that the
rounding boundary is not crossed. tu

Our contribution is to generalize this decimal-binary-
decimal conversion cycle to those involving at least one
arithmetic operation.

With these basic definitions, we now examine the
properties of basic mathematical operations.

4.2 Error in a Single Addition

If the balance amount x is to be represented in binary format,
let �x be the error associated with it (Fig. 6). Let y be the
transaction (deposit) amount and �y be the error associated
with it.

�x ¼ x� �0ðx̂Þ
�y ¼ y� �0ðŷÞ:

The result after the addition will be �0ðx̂þ ŷÞ. The exact
result is ðxþ yÞwhich is equal to �0ðx̂þ ŷÞ þ �x þ �y. As long
as �x þ �y < 1

2� (smallest unit for x and yÞ, no errors are
made after standard rounding is applied.

To ensure that �x þ �y < 1
2� (smallest unit for x and y)

the binary approximation has to have at least two more bits
than the decimal. For most currencies, we have two decimal
places (7 bits), and the 53 bits in IEEE 754 significand cause
no addition errors for numbers with integer portions up to
244. Errors are made in addition only with large numbers
(greater than or equal to 245Þ, which reduce precision of
significand.

4.3 Error in a Single Multiplication

The story is different for multiplications (Fig. 7), since the
product of two exactly representable numbers can easily hit a
rounding boundary. For example, consider 1:5� 0:01 ¼
0:015, which gets rounded to 0.02 according to currency
rounding rules for currencies specified to two digits after the
decimal. If 0.01 is approximated as 0.0099. . . , then the same
operation yields 1:5� 0:0099 ¼ 0:0149999, which gets
rounded to 0.01. Rounding errors in multiplications occur
with even small numbers (but this is not frequent for coarse
decimal grids See Section 6 for details).

ðx� yÞ ¼ ð�0ðx̂Þ þ �xÞ � ð�0ðŷÞ þ �yÞ
ffi �0ðx̂Þ�0ðŷÞ þ �0ðx̂Þ�y þ �0ðŷÞ�x þ �x�y:

Another common decimal operation in financial applica-
tions is the IEEE 754-2008 quantize operation. This is

essentially a multiplication by a power of 10 and the same

analysis as above is applicable (Details in Section 6).
With this analysis of errors in number representation

and basic operations, we can discuss the impact of finite

precision in financial calculations, following our taxonomy

given in Section 3.

5 ERROR PROCESS: WORST CASE

Based on (3.1) to (4.4) we discuss the various transactions

below, in order. A novel tabular approach is used to examine

the worst case errors, as outlined below. These errors are rare,

requiring either very large numbers or accidental matches.

This fact will be exploited to obtain high-speed routines using

only binary arithmetic in Section 6.

5.1 Single Node, Payer/Payee: Transaction Error
Matrix

With capitalization amounts exceeding 1013ð245Þ, errors are

possible in additions, as shown in Section 4. Here, using a

tabular approach, we demonstrate a sequence of transaction

amounts, such that an error is made in every transaction.

First, we define the capitalization-transaction error matrix

(CTEM) T ðD;BÞ, where D is the number of decimal digits in

the fraction and B is the number of binary bits in the binary

approximation, as an n�m matrix, with entries Tij ¼ Error

in adding/subtracting Transaction amount �i to/from

Capital Ci, where n is the number of possible capitalization

values andm is the number of possible transaction amounts.

This error is with respect to exact decimal arithmetic. To

differentiate between the CTEM for deposits and with-

drawals, we represent CTEM as TþðD;BÞ and T�ðD;BÞ,
respectively. We can also have a CTEM, T�ðD;BÞ, for

multiplication which would result when a currency con-

version rate is multiplied with a transaction amount or

interest rate is multiplied with a capital amount. Table 1

shows a CTEM Tþð1; 3Þ for deposit transactions (additions).

Each entry Tij is the error that results from adding the

ith capital to jth transaction amount. For example, if the

account balance is 0.1 units and we want to deposit 0.2 units

in the account, the following steps are followed to find the

error:

1. Three digit binary equivalent of 0.1 is 0.001 and the
three digit binary equivalent of 0.2 is 0.010.

2. Adding the binary equivalents we get new total
amount as 0.011.

1088 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

Fig. 6. Error in addition.

Fig. 7. Error in multiplication.

3. Converting this new total amount back to decimal
we get 0.375.

4. Rounding this result to 1 decimal digit, we get 0.4.
5. The rounding error can be calculated by taking the

difference between the correct sum (0.3) and the
computed sum (0.4) which is �0:1, which is the
Tth12 entry in the CTEM Tþð1; 3Þ.

Table 1 shows a CTEM Tþð1; 3Þ for deposit transactions
(additions). Similarly, Table 2 shows a multiplication CTEM
T�ð1; 3Þ where each entry Tij is the error that results from
multiplying the ith capital to jth interest rate. Properties of
the CTEM. It is easy to see the following:

1. For a given binary precision, the CTEM is comple-
tely specified by using only all possible values of the
fractional (decimal) portion of transactions and
amounts. The integer portions add exactly, and do
not cause errors, assuming there are no overflows.

