
A Framework for Modeling and Verifying
IoT Communication Protocols

Maithily Diwan and Meenakshi D’Souza

International Institute of Information Technology, Bangalore
maithily.diwan@iiitb.org, meenakshi@iiitb.ac.in

Abstract. Communication protocols are integral part of the ubiqui-
tous IoT. There are numerous light-weight protocols with small footprint
available in the Industry. However, they have no formal semantics and
are not formally verified.
Since these protocols have many common features, we propose a unified
approach to verify these protocols through a framework in Event-B. We
begin with an abstract model of an IoT Communication protocol which
encompasses common features of various protocols. The abstract model
is then refined into concrete models for individual IoT protocols using
Refinement and decomposition techniques of Event-B. Using the above
framework, we present models of MQTT, MQTT-SN and CoAP proto-
cols, and verify communication properties like connection-establishment,
persistent-sessions, caching, proxying, message-ordering, QoS, etc.
Our protocol models can be integrated-with or extended-to other formal
models of IoT systems using machine-decomposition within Event-B.
Thus paving way for formal modeling and verification of IoT systems.

Keywords: IoT, MQTT, MQTT-SN, CoAP, Formal Modeling and Ver-
ification, Event-B

1 Introduction

IoT is prevalent in various industries like health care, automotive, manufactur-
ing, power grid and domotics to name a few. IoT not only connects different
computing devices but sensors, actuators, people and virtually any object. With
the prediction that there will be over 20 billion devices by 2020 [7], IoT will
be an integral part of our lives. The end nodes in the IoT are usually sensors
or small devices which have limited processing capability and low memory. In
such cases, the devices send unprocessed data to cloud which is then shared
with other devices/systems subscribing to this large amount of data (either raw
data or processed by server), making communication between these devices an
important aspect of IoT.

Various protocols are used for communication in an IoTsystem. TCP/IP
is a popular protocol used in lower layers. Several protocols are adapted for
the application layer in an IoT system - Message Queue Telemetry Transport
Protocol (MQTT) [9], Message Queue Telemetry Transport Protocol Sensors

2

(MQTT-SN) [10], The Constrained Application Protocol (CoAP) [11], eXtensi-
ble Messaging and Presence Protocol (XMPP) [12], Advanced Message Queuing
Protocol (AMQP) [13] to name a few. Most of them are being used for IoT
systems as they are bandwidth efficient, light-weight and have small code foot-
print [8]. Features like publish-subscribe, messaging layer, QoS levels, resource
discovery, re-transmission, etc are prevalent in these protocols.

Our framework for an IoT protocol modeling and verification is realized
through an abstract model of the protocol. The abstract model consists of com-
monalities among various application layer protocols like communication modes,
connection establishment procedure, message layer, time tracking and attacker
modules. We then decompose these various modules and refine them into more
concrete models for individual protocols. Properties that hold true for these
protocols are verified in both abstract and concrete Models. We use Event-B to
model the communication channel and the client and server side communication
entities, all of which together implement the protocol. By verifying the accu-
racy of the model through simulations, invariant checking and LTL properties
satisfiability, we are able to conclude that our Models of various protocols are
correct.

Messages/streams are used as basic entities of communication between mul-
tiple clients and servers. Structure of a message apart from payload, usually
consists of many fields of various types. Event-B provides record datatypes [3]
through which complicated message structure with multiple attributes and sub-
attributes can be expressed succinctly. All the properties of the protocol to be
proved are expressed as invariants which are essentially predicates that are al-
ways true. The automatic proof discharge in Event-B using the Rodin tool [4]
verifies if these invariants (properties) are satisfied for all the events in the model.
It is to be noted that we verify several different properties, including functional
and non-functional properties of the protocols.

The paper is organized as follows. We begin with a brief discussion on IoT
protocols and their properties in Sec. 2. Section 3 highlights the features of
Event-B that we use for modeling. Our Event-B model and their refinements
for different protocols are detailed in Sec. 4. Verified properties and their results
are presented in Sec. 5. Section 6 discusses related work and Sec. 7 presents the
conclusion and on-going work.

2 IoT Communication Protocols: MQTT, MQTT-SN and
CoAP

Most of the applications in IoT need a reliable network and use existing Internet
to communicate with the cloud/servers and with other nodes. Hence it is com-
mon to use the existing TCP/IP stack. The underlying physical, DLL, network
and transport layer of this backbone is used. However the TCP/IP stack has a
larger footprint and memory requirement. UDP, a lighter transport layer proto-
col is used in some cases where the reliability has to be built in the application
layer protocol. Other communication requirements of an IoT system which need

3

to be possessed by the application layer protocol are: low bandwidth, low mem-
ory consumption, small code foot-print, self recovery from loss of connection,
resource discovery, light-weight, low message overhead, low power consumption,
authentication, security requirements, appropriate Quality of Service(QoS).

Following is brief description of some of the application protocols highlighting
the features and properties which we verify in this paper.