2. TþðD;BÞ is a symmetric matrix and rows and the
columns correspond to the smallest currency unit.

Proof. Since addition is commutative, the matrix is
symmetric. tu

T�ðD;BÞ is a skew symmetric matrix and the rows and
columns correspond to the smallest currency unit.

Proof. Since in subtraction, A�B ¼ �ðB�AÞ, the matrix is
skew-symmetric. tu

3. Since a row of TþðD;BÞ CTEM corresponds to using
all possible decimal fractional values less than or
equal to unity, the error period is � the row length.
For CTEM in Table 1 we can get the error period
using (4.2) and (4.3). As discussed earlier in Section 4,
P10 is five and P2 is four. From the CTEM, we observe
that the error is indeed repeating itself after every
five entries.

4. Table 3 shows Tþð2; 4Þ for two decimal digit values
approximated using 4 bits. We have shown only every
fifth row and fifth column of the CTEM for brevity.
The period of the error in decimal arithmetic, P10 in
this case is determined from (4.2) and (4.3), withD ¼ 2
and B ¼ 4. Equations (4.2) and (4.3) yields P10 ¼ 25,
and we can see from the table that the error indeed
repeats itself after every 25 values. This means that the
same error occurs four times at least in a row.

5.1.1 Generation of Arbitrary Error Sequences Using the

CTEM

Analysis of this matrix CTEM enables us to generate worst
case, and in general arbitrary transaction sequences, which
we describe below. For simplicity of illustration, we use
CTEM Tþð2; 4Þ in Table 3. Fig. 9 (later) illustrates the same
for a CTEM for an actual currency transaction approxi-
mated in IEEE 754 double precision.

So there are four possible transactions values that give the
same error. If there are N transactions, then for getting a
given error sequence, there are 4N possible ways of choosing

ASWAL ET AL.: ON BASIC FINANCIAL DECIMAL OPERATIONS ON BINARY MACHINES 1089

TABLE 1
CTEM Tþð1; 3Þ

TABLE 2
CTEM T�ð1; 3Þ

TABLE 3
CTEM Tþð2; 4Þ

the transaction amounts. Of course, the total number of
transaction sequences is 100N for two decimal digits, far
higher than the number of transaction sequences which yield
any given error sequence. However, the exponential number
of transaction sequences having a given error sequence,
enables a pseudorandom combination of these sequences to
pass at least simple statistical tests, and such errors to escape
detection. We have heuristically generated experimental
sample sequences from the CTEM in Table 3 such that there
was an overall bias across the transactions. The algorithm to
generate a sequence of N transactions is given below:

1. Select a random row ðRÞ from the CTEM.
2. IF the row has any positive errors THEN Select a

random column ðCÞ that has a positive error with
probabilityP or select a random column ðCÞ that has a
nonpositive error with probability ð1� P ÞELSE Select
a random column ðCÞ from anywhere in the row.

3. Find the next row: R decimal portion of
ðRþ C þ errorÞ.

Repeat steps 2 and 3, N times.
If P is tuned to be biased, that is P > 0:5, and the number

of rows with no positive error is smaller than the number of

rows with some positive error, then an overall positive bias

will result in the sequences. The algorithm is fast—for

generating sequences of 1,000 transaction amounts and

performing those transactions took around 1.7 seconds on

an Intel Core 2 Duo, 2.00 GHz, 2 GB RAM machine.
It is possible to generate these sequences in a manner

which pass statistical tests on the transaction amounts,

together with the payee and payer account amounts (this is

the only information available at the level of banker’s logs).

Sample sequences generated using the above algorithm of

varied sizes, passed the basic tests for randomness such as

chi-squared test, t-test, and F -test. The details are given in

the Appendix A, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TC.2012.89.

5.1.2 CTEM for Transactions Using IEEE 754 Double

Precision

For a given precision in binary, the CTEM will vary for

different capitalizations. For additions and subtractions, the

CTEM is unique over a very large range of values. For

example, with IEEE 754 double precision (not IEEE 754-

2008 decimal floating point) as the binary approximation,

there are 53 bits available for the significand. For

capitalization amounts whose integer portions are less than

245 (35184372088832), i.e., occupy only up to 45 bits, there

are no errors because we begin and end on a coarse

currency grid. For capitalizations having integer portions

between 245 and 246 (35184372088832 and 70368744177664),

there are errors and for those having integer portions

greater than 246 (70368744177664), there are an even larger

number of errors. We can see the snapshots of the three

corresponding CTEMs in Fig. 8. Each of them is obtained by

considering a base integer capitalization C0 and creating

from it a set of all possible decimal capitalizations, specified

to two decimal places, as follows:

C0 ¼ integral base capitalization

Cj ¼ Cj�1 þ 0:01; j > 0:

We now add transaction amounts from 0.01 to 0.99 to
each of these capitalizations to generate CTEM. Every
transaction will either produce an exact answer or an
approximate answer, depending on the numbers involved.
We classify these results as zero error, positive error, and
negative error, where positive error is encountered when
the approximated binary result is greater than the exact
decimal result and negative error is encountered when the
approximated binary calculation result rounded to decimal
is less than the exact decimal result.

In the succeeding examples, IEEE 754 double precision is
used as the binary approximation. The Appendix, available
in the online supplemental material, gives details of a couple
of sample additions based on IEEE 754 double precision as
the binary approximation. The white cells of CTEM denote
zero error, black cell denote a positive error, and gray cells
denote a negative error. We can see that the number of
errors increases with the size of the capitalization.

For all base capitalization values lying between 2x and
2xþ1, the number of significand bits is the same, and hence the
errors and CTEM is the same. This CTEM can be used to find a
sequence of transactions which have an overall bias but are
statistically indistinguishable from a random sequence. As an
example, consider the set of capitalizations specified to two
decimal places Ci; 0 � i � N , given as follows:

C0 ¼ 42345678901234:00

Cj ¼ Cj�1 þ 0:01; j > 0:

Using this CTEM, we can generate transaction amount
sequences such that a positive (or negative) error is encoun-
tered in every transaction.

Fig. 9 represents the output of this exercise in color-
coded form where the positive errors are represented by
black cells and negative errors are represented by gray cells
and zero errors by white cells. It can be seen that a large
number of cells have either a positive or a negative error.
The error is also clearly periodic. It is possible to find a
sequence of transaction amounts for this such that either
always a negative error is made or always a positive error is
made. Two such paths are shown, each for all positive and
all negative errors.

For the positive error sequence, the starting capitalization
was 42345678901234.02, chosen randomly. To this capital
amount, 0.24 is added. This results in an error of þ0:01,
which means that instead of 42345678901234.26, the double
result is 42345678901234.27. To this new capital amount, 0.03

1090 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

Fig. 8. Changes in CTEM from a small capitalization to a larger
capitalization.

is added, which again leads to an error of þ0:01, and so on.
The complete sequence of transaction amounts is [0.24, 0.03,
0.02, 0.03, 0.06, 0.06, 0.10, 0.17, 0.27, 0.49, 0.21, 0.20]. At the
end of this sequence, the capitalization amount becomes
42345678901236.02 and we can use the same sequence again
to always get a positive error. Hence, if we carry on cyclically
going through this sequence of transaction amounts, we will
continuously accumulate money in our account.

Similarly, it is possible to find a sequence such that always
a negative error is made. Starting from the capitalization
42345678901236.16, the following sequence of transactions
will always give a negative error: [0.08, 0.01, 0.19, 0.33, 0.19,
0.08, 0.19]. This is marked by gray colored arrows in Fig. 9.

If one takes short sequence of transaction amounts and
cycles through them thousands of times, such sequences
can be caught by statistical tests. However, it is possible to
have a sequence that appears random and still makes large
number of errors. For the example above, the following
pseudo random sequence [0.24, 0.03, 0.02, 0.03, 0.06, 0.06,
0.10, 0.17, 0.27, 0.49, 0.21, 0.20, 0.10, 0.56, 0.63, 0.28, 0.31,
0.06, 0.35, 0.99, 0.70, 0.42, 0.35, 0.13, 0.53, 0.38, 0.10, 0.02,
0.60, 0.67, 0.24 . . .], makes error at every step. Someone with
the knowledge of capitalization can deliberately trigger
such a sequence to their advantage.

Table 4 shows the results of chi-squared test done on two
biased sequences of 1,000 transactions each (not shown for
brevity), derived from the CTEM in Fig. 9. The result gives
enough evidence of the randomness of the sequences.

Similarly, the CTEM enables us to design transaction
volumes which do not always cause errors, but whose error
process appears random and passes statistical tests but
gains/loses money over a long enough time horizon.

5.2 Pair, Single Currency

If a pair of banks/accounts are transacting as a payer-payee
pair and both have the same base currency, then with
capitalization amounts exceeding 1013, it is possible to make

an error in every transaction. Here too, we find an always
increasing or an always decreasing path in the CTEM.
Consider, for example, that the payer’s initial balance is
56426386341314.01 currency units, and the payee balance is
39879899999879.03. Then, if the payer makes the following
sequence of payments repeatedly to the payee, then it is
always possible to make an error in every transaction at the
payer, and in a large number of transactions at the payee:
[0.08, 0.15, 0.12, 0.22, 0.19, 0.30]. There will be a positive
error at the payer and a negative error at the payee.

5.3 Pair, Multicurrency

While the preceding examples used very large transaction
amounts, this is not required when multicurrency transac-
tions are used. When we have a transacting pair with
different base currencies, it is still possible, with relatively
small capitalizations, to find a sequence of transactions that
will always give an error. This is due to the multiplication in
the conversion—this can yield errors with small numbers
also (Fig. 7, in, Section 5.1, and explanations therein).
Arbitrary error sequences can be found by finding a path
through the CTEM. Fig. 10 shows the partial CTEM for a
payer-payee pair of Australian Dollar-Iranian Rial, at an
exchange rate observed on 12/08/2011 (10923.3).