2.1 MQTT

MQTT [9] is a publish-subscribe protocol designed for constrained devices con-
nected over unreliable, low bandwidth networks. It gives flexibility to connect
multiple servers to multiple Clients. The protocol has low message overhead
which makes it bandwidth efficient and can be easily implemented on a low
powered device. Significant features offered by MQTT are explained below:

1. QoS: A Quality of Services(QoS) for a message is decided between the sender
and the receiver. MQTT offers three levels of QoS: QoS0 is a fire and forget
kind of message delivery, where the sender sends a publish message only once
and does not wait for any acknowledgement. QoS1 guarantees delivery at
least once by seeking for an acknowledgement for every message published.
If the sender does not receive an acknowledgement within a defined time
due to loss of either publish or its acknowledgement message, it transmits
a duplicate publish message. QoS2 guarantees exactly once delivery where
neither loss nor duplication of any message is allowed. It is achieved by a
two step acknowledgement process.

2. Subscribe: A client can subscribe to a topic by sending subscribe message
with desired QoS and receiving an acknowledgement. Similarly it can unsub-
scribe from any topic. The QoS with which the data is received is minimum
of the sending and receiving QoS for that topic.

3. Keep-alive: To differentiate between connection drop and inactivity on a
channel, a fixed time called keep-alive is configured. If there is no exchange
of application messages for keep-alive time, then the client sends a ping
request and server has to acknowledge. On failure of reception of the ping
packets at server or client side, appropriate error handling is triggered.

4. Persistent Session: Persistent session can be maintained in lossy networks
with frequent disruption by storing the session state. If a client attempts
to reconnect as a persistent session, all the previous configurations of the
session are restored including any old subscriptions and keep-alive informa-
tion. Upon re-connection, the client and server resume communication by
first sending packets for all unacknowledged messages, thus guaranteeing
required QoS.

5. Retain Message: A publish message marked as ”retain” is stored by the
server. If any subscriber goes offline and reconnects, then all the retained
messages are sent to the subscriber upon re-connection with required QoS.
In case of a new subscription, if a retained message for a particular topic is
already stored, the server sends this information to the subscriber immedi-
ately after the subscription request is sent.

4

6. Will Message: With ”will” message, a client can inform all other subscribing
clients that it is offline or transmit any other message to its subscribers after
loss of connection. When connection between publisher and server is lost,
the server transmits the will message to all the clients which subscribe to
any topic being published by the publisher.

7. Authentication: MQTT also offers user-password feature for authentication.
Implementations can use these fields or provide any other external authen-
tication mechanisms. The applications can also use TLS for data encryp-
tion [9].

2.2 MQTT-SN

MQTT-SN is another data centric protocol and is based on MQTT with adapta-
tions to suit the wireless communication environment. Unlike MQTT, MQTT-SN
does not require an underlying network like TCP/IP making it a low complex-
ity, light weight protocol. Some of the significant differences between MQTT and
MQTT-SN include

1. Gateway Advertisement and Discovery: An MQTT-SN client connects to a
MQTT server via gateways and forwarders. A gateway implements transla-
tion between MQTT-SN and MQTT protocols. It can be integrated within
the server or can be an independent node. Forwarders in the network sim-
ply encapsulate the MQTT-SN frames it receives on the wireless side and
forwards them unchanged to the gateway and vice versa. This architecture
allows minimum implementation and complexity at the client side. A discov-
ery procedure is used by the clients to discover the actual network address
of an operating server/gateway. A single wireless network may have multiple
gateways which can co-operate in a load-sharing or stand-by mode.

2. Topic Registration: To avoid long topic names as in MQTT, MQTT-SN offers
topic registration procedure to reduce bandwidth. During the registration,
a topic is assigned with a short topic ID by the server, which is then used
in all further communication on that topic. Pre-defined topic IDs and short
topic names can also be used for which no registration is required.

3. QoS−1: In addition to QoS 0, 1 and 2, MQTT-SN offers QoS −1 where
the client communicates with the server without a formal connection es-
tablishment procedure. No topic registration or subscription is required for
publishing such messages.

4. Persistent Session: MQTT’s persistent session is extended with the will fea-
ture, i.e. not only client’s subscriptions are persistent, but also will topic and
will message. A client can also modify its will topic and will message during
a session.

5. Support of Sleeping Clients: To save power in battery operated clients,
MQTT-SN allows the client to go to sleep mode during which time all mes-
sages destined to the client are buffered at its corresponding server/gateway.
The client periodically wakes up using keep-alive message, and the buffered
messages are sent by the server to the client.

5

2.3 CoAP

CoAP is a specialized web transfer protocol based on REST architecture, fulfill-
ing Machine to Machine(M2M) requirements in constrained environments. CoAP
has low header overhead, parsing complexity, and has uri based addressing. Like
HTTP it has request-response model and it also supports publish-subscribe ar-
chitecture in extended mode. It is stateless HTTP mapping, allowing proxies to
be built providing access to CoAP resources via HTTP. Following are significant
features of CoAP:

1. Layered Architecture: CoAP implements a request-response model with asyn-
chronous message exchanges at lower layer. In the two layer approach, CoAP’s
messaging layer is used to deal with UDP and the asynchronous nature of the
interactions, and the request-response interactions on top of it for method
and response codes. CoAP defines four types of messages: confirmable, non-
confirmable, acknowledgement, reset. The basic exchanges of the four types
of messages are somewhat orthogonal to the request-response interactions.
A Request can be carried in confirmable and non- confirmable message, and
a response can be carried in these as well or as piggybacked in acknowledge-
ment messages.