The capitalization amounts started from 1.01 Rials with
every subsequent capitalization obtained by adding 0.01
Rials to the current one. We add transaction amounts from
0.01 to 0.99 Australian Dollars to each of these capitalizations
to generate the CTEM. This involves converting the
Australian Dollar amount to Rials and then adding the
resultant amount to the capitalization. Every transaction will
either produce an exact answer or an approximate answer,
depending on the numbers involved. The red cells show a
negative error. We found that for this currency pair, we either
got a zero error or a negative error for any capitalization.
The following sequence of 100 transaction amounts gives a
negative error of 0.01 Rials 25 out of 100 times and passes the

ASWAL ET AL.: ON BASIC FINANCIAL DECIMAL OPERATIONS ON BINARY MACHINES 1091

TABLE 4
Chi-Squared Test Results on Sequences on CTEM

in Fig. 9 with Number of Transactions ¼ 1;000

Fig. 10. CTEM for Iranian Rial (payee) for Australian Dollar-Iranian Rial
pair with exchange rate as on 12/08/2011 (10,923.3 Rial/Australian
Dollar).

Fig. 9. Sample error sequences in a CTEM matrix.

Chi-squared test of randomness—[0.45, 0.5, 0.61, 0.85, 0.95,
0.24, 0.57, 0.25, 0.95, 0.25, 0.85, 0.35, 0.35, 0.45, 0.12, 0.25, 0.24,
0.23, 0.86, 0.3, 0.75, 0.35, 0.65, 0.25, 0.61, 0.9, 0.25, 0.25, 0.65,
0.11, 0.19, 0.6, 0.25, 0.75, 0.25, 0.9, 0.65, 0.55, 0.45, 0.85, 0.31,
0.85, 0.4, 0.85, 0.34, 0.45, 0.17, 0.65, 0.95, 0.25, 0.47, 0.25, 0.31,
0.45, 0.65, 0.65, 0.82, 0.65, 0.58, 0.77, 0.74, 0.48, 0.35, 0.95, 0.21,
0.25, 0.45, 0.65, 0.22, 0.25, 0.25, 0.31, 0.79, 0.59, 0.72, 0.85, 0.61,
0.12, 0.95, 0.39, 0.38, 0.85, 0.9, 0.35, 0.25, 0.97, 0.95, 0.17, 0.11,
0.95, 0.38, 0.1, 0.35, 0.97, 0.35, 0.18, 0.29, 0.35, 0.52, 0.47]. The
total money lost in 100 transactions was 0.25 Rials. Note that
since the double precision result is less than the accurate
amount, transaction fees cannot fix it they worsen the
problem! For multicurrency transactions, it is imperative to
use exact decimal arithmetic even small accounts can show
large transaction errors (see Section 6 for more details).

5.4 Interest Payments, Currency Splits

A similar analysis can be made for interest payments and
amount splits for dividend payments (e.g., dividing one
Rupee into three equal parts), with similar results—we
should use exact decimal arithmetic.

5.5 Network

An entire financial system operates as the composition of
transactions between individual currency pairs. The results
for the system can be inferred from the results for individual
pairs. Table 5 shows some of the erroneous results after a
simulation run with 10,000 accounts, each having one of 20
different currencies, and 50,000 money transfer transactions
randomly occurring between pairs of accounts. If the
accounts have different currency, the transaction involves a
currency conversion. The starting balance of all the accounts
was 107 currency units. The exchange rates were the actual
rates taken as on 10 August 2011. In all, there were 19 errors
in 50,000 transactions. The rarity of these errors will be
exploited in Section 6.

6 SAFE DECIMAL ARITHMETIC ON BINARY

MACHINES

With the machinery discussed in the earlier sections, we will
now illustrate how exact decimal arithmetic can be imple-
mented, using primarily binary arithmetic computations,
with recourse to a decimal library occasionally. No new
decimal hardware instructions are required.

Historically financial data are stored as strings in
databases. We assume this string data are loaded in RAM
for our performance estimates (else disk accesses dominate).
We show new and improved calculation methods, working
on all architectures even those predating IEEE 754-2008, and
hence assume that we do not have data in BID/DPD format.

Our methods rely on the fact that the decimal grid in
finance is far coarser than the binary precision, and are
rarely erroneously crossed by the binary result (Fig. 12). In
the majority of cases, the binary answer is good enough to
be rounded as per the currency rules. This rounding step is
typically currency specific and not in general consistent
with IEEE 754-2008 with most of the digits being dropped,
unless the numbers are very large. Section 6.2 shows ((6.1)
to (6.7)) how this step can be done at high speed.

We show the clock cycle results for calculating basic
decimal financial operations—addition and multiplication,
with 16 digits of precision which encompasses a range large
enough for a large class of financial applications ([14, Table 6]
and remarks therein). Note that these 16 digits need not come
from decimal32 or decimal128 formats. Our methods are
referred to the case when the datum has 16 significant digits
irrespective of the format. Clock cycle counts do not translate
directly into actual runtimes, but the results are indicative of
the promise of our approach. The ideas can be analogously
extended for 34 digits of precision, but will come with a
conversion overhead. We have not discussed exception
processing here for brevity, but the same exceptions can be
generated as those by decimal64/128.

Below, we discuss addition briefly and multiplication in
detail. For simplicity of exposition, we have not presented the
fully optimized versions of our method. We present equa-
tions valid for exact binary arithmetic but they straightfor-
wardly generalize to arithmetic accurate to half ulp.

6.1 Addition (Deposit/Withdrawal Single Currency)

This relatively common operation will be briefly discussed.
Our methods can be used together with scaling, if the loss
of dynamic range is acceptable (this is not so for multi-
currency transactions).

Since we begin with string data, the first step is to
convert to a format handleable by the machine. To read in
decimal data where the exponent is explicitly specified (i.e.,
specified in terms of the lowest currency unit), we use a
standard conversion algorithm (e.g., Gay’s algorithm [20])
to convert to binary, assuming round to nearest.

On the other hand, to read in decimal data where the
exponent is specified as an attribute (e.g., value is in
Millions), we can modify the string read routine to shift by
an appropriate number of decimal places before conversion
to binary. This should not cause much increase in time for
the string conversion since it involves no computations, but
only a book-keeping of shift of the decimal point (the shift
is completely determined by the attribute, e.g., data in
millions imply shift the decimal point six places).

The integer portions of the operands are converted to
binary as described above. The fractional portion is dealt
with as discussed below.

Our method uses the CTEM selectively, based on numeral
magnitudes to get exact decimal rounded results, and at
high speed. We first note that the CTEM provides not only
the error, but also equivalently information about if 1) a
carry/borrow results from the addition/subtraction and
2) the fractional part of the answer. This can be used to
correct the error.

Our method simply hence performs the transaction by
converting the integer portion using an standard algorithm

1092 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

TABLE 5
Errors Resulting from a Simulation of 50,000

Multicurrency Transactions between 10,000 Accounts

(e.g., [20]), adds/subtracts using binary integer arithmetic,
adds a carry if needed from a CTEM lookup, and converts
back to decimal. The CTEM lookup also provides the decimal
fractional portion. This is faster than high-precision software
libraries, and decimal hardware implementations [14], [21]
are not required. The CTEM for addition and subtraction is
small enough (only 10,000 entries for currencies specified up
to two digits after decimal and at most 1,000,000 entries for
currencies specified up to three digits after decimal) to be
loaded in to the main memory in contemporary computers.
Also, there are at most nine different CTEMs, one each for the
range 2x to 2xþ1, 45 � x � 53 (see Section 5.1.2, Fig. 11).

To write back, when the scale doesn’t have to be modified,
the standard binary to string conversion routines can be
used. However, in financial operations scales have to be
often modified. In such cases, the string write routine can be
modified to shift by an appropriate number of decimal
places.

An alternative implementation of addition can scale the
fractional parts by 100 or 1,000 to only perform integer
operations. If in this case a rescaling back of the final answer
is required, then we have to divide by an appropriate power
of 10 or multiply by the inverse. Here, we can use our (6.7)
with �R ¼ 1, and �R

2 ¼ 0:5 which has an exact representation
in binary.

The typical cost of the above method is only about
250 cycles. This includes the cost of conversion from string to
binary (2� 50 cycles), the cost of actual binary addition, and
the CTEM lookup (20 cycles) and the cost of converting final
answer back to string (130 cycles). Our conversion numbers
are derived from Gay [20]—the cost of conversion from
string to binary format is in 10 s of cycles (typically 40-60) and
the cost of converting back is 130 cycles (typically 120-140). In
contrast, an addition operation using BID64 typically takes

320 cycles including the costs of conversions [21]. Hence, we
are in the same scale as decimal instructions, while using
binary architecture, and faster than software libraries.

In general, for any average bank user, nearly 90 percent of
the transactions are deposits and withdrawals and using the
additive CTEM alone in the system, we can greatly improve
the speed with which the transactions are performed.

This addition algorithm is shown in the self-explanatory
flow chart in Fig. 11, which depicts the database to database
operations in performing a transaction.

We note that if a series of transactions are to be performed,
then the intermediate results can be retained in binary, as
long as the resulting capitalization and transaction amount
are both less than 244.

Our analysis will be helpful if databases store binary
approximations for decimal numbers rather than using
strings. Equation (4.1) will give insight into the approxima-
tions. In addition Section 5 gives insight into possible
dangers of blindly ignoring the problem.

6.2 Multiplication

Using the CTEM approach directly is not possible for
transactions including a multiplication operation such as
currency conversion and interest payments as the error and
hence the CTEM depends on both the integer portion and
the fractional portion of the operands (this is unlike
addition). Scaling the numbers to avoid fractional portions
completely entails a significant amount of loss of dynamic
range. Specifically, in a multicurrency calculation, with an
exchange rate represented to six significant digits and with
currencies having 2=3 fractional digits, 8=9 orders of
dynamic range are lost, which is unacceptable. An
alternative approach is required, one of which is presented
below. We present equations valid for exact binary
arithmetic. For IEEE 754 arithmetic accurate to half ulp,
our equations can be fixed, but the frequency of calling the
software digital library can increase slightly.

When we multiply two decimal numbersx and y in binary,
it is the binary approximations of x and y that get multiplied
and the result that we get may be different from the exact
decimal result. Lets call this approximate result as �.

� ¼ ðxð1þ �xÞÞðyð1þ �yÞÞ
¼ xyþ xyð�x þ �yÞ þ xyð�x�yÞ:

Here, xy is the exact decimal result and xyð�x þ �yÞ þ
xyð�x�yÞ is the error part. Since �x and �y, the errors in
representing decimal values by their nearest binary equiva-
lents, are unknown (and can be negative) for any givenx and y,
we cannot know how far the approximate result� is from the
exact result xy, unless we perform some complex calcula-
tions. However, �x and �y are at most one ulp. This enables us
to bracket the exact value xy, in the following manner.