2. Message Correlation and Deduplication: A message and its acknowledgement
are correlated through a message ID and request-response are correlated
through token numbers. A recipient of a message can deduplicate a message
by using the message ID and should process any request only once.

3. Unicast/multicast requests: CoAP can communicate in both unicast and
multicast modes. For discovering resources and services in the network,
CoAP uses multicast request. After a connection is established with a server,
unicast mode is used. A multicast request is characterized by being trans-
ported in a CoAP non-confirmable message that is addressed to an IP mul-
ticast address instead of a CoAP endpoint.

4. Reliability: CoAP uses UDP for transport layer which by default does not
support reliability mechanisms. CoAP uses a layer of messages that supports
optional reliability. A QoS of ”at least once” is supported in CoAP. To avoid
congestion in network, CoAP end point re-transmits with an exponential
back-off mechanism.

5. Proxying and Caching:The protocol supports caching of responses in order
to efficiently fulfil requests. Caching helps to limit network traffic, improve
performance, help sleeping devices and also for security. Simple caching is en-
abled using freshness and validity information carried with CoAP responses.
A cache could be located in an endpoint or an intermediary called proxy.
Freshness and Validation model: A max-age option in a response indicates
that the response is to be considered not fresh after its age is greater than
the specified time. To avoid caching a server can set max-age option to 0. A
proxy can validate a stored response after its max-age is over by communi-
cating with the server to update the ”freshness” and reuse the response

6. Resource Discovery: Like MQTT-SN, CoAP uses multicast requests to dis-
cover services and resources in the network. A CoAP node an send a multi-

6

Table 1. Comparison of IoT communication protocols

Sl.No. Protocol Feature MQTT MQTT-SN CoAP

1 Architecture
Asynchronous

Message exchange
Asynchronous

Message exchange
REST architecture
Layered Approach

2
Underlying

Transport Layer
TCP Any UDP

3
Communication

type
UniCast

UniCast
Multicast

UniCast
Multicast

4 Addressing
ClientID

Server address
ClientID

Server address
Uri Based

5
Messaging

pattern
Publish

Subscribe
Publish

Subscribe

request-response
Publish-Subscribe
through ”Observe”

6 QoS Levels
No guarantee,
atleast once,
exact once

No guarantee,
atleast once,
exact once

No guarantee,
atleast once

7
Pub-Sub

Multi Client QoS

No guarantee,
atleast once,
exact once

No guarantee,
atleast once,
exact once

No guarantee,
atleast once

8 Persistent Session Yes Yes Yes

9
Retained Message
/Offline/Caching

Yes Yes Yes

10
Proxying

and Caching
No Yes Yes

11
Resource
Discovery

No Yes Yes

12 Sleep Mode No Yes Yes

13 Security Optional TLS Optional TLS Optional DTLS

cast request to a group of addresses in non-confirmable message to discover
if a particular service is offered by any server and those with a valid response
will send a required information in a non-confirmable message.

7. Observe feature: Similar to subscribe feature of the MQTT, a client in a
CoAP can subscribe to a topic by sending an observe message to the server.
The server sends notifications to the subscribing client whenever the partic-
ular resource has a new value.

8. Security: CoAP provides provides optional security by binding to Datagram
Transport Layer Security (DTLS)

7

3 Event-B

Event-B [1] is based on B-Method which provides a formal methodology for
system-level modeling and analysis. Event-B uses set theory as a modeling nota-
tion and first order predicate calculus for writing axioms and invariants. It uses
step by step refinement to represent systems at different abstraction levels and
provides proofs to verify consistency of refinements. Initially the model is con-
structed on basis of known requirements. As and when required, one can refine
and add the new properties while satisfying the requirements in the underlying
model.

An Event-B model has two types of components: contexts and machines.
Contexts contain all the data structures required for the system which are ex-
pressed as sets, constants and relations over the sets. A machine ”sees” a context
to use the data structures or types. A machine has several events and can also
define variables and its types. A machine can refine another machine to introduce
new events, refine events, split events or merge events.

An event in a machine can be seen as a ”transition function” of a state
machine representing the system. The states in a machine are implicit and are
not explicitly defined in the model. An event consists of guards which need to
be satisfied before the actions in events are executed. When an event is enabled
and executed, the variables are updated as per the actions in the event. This
internally leads to transition into another state where some other event(s) may
be enabled.