Let x̂ be the nearest exactly representable binary number
that is greater than or equal to x, as per IEEE 754. Let ^̂x be the
nearest exactly representable binary number that is less than
or equal to x. Similarly ŷ and ^̂y are the upper and lower binary
approximations to y, as per IEEE 754. These are obtained
using standard decimal to binary conversion algorithms (e.g.,
Gay’s algorithm [20]). Clearly, the exact product satisfies

^̂x^̂y � xy � x̂ŷ:

ASWAL ET AL.: ON BASIC FINANCIAL DECIMAL OPERATIONS ON BINARY MACHINES 1093

Fig. 11. Flow chart for performing addition/subtraction transactions

(database to database cycle).

Bounds on x̂ and ^̂x and ŷ and ^̂y and the respective

products, are readily obtained by adding/subtracting one

in the last significand place as

x̂ ¼ xð1þ �x þ 2�53Þ; ð6:1Þ

ŷ ¼ yð1þ �y þ 2�53Þ; ð6:2Þ

^̂x ¼ xð1þ �x � 2�53Þ; ð6:3Þ

^̂y ¼ yð1þ �y � 2�53Þ; ð6:4Þ

	̂ ¼ x̂ŷ; ð6:5Þ

^̂	 ¼ ^̂x^̂y: ð6:6Þ

We assume that round to nearest is being used. Alter-

natively, if the mode bits can be changed at high speed on a

particular implementation of the IEEE 754 (not IEEE 754-2008

decimal floating point) standard, then at least two of these

additions are not needed.
Finally, the number of currency units, Nc, corresponding

to xy correctly rounded, then satisfies

^̂	þ �R
2

� �
�

� �
��1
R

� �
� Nc � 	̂þ �R

2

� �
þ

� �
��1
R

� �
: ð6:7Þ

Here, ð�R2 Þ� and ð�R2 Þþ are half the rounding spacing

decremented and incremented by one in the lower order

significand bit, respectively. The value of ��1
R is either 100 or

1,000 (from currency rounding spacing).
Equation (6.7) enables us to bracket the numbers of

currency rounding intervals, and gives us the rounded value

immediately if the upper and lower limits are the same

integer. This integer can be converted to a string using any of

the standard routines [20] along with scaling as in addition.
If the upper and lower limits differ, then a call can be

made to software. However, because of the high precision

of IEEE 754 (IEEE 754-2008 decimal floating point is not

required), and the coarse currency grid, this case is rare (see

the performance calculations in Section 6.2.2 and Fig. 12).
The algorithm is summarized in the flow chart in Fig. 13.
Our method is similar to the quantize operation. The

comparison between the lower and the upper bound as given

by (6.7) is essentially a quantize operation for two or three

digits. For more digits we simply adjust the value of �R
accordingly. A left shift will be exact, unless there is an

overflow. Equation (6.7) can be used for a right shift.

6.2.1 Speed of Multiplication

Below we estimate the speed of our multiplication algorithm

on an Intel Core 2, Wolfdale, 45 nm, the same as that referred

to in [14]. Table 7 shows the clock cycles for major operations.

The estimated maximum cycles includes the full instruction

latency, and the average cycles includes half of the total

latency, as a first approximation. The estimated maximum

and average clock cycles for selected operations are shown in

the Table 7 for Decimal floating point(Binary Integer

Decimal encoding-BID64 [14] (for comparison only, these are

not used)) and Binary floating point (Intel Core 2, Wolfdale,

45 nm [15], [16]).
In Table 6, the estimated clock cycles needed for checking

if binary is sufficient or not to perform decimal multi-

plications is estimated, which is 36 cycles on the average. If

we include the string to binary and back conversion times to

this, then the total cost is 270 (2� 50þ 40þ 130) cycles. From

our implementation of this algorithm (refer to Appendix C,

available in the online supplemental material) the estimated

time was typically 280 cycles. This includes the cost of

arithmetic operations as well as string conversions.
We compare this with a typical of 327 cycles [14] [21] for

a Multiplication, using BID64—we are in a similar scale,

while using pre IEEE 754-2008 architecture, and faster than

software libraries.
In this calculation, we have ignored all possibilities of

pipelining and parallelism, e.g., steps 1, 2 and 4, 5 can be

done in parallel, etc. Depending on the available parallelism

mix, the speeds will be even higher than what we have

reported here.

1094 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

Fig. 13. Flow chart for performing multiplication transactions (database
to database cycle).

Fig. 12. Upper and lower bounds relative to the currency rounding
boundaries.