An invariant is a condition on the state variables that must hold permanently.
In order to achieve this, it is required to prove that, under the invariant I(s, c, v)
in question and under the guards of each event, the invariant still holds after
being modified according to the transition associated with that event. In the
machine M with variables v, seeing a context C with carrier sets s and constants
c, the properties of constants are denoted by P(s,c). Let E be an event of M with
guards denoted by G(s,c,v) and before-after predicate R(s,c,v,v’). Under the
properties P(s,c), the invariant I(s,c,v), and the guard G(s,c,v), the feasibility
statement shows that the before-after predicate indeed yields at least one after
value v′ defined by the before-after predicate R(s,c,v,v’), as in (1). The invariant
preservation statement can then be expressed as in (2). Refer [5] for further
details.

P (s, c) ∧ I(s, c, v) ∧G(s, c, v)⇒ ∃v ·R(s, c, v, v′) (1)

P (s, c) ∧ I(s, c, v) ∧G(s, c, v) ∧R(s, c, v, v′)⇒ I(s, c, v′) (2)

Rodin

Rodin [4] implements Event-B and is based on Eclipse platform. It provides
an environment for modeling refinements and discharges proofs. It has sophisti-
cated automatic provers like PP, ML and SMT, which automatically discharge

8

proofs for refinements, feasibility, invariants and well-definedness of expressions
within guards, actions and invariants. Event-B also provides interactive prov-
ing mechanism for manual proofs which can be used when the automatic proof
discharge fails. Rodin offers various plug-ins for development including different
text editors, decomposition/modularization tools, simulator ProB, etc.

ProB

ProB [6] provides a simulation environment through animation for Event-B
model. A given machine can be simulated with all its events. In the animation
environment, one can select and run the given events by selecting parameters
or execute with random solution. During simulation, the state of the system be-
fore and after every event execution can be observed. The state gives values of
all the variables in the machine, evaluates invariants, axioms and guards for all
the events. Additionally any expression can be monitored in the animator. The
model can also be checked for deadlocks, invariant violations and errors in the
model which will help to construct an accurate model.

4 Protocol Modeling and Decomposition using Event-B

A communication channel is a network connection which is established between
a client and a server or between two clients or between two servers. In an IoT
system there could be multiple channels connecting several clients and servers.
Our Event-B model consists of communication channels of the IoT system which
implement a communication protocol. As shown in the Fig. 1, the model has
Event-B contexts and machines. The contexts have all the data structures and
axioms required to setup a machine. The machine includes communication part
of client and server implemented as events, and the properties required to be
verified are written as invariants.

The protocol modeling is done in two major steps:

1. Building a common abstract model encompassing the common features of
various protocols.

2. Refining this common abstract model into a concrete model of a particular
IoT protocol.

To achieve the above methodology we use Machine Decomposition Technique [14],
Refinement Strategy [2] and Atomicity Decomposition of Event-B [15].

4.1 Common Abstract Model

The common abstract model implements the commonalities among various pro-
tocols as mentioned in Table 1. Figure 2 is a diagrammatic representation of the
abstract model.

9

Communication Protocol Event−B Model

 Context

Sets in the ContextChannels, Servers, Clients, Messages

Constants and Axioms in the ContextsMessage Attributes and properties

 Machine

Events in the Machine

Guards of the Event

Attacker, Time Tracking

Transmit/Receive Messages, Error Event

Conditions for message transmission/
consumption,ErrorDetection ,Timer

Variables in the Machine
Buffers, Channel Properties, Timers

Protocol Properties for IoT Invariants in the Machine

Fig. 1. Mapping between communication protocol and Event-B model

Context A basic communication entity is modelled as a message. Set named
MSG and all its attributes are defined as relations over the set MSG and the
sets defined for the attributes. A projection function is used to extract the value
of an attribute for a given message [3].

Machine Refinements The atomicity of event Communication Channel is bro-
ken into two events representing modes of communication: Unicast and Broad-
cast/Multicast. Similarly a further refinement of the model breaks down the
atomicity of these events. Broadcast/Multicast events are used for Service and
Resource Discovery in the Network. A UniCast event is broken into Chan-
nelEstablishment and ChannelConversation events. Since these events are not
yet atomic, they can be further broken. Figure 3 shows an example of how an
atomic event - ChannelConversation of previous refinement is further broken into
many more events. Figure 2 and Figure 3 together show the three refinement
steps done in the common abstract model. It is to be noted that our common
abstract model does not breakdown to the lowest atomic level of events. This is
achieved in the next step of building concrete model for a particular protocol.

Machine Decomposition The leaves of the atomicity decomposition diagram
give us the events of the final refinement of the common model. Further on
when we build models of particular protocols, these events further explode into
more atomic events blowing up the size of the model. It has been observed
that many of these events have very few interfaces among them and they can
be independently be refined. This allows us to use the technique of machine
decomposition in Event-B. Figure 4 gives such a decomposition of our abstract

10

Communication
Channel

Establishment

UniCast
MultiCast/

BroadCast

Channel Channel
Conversation

Resource Discovery Service Discovery

1st Refinement

2nd Refinement

Fig. 2. Atomicity decomposition of common abstract model

NonConfirmable

MessageSend

Confirmable
MessageSend

Timer
Increment

Timer Intruder

Message
Acknowlege

Timeout
Detection

Conversation
Channel

Send
Message

3rd Refinement

4th Refinement

Fig. 3. Atomicity decomposition of ChannelConversation module

model. In Sec. 4.2 we give an example of how these modules of decomposed
machines are further refined to give more concrete model of MQTT.

Events in Decomposed Modules There are following events in the final
refinement of the common abstract model:

1. Multicast/Broadcast: Multicast/Broadcast is used when a node has to com-
municate to more than one peer node. Either a broadcast message is sent
to all the nodes in the network or a multicast request is sent to a group of
nodes in the network. The Multicast/Broadcast event is broken down into
atomic events Service Discovery and Resource Discovery which are used to
find the nodes that can publish the required information on the network.
Once the nodes with required resources/services are discovered, the infor-
mation is shared with ChannelEstablishment module.

2. ChannelEstablishment: For any two nodes to communicate, it is essential to
establish a logical connection between them. The List of Resources/Services
that are discovered is used to establish connection with the desired node.
Events ConnectRequest and ConnectAcknowledgement are used for connec-
tion establishment. The channelEstablished interface is shared with Channel-
Conversation Modules. After the communication is over the connection can
be disconnected to release the limited resources through Disconnect event.

11

Fig. 4. Machine decomposition of common abstract model

In event of errors, the communication is forcefully disconnected. Error han-
dling events detect errors and appropriately terminate connections as per
the session configurations. In our model, Error detection events are related
to connection time-out and reconnecting an existing channel. Timeout Error
information is communicated through Timeout interface with Timer Mod-
ule. To verify the desired properties Disconnect event is made convergent to
avoid live lock in the model.

3. ChannelConversation: This is a pseudo module which contains the Message-
Exchange, Timer and Intruder modules. These sub-modules are described
below.

4. MessageExchange: This module includes all the application message transfer
events i.e., all the transmit/receive events for message send and acknowledge-
ment. These events update the message buffers and track time for message
transmission and reception.

5. Timers: There is a global time ticking through an event called ”Timer”
and there are local timers maintained by client and server. These timers are
incremented when either there is a Send event happening or through a special
event Timer which is used to delay time when there is no activity in the
channel. Every Transmission and Reception event will store the time at which
each message was sent or received. Time tracking is used for ”keep-alive”
where ping requests have to be sent at given time interval in case of inactivity.
It is also used in time-out handling for verifying time related properties like
monitoring if acknowledgement for a message is received within a specified
time. In further refinements of concrete protocols, timers can also be used
for strategies like exponential back off in case of failed acknowledgement.

6. Intruder: This module is introduced to emulate disturbance in channel which
leads to loss of messages. A malicious Intruder event can consume any mes-
sage in the channel that is not yet received by the intended client or server.

12

Intruder can simulate attackers, connection drops, or any other disturbances
in the network that can lead to loss of the application message. This is a
convergent event and does not run forever.

4.2 Concrete Protocol Models

From the common abstract model, the decomposed machines are refined further
to add details specific to a protocol. Some of the features which are not used
in the protocol need not be used or refined. For example there is no broadcast
or multicast support in MQTT protocol. Hence this module does not need any
refinement in MQTT model. The contexts from the abstract model are extended
to add detailed attributes. Channel variables and internal buffers are introduced
to track the dynamic behaviour of the channel that include messages in channel,
topics subscribed, payload counters, send and receive buffers, timers, configura-
tion settings, etc. Following is a detailed description of MQTT protocol model
created from the abstract model. We then briefly describe the other two protocol
models (MQTT-SN and CoAP) which follow similar procedures.

MQTT Protocol Model MQTT protocol is modeled by abstracting commu-
nication network in an IoT system consisting of two channels. For illustrative
purpose, we have modeled the channels with two servers and two clients.

ChannelEstablishment Module - From the abstract module containing events
ConnectRequest, ConnectAcknowledgement and Disconnect, MQTT specific re-
finement is done to include configuration details and disconnection due to errors.
When a channel is established, the configuration settings of the channel commu-
nicated between the client and the server are stored in channel variables.

MessageExchange Module - MessageExchange module is refined to include
publish and subscribe message and their acknowledgement events. These events
are further refined to send original message, duplicate message and reception
of the message at both client and server sides. Figure 5 and Figure 6 give the
refinement steps and atomic decomposition for transmit messages in this module.
Similar model is built for acknowledgement messages.

ServerClient Client Server
Send ReceiveReceive

Message
Receive

Message

Send

Send

QoS0
Publish

1st Refinement

2nd Refinement

Fig. 5. Atomicity decomposition of non-confirmable message transmission - QoS0

13

Publish
QoS2

Publish
QoS1

Message

Release QoS2

Publish

Publish Qos2

Release Rcv

1st Refinement

2nd Refinement

Subscribe

Send

Subscribe
Send

Subscribe
Receive

. . . .Publish

QoS2 Orig

Publish

QoS2 Rcv

Publish

QoS2 Dup

Publish

QoS2 Orig

Client

Publish
QoS2 Rcv

Publish
QoS2 Rcv

Server

.
3rd Refinement

Fig. 6. Atomicity decomposition of confirmable message transmission - QoS1 and QoS2

To track if the correct message is delivered with required QoS and time,
the ”Payload” is implemented as a counter with a range of 0 to 9. The range
of the counter can be extended to any number without affecting our model.
This method of using counter as payload allows us to uniquely identify every
message transmitted. By keeping a track of how many times the message with
a given payload value is received, we can verify interesting properties related to
QoS, message ordering, retained message and persistent sessions. Figure 7 is an
example of the QoS0 Publish event transmitted by an MQTT client. The guards
ensure that a message of type publish with QoS0 is transmitted on the channel
which is already established. In the actions, the channel is populated with a
new message carrying unique payload, client timer is initialized, direction of
the message is set, PayloadCounter is incremented and Timer-increment event
is triggered.