6.2.2 Performance Analysis of Multiplication

The overall achieved speed depends on how frequently the
slow software decimal library path is executed, which is
data dependent. Under uniform assumptions about data,
the frequency of invocation of the slow decimal path can be
bounded to be less than the ratio of the total spread of the
upper and lower limits ð^̂	� 	̂Þ to the rounding spacing �R.
Even with transaction magnitudes xy averaging 10 digits
(more than 10 billion), (x can represent a capitalization, y an
exchange rate, or x can represent a capitalization, and y an
interest rate/tax rate) IEEE 754 decimal32 format gives
seven digits of precision. Currency spacings are at least
0.001, and most are 0.01. The ratio

^̂	�	̂
�R

is then, under uniform
assumptions about input data, upper bounded by 4� 10�7

10�3

(there are two operands in each of the two multiplications,
each of which is accurate to seven digits), which is four parts
in 10,000. Even a typical software library taking 1,000 cycles,
will add only 0.4 additional cycle to the total instruction
count, which can be neglected (see Fig. 12). If certain values
of either operand (prices just under one unit, e.g., 0.95, 0.99,
etc., taxes rounded to .05 percent), are common, and trigger
the worst case, caching schemes can be employed to reduce
the total runtime.

Same analysis is applicable for the quantize operation. If
we have to do a 15 digit left shift when handling values
with 16 significant digits, then using the above logic we will
have to use a software library only 10 percent of the time.
This being an extreme case, on average the percentage of
calling the software library will be much lesser.

The runtimes can be slow if someone deliberately chose a
transaction sequence such that the software library is called
a large number of times. But note that unlike the CTEM,
where a small bias is enough for accumulating money, for
significantly affecting the runtimes of the application, a very
large number of calls have to be made to the slow software
library, which will be caught. Also, anybody doing this will
not gain anything, and hence it is unlikely to be done.

6.3 Division

An analogous procedure can be done for division. The
binary result in this case is

� ¼ xð1þ �xÞ
yð1þ �yÞ

: ð6:8Þ

To find a bound on this, we can compute x̂, ŷ, ^̂x, and ^̂y using
(6.1), (6.2), (6.3), and (6.4). The upper and the lower bounds
can be found as follows:

^̂x

ŷ
� x
y
� x̂

^̂y
: ð6:9Þ

Based on this, an analogous procedure can be computed for
division. The details are omitted for brevity.

6.4 General Expressions and Other Optimizations

Our methods generalize to calculating any expression in
decimal arithmetic, whether or not intermediate rounding
is mandated. All we need to do is generate the upper
and lower bounds, round at the end or where specified,
and compare the answers. If they match the answer is as
obtained, else we use a software library.

For example, a compound interest calculation can be
made by calculating the upper bound ðx̂ŷẑ . . .Þ and the
lower bound ð^̂x^̂y^̂z . . .Þ and finally comparing the rounded
values. The calculation can be broken into as many
rounding stages as are mandated by law—these can range
from rounding after every stage, to rounding at the end.

For multiplication, 	̂ can be alternatively obtained by a
single multiplication on ^̂	 by an appropriate precomputed
scaling factor, reducing two additions and a multiplication
to a single multiplication, eliminating the need for (6.3)
and (6.4). This may reduce our times somewhat, depend-
ing on pipeline structure. Similarly for additions, the upper
bound can be obtained from the lower bound by adding
an appropriate precomputed factor.

7 CONCLUSIONS

If financial software neglect the effects of IEEE 754 finite
precision binary arithmetic, then it can result in legally
unacceptable monetary losses. This paper quantifies these
losses using a matrix approach the CTEM. Using the CTEM,
we showed that even the use of double precision can be
exploited to create arbitrary error sequences, with consider-
able possibilities of financial arbitrage. Initial evidence
testifies to the fact that these sequences can be chosen so as

ASWAL ET AL.: ON BASIC FINANCIAL DECIMAL OPERATIONS ON BINARY MACHINES 1095

TABLE 6
Estimated Clock Cycles to Check if Binary64 Is Sufficient for the Multiplication Algorithm

TABLE 7
Estimates of Clock Cycles for

Selected Operations in BID and BFP

to pass many common statistical tests, and thus avoid
detection. Thus, we show that using binary arithmetic
directly for financial calculations is inappropriate, as errors
can build up without bound, and as we have found
statistically undetectable sequences in our experiments.
However, with a slightly modified use of the same binary
arithmetic, plus access to a decimal software library, we can
duplicate the results (for financial and similar applications)
of hardware decimal arithmetic, without using decimal
hardware instructions, at speeds comparable to early
decimal implementations, and within a factor of three of
direct hardware supported implementations [26]. Our
methods are generally applicable to doing floating-point
arithmetic in one base, given an implementation in another
base, with sufficient excess precision.

Our results are based on cycle counts, although the
actual runtimes are expected to differ, nevertheless our
results are indicative of the promise of our approach. Our
results show that the runtimes are fast using our approach,
as long as system is not deliberately gamed which is
unlikely as it would be caught.

If databases store binary approximations for decimal
numbers rather than using strings, our analysis gives
insight into the approximations and possible dangers of
blindly ignoring the problem.

In the future work, we plan to improve our bounds, and
report results with our methods, on actual banking applica-
tions (including the benchmarks in [19]), working with binary
hardware, using real transaction logs from banks.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their comments, which have substantially improved this
paper. They are also grateful to Professor S. Sadagopan,
Director, IIIT-B and Subrahmanya S.V., Infosys Limited, for
their support.

REFERENCES

[1] D. Goldberg, “What Every Computer Scientist Should Know
about Floating-Point Arithmetic,” Computing Surveys, vol. 23,
pp. 5-48, 1991.