Fig. 7. Event for publishing message with QoS0

14

In the MQTT model, Timer Module is refined to include ClientSide and
ServerSide Timer events and corresponding Timeout events. Intruder Module
does not have any particular refinement for MQTT.

MQTT-SN Protocol Refinement MQTT-SN model reuses MessageExchange,
ChannelEstablishment, Timer and Intruder Modules from MQTT. The Multi-
cast/Broadcast Module is refined from common abstract model to add events
related to gateway discovery in the network using search gateway messages. New
topic registration procedure is added to the ChannelConversation Module.

CoAP Protocol Refinement ChannelConversation module from abstract
model is refined to include request-response layer by adding events that are
enabled to send a request and receive a corresponding response. Each of these
events then trigger the message layer events to transmit confirmable or non-
confirmable messages and receive corresponding acknowledgements. At the request-
response layer events related to separate-response or piggybacked-response are
added. Token ID matching and message ID matching is carried out to ensure
every request receives its response within a defined time. ChannelEstablishment
module is refined to add multi-hop connection consisting of multiple channels.
Multicast/Broadcast module is refined to discover resources and services in the
network. Timer and Intruder modules are directly used from the common ab-
stract model. Figure 8 is an example of an event to send a request through a
confirmable message.

4.3 Model Validation

ProB is used for validating our model through simulation of events and check-
ing LTL properties for common abstract model. Accuracy of the model can be
obtained by executing different runs and observing the sequence of events and
variable values in each of these events. ProB also reports any invariant violation
or error in events which is then corrected in the model. Model validation is also
done by writing invariants and seeing that these invariants are satisfied through
the refinements.

15

Fig. 8. Event for sending a confirmable message for a CoAP Request

5 Verification of IoT Properties using Event-B

Following are some of the significant properties that are verified through the
model by writing them as invariants that have to be satisfied for all the events
in protocol specific models. Properties 1 to 7 are verified in MQTT and MQTT-
SN models and 8 to 11 are verified in CoAP model.

A property required to be satisfied by the model has been expressed as an
invariant. The property invariant contains two parts : Well-definedness expres-
sions and the actual property to be proved. For example, in the invariant for
Duplicate Channel Property, for every quantified variable, there is a range de-
fined to which it belongs: ∀chnl · (chnl ∈ Server establishedChannel), followed
by well-definedness conditions for the projection function:
chnl ∈ dom(Channel Server) and the actual property to be verified is written at
the end of the equation: (Channel ClientID(ch) = Channel ClientID(chnl)⇒
(ch = chnl). We omit the well-definedness conditions and state only the actual
property to be proved.

For every property listed, the property is stated in English language as writ-
ten in the protocol specification followed by the property written in our Event-B
model. The variable names given in our model are self explanatory and are not

16

exhaustively described. For example ClientID associated with a channel has a
variable name, Channel ClientID.

1. Duplicate channel: If the ClientID represents a client already connected to
the server then the server must disconnect the existing client. i.e., If a client
and server are already connected through a channel, then they cannot es-
tablish another channel.

∀ch · ∀chnl·((ch ∈ Server establishedChannel

∧ chnl ∈ Server establishedChannel)

∧ (Channel Server(ch) = Channel Server(chnl))

∧ (Channel ClientID(ch) = Channel ClientID(chnl))

⇒ (ch = chnl))

(3)

2. Timers validity: The time tracker variable is always greater than or equal to
any local time counter.

∀pc·((pc1 ∈ 0 · ·9
⇒ (time ≥ RcvTRange(pc1) ∧ (time ≥ SendTRange(pc1)))

(4)

3. Message Ordering: If both client and server make sure that no more than
one message is ”in-flight” at any one time (by not sending a message until its
predecessor has been acknowledged), then no QoS1 message will be received
after any later one. For example a subscriber might receive them in the
order 1, 2, 3, 3, 4 but not 1, 2, 3, 2, 3, 4. Setting an in-flight window of 1 also
means that order will be preserved even if the publisher sends a sequence
of messages with different QoS levels on the same topic. Refer to Sec. 4.6
in [9].