[2] N.J. Higham, “The Accuracy of Floating Point Summation,” SIAM
J. Scientific Computing, vol. 14, pp. 783-799, July 1993.

[3] M.F. Cowlishaw, “General Decimal Arithmetic,” http://
speleotrove.com/decimal/, 2012.

[4] M.F. Cowlishaw, “Decimal Floating-Point: Algorism for Compu-
ters,” Proc. IEEE 16th Symp. Computer Arithmetic, 2003.

[5] P.M. Cohen, “Reflections on Early Computers,” http://www.
paulcweb.com/reflect/Chap04.html, 2012.

[6] J. von Neumann, “First Draft of a Report on the EDVAC,” IEEE
Annals of the History of Computing, vol. 15, no. 4, pp. 27-75, Oct.
1993.

[7] W. Kahan, IEEE Standard 754 for Binary Floating-Point Arithmetic,”
Standards Committee of the IEEE CS, 1996.

[8] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C, second ed. Cambridge Univ. Press, 1992.

[9] “The ASTR �EE Static Analyzer,”http://www.astree.ens.fr/, 2012.
[10] D. Knuth, “Chapter 4 - Arithmetic,” The Art of Computer

Programming: Seminumerical Algorithms, third ed. Addison-Wesley,
1997.

[11] W. Kahan, “Floating-Point Arithmetic Besieged by Business
Decisions,” Proc. IEEE 17th Symp. Computer Arithmetic, 2010.

[12] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V.
Lefevre, G. Melquiond, N. Revol, D. Stehle, and S. Torres,
Handbook of Floating-Point Arithmetic. Springer, 2010.

[13] “Online Binary-Decimal Converter,” http://www.binaryconvert.
com/index.html, 2012.

[14] M.J. Anderson, C. Tsen, L.-K. Wang, K. Compton, and M.J Schulte,
“Performance Analysis of Decimal Floating-Point Libraries and Its
impact on Decimal Hardware and Software Solutions,” Proc. IEEE
Int’l Conf. Computer Design, pp. 465-471, Oct. 2009.

[15] Intel, Intel 64 and IA-32 Architectures Software Developers Manual,
vol. 1: Basic Architecture, 2009.

[16] A. Fog, “Instruction Tables,” http://www.agner.org/optimize/
instruction_tables.pdf, 2012.

[17] E. Uren, R. Howard, and T. Perinotti, Software Internationalization
and Localization: An Introduction. John Wiley & Sons, 1993.

[18] T. Benchmark, http://speleotrove.com/decimal/telcoSpec.html,
2012.

[19] Decimal Floating-Point (DFP) Benchmarks, http://mesa.ece.
wisc.edu/display_project.php?projectid=10, 2012.

[20] D.M. Gay, Correctly Rounded Binary-Decimal and Decimal-Binary
Conversions. Numerical Analysis Manuscript 90-10, Murray Hill, NJ:
AT&T Bell Laboratories, 1990.

[21] M. Cornea, J. Harrison, C. Anderson, P. Tang, E. Schneider, and E.
Gvozdev, “A Software Implementation of the IEEE 754R Decimal
Floating-Point Arithmetic Using the Binary Encoding Format,”
IEEE Trans. Computers, vol. 58, no. 2, pp. 148-162, Feb. 2009.

[22] L.-K. Wang, C. Tsen, M.J. Schulte, and D. Jhalani, “Benchmarks
and Performance Analysis of Decimal Floating-Point Applica-
tions,” Proc. IEEE 25th Int’l Conf. Computer Design, pp. 164-170,
Oct. 2007.

[23] ANSI/IEEE Standard for Floating-Point Arithmetic, IEEE Standard,
pp. 754-1985, 1985.

[24] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-
2008, 2008.

[25] The Int’l Version of IEEE 754-2008, ISO/IEC/IEEE 60559:2011,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=57469,
2012.

[26] S. Carlough, A. Collura, S. Mueller, and M. Kroener, “The IBM
zEnterprise-196 Decimal Floating-Point Accelerator,” Proc. IEEE
20th Symp. Computer Arithmetic, 2011.

Abhilasha Aswal received the MTech degree
from the International Institute of Information
Technology-Bangalore (IIIT-B). She is now
working toward the PhD degree from IIIT-B.
She is interested in optimization under uncer-
tainty, mathematics of operations research, and
intellectual property rights.

M. Ganesh Perumal received the MS degree
from the International Institute of Information
Technology-Bangalore (IIIT-B). He is now work-
ing toward the PhD degree from IIIT-B. He is
interested in theory of algorithms, mathematics
of operations research, simulation, and model-
ing and complexity theory.

G.N. Srinivasa Prasanna received the BTech
degree at IIT Kanpur, and the MS and PhD
degrees at MIT, Cambridge. He is a professor at
International Institute of Information Technol-
ogy-Bangalore since 2004, and was previously
at Lucent Microelectronics and Lucent Bell
Laboratories, for about 11 years. He is inter-
ested broadly in the areas of algorithms and
robotics. Major focus areas include robust
optimization under uncertainty, with applications

to supply chains, real time search, banking, gaming, and allied areas.
He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1096 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 8, AUGUST 2012