∀ch·∀pc1 · ∀pc2 · ((pc1 ∈ 0 · ·9 ∧ pc2 ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ (pc1 ∈ Client MsgSentQoS2 (ch) ∨ pc1 ∈ Client MsgSentQoS1 (ch))

∧ (pc2 ∈ Client MsgSentQoS2 (ch) ∨ pc2 ∈ Client MsgSentQoS1 (ch))

∧ (time > SendTRange(pc2) + Response Timeout)

∧ pc1 6= pc2 ∧ (SendTRange(pc1) < SendTRange(pc2))

⇒ (RcvTRange(pc1) ≤ RcvTRange(pc2))

(5)

4. Persistent Session: When a client reconnects with ”CleanSession” set to 0,
both the client and server must re-send any unacknowledged publish packets
(where QoS > 0) and publish release packets using their original packet Iden-
tifiers. Refer to Normative Statement number MQTT-4.4.0-1 in [9]. Hence
a transmit message with QoS > 0 should always receive an acknowledge-
ment. The variable RcvTRange is updated with current time only after the
message is received. Hence it should be greater than the SendTRange time.

∀ch · ∀pc·((pc ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ Channel CleanSess(ch) = FALSE

∧ ((pc ∈ Client MsgSentQoS1 (ch)) ∨ (pc ∈ Client MsgSentQoS2 (ch))

∧ (time > (SendTRange(pc) + Response Timeout))

⇒ (RcvTRange(pc) > SendTRange(pc)))

(6)

17

5. QoS of message in client to server channel:
– QoS1: Publish from client to server with QoS = 1. If client sends a packet
with QoS = 1 to the server, then at least one copy of the packet should be
received at the server side even in case of loss or duplicate transmission of
messages. Refer to Sec. 4.3.2 in [9].

∀ch · ∀pc·((pc ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ (pc ∈ Client MsgSentQoS1 (ch))

∧ (time > (SendTRange(pc) + Response Timeout)) ∧QC > 0

∧ ((time− t1) > Response T imeout))

⇒ (∃QC · ((QC ≥ 1) ∧ Server MsgReceived 1 (pc) = QC)))

(7)

– QoS2: Publish from client to server with QoS = 2. If client sends a packet
with QoS = 2 to the server, exactly one copy of the packet should be received
at the server side even in case of loss or duplicate transmission of messages.
This is the highest quality of service and increases overhead. Refer to Sec.
4.3.3 in [9].

∀ch · ∀pc·((pc ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ (pc ∈ Client MsgSentQoS2 (ch))

∧ (time > (SendTRange(pc) + Response Timeout)))

⇒ (Server MsgReceived 2 (pc) = 1))

(8)

6. Retained Message: If the Retain flag is set to 1 in a publish Packet sent by
a client to a server, then the server must store the application message and
its QoS, so that it can be delivered to future subscribers whose subscriptions
match its topic name. Refer to Sec. 3.3.1.3 in [9]. For Retained QoS1 Message:
Publish of retained message to the subscriber which subscribed the topic with
QoS1 and the transmit message was QoS > 0.

∀ch · ∀pc · ∀chnl · ∀msg · ∀QoS · ((ch ∈ establishChannel

∧ chnl ∈ establishChannel ∧QoS ∈ QOS ∧QC > 0 ∧ pc ∈ 0 · ·9
∧ (pc ∈ Client MsgSentQoS1 (ch) ∧Msg Retain(msg) = TRUE

∧ (msg 7→ ((PUBLISH 7→ QoS) 7→ pc)) ∈ Msg Type QoS

∧ ((Msg Topic(msg) 7→ ATLEASTONCE) ∈ Channel TopicQoS(chnl))

∧ ((time− SendTRange(pc)) > Response T imeout))

⇒ (∃QC · ((QC ≥ 1) ∧ Client MsgReceived 2 (chnl) = QC)))

(9)

Similar equation is written for Retained QoS2 Message: Publish of retained
message to the subscriber which subscribed the topic with QoS2 and the
transmit message was QoS > 0.

7. QoS of a message from Client1 to Client2: The effective QoS of any message
received by the subscriber depends on the QoS with which the publishing
client transmits this message and the QoS set by the subscriber while sub-
scribing for the given topic. The effective QoS with which message is delivered

18

is the minimum of the two QoS. Below is an example of the message which
is transmitted with QoS1 but was subscribed with QoS2. In this case the
message is received by the subscriber with the effective QoS of 1. The below
property states, if a message which is transmitted from Client1 on channel
ch with QoS1 (ATLEASTONCE) and if the cleint2 has subscribed to this
topic on channel chnl with QoS2 (EAXACTONCE) then Client2 will receive
this message from the Server1 on channel chnl within a configured amount
of time, at least once. Refer to Sec. 4.3 in [9].

∀ch · ∀pc · ∀chnl · ∀msg · ((pc ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧msg ∈MSG ∧ chnl ∈ establishChannel

∧ (pc ∈ Client MsgSentQoS1(ch)

∧ (msg 7→ ((PUBLISH 7→ ATLEASTONCE) 7→ pc)) ∈Msg Type QoS

∧ ((Msg Topic(msg) 7→ EXACTONCE) ∈ Channel TopicQoS(chnl))

∧ ((time− SendTRange(pc)) > Response T imeout)))

⇒ (∃QC · ((QC ≥ 1) ∧ Client MsgReceived 2 (chnl) = QC)))

(10)

Similarly all combinations of the QoS at publisher and subscriber end have
been verified.

8. Response to a Request Matching: Regardless of how a response is sent, it is
matched to the request by means of a token that is included by the client in
the request. Refer to Sec. 5.3 in [11].

∀ch · ∀pc · ((pc ∈ 0 · ·11 ∧ ch ∈ establishChannel

∧ pc ∈ TokenSent(ch) ∧ time > 1

∧ (time− SendTRange Token(pc) > Response T imeout))

⇒ (RcvTRange Token(pc)− SendTRange Token(pc)

> Response T imeout))

(11)

9. Reliable message transfer: An acknowledgement or reset message is related
to a confirmable message or non-confirmable message by means of a message
ID along with additional address information of the corresponding endpoint.
Every confirmable message has a matching acknowledgement. Refer to Sec.
4.4 in [11].

∀ch · ∀pc · ((pc ∈ 0 · ·11 ∧ ch ∈ establishChannel

∧ pc ∈MsgSent(ch) ∧ time > 1

∧ (time− SendTRange Payload(pc) > Response T imeout))

⇒ (RcvTRange Payload(pc)− SendTRange Payload(pc)

> Response T imeout))

(12)

10. Exponential Backoff: The sender retransmits the Confirmable message at
exponentially increasing intervals, until it receives an acknowledgement or

19

runs out of attempts. Refer to Sec. 4.2 in [11].

∀ch · ∀pc · ((pc ∈ 0 · ·11 ∧ ch ∈ establishChannel ∧ pc ∈MsgSent(ch)

∧RetransmissionCounter(pc) > Max Retransmit(ch)

⇒ ((SendTRange(pc)− SendTPrev(pc)) ≤ Ack T imeout(pc)

∧ (SendTRange(pc)− SendTPrev(pc)) > 0))

(13)

5.1 Proof Obligations Results

Our validated models of MQTT, MQTT-SN and CoAP have together discharged
1840 proof obligations, of which 88% proof obligations were automatically dis-
charged through AtlierB, SMT, PP and ML provers. The proof obligations in-
clude well-definedness of predicates and expressions in invariants, guards, ac-
tions, variant and witnesses of all the events, feasibility checks, variable re-
use check, guard strengthening and witness feasibility in refinements, variant
checks for natural number and decreasing variants for convergent and antici-
pated events, theorems in axioms and invariant preservation for refinements and
invariants used for verification of required properties. About 30% of proofs dis-
charged in the models are for verification of properties written as invariants.
Table 2 gives a summary of the properties verified.

Table 2. Proof obligation statistics for verified properties of IoT protocols

Sl.No. Protocol Property Proof Obligations Result

1 Duplicate Channel 10 Passed

2 Message Ordering 34 Passed

3 Persistent Session 34 Passed

4 QoS1 in single channel 26 Passed

5 QoS2 in single channel 26 Passed

6 Retained QoS1 message 24 Passed

7 Retained QoS2 message 24 Passed

8 Effective QoS0 in Multi channel(3 cases) 66 Passed

9 Effective QoS1 in Multi channel(3 cases) 66 Passed

10 Effective QoS2 in Multi channel(3 cases) 72 Passed

11 Request-Response Matching and Timeout 39 Passed

12 Confirmable Message ID Matching and Timeout 39 Passed

13 Exponential Backoff 39 Passed

20

6 Related Work

Communication protocols for IoT have been used for over a decade now, but
there has been no attempt to provide formal semantics for these protocols. A
recent paper shows that there are scenarios where MQTT has failed to adhere
to the QoS requirement [16]. However the paper is limited to partial model of
MQTT protocol for QoS properties. In another work, a protocol used for IoT
- Zigbee is verified for properties related to connection establishment proper-
ties [17] using Event-B. In [19] and [20], the authors give methods to evaluate
performance of MQTT protocol with regards to different QoS levels used and
compare with other IoT protocol CoAP. In [18] the author again tests connection
properties using passive testing for XMPP protocol in IoT.

We differ from the above mentioned approaches by proposing a framework
comprising of a common model for IoT protocols which can be used to build
models of different IoT protocols. These models verify properties required for
IoT like connection establishment, persistent sessions, retained-message trans-
mission, will messages, message ordering, proxying, caching and QoS and provide
proof obligations for these properties through automatic proof discharge and in-
teractive proof discharge methods.

7 Conclusion and Future work

In this paper we have proposed a framework using Event-B to model IoT pro-
tocols. We then have used this framework and went on to model some of the
widely used IoT protocols viz., MQTT, MQTT-SN and CoAP. Through simula-
tion and proof obligation discharge in Rodin, we have formally verified that the
properties related to QoS, persistent session, will, retain messages, resource dis-
covery, two layered request-response architecture, caching, proxying and message
deduplication. We show that the protocols work as intended in an uninterrupted
network as well as with an intruder which consumes messages in the network.
The three protocols modeled in this paper implement simple mechanisms to
provide reliable message transfer over a lossy network. They are also able to re-
duce overhead by providing features like persistent connections, retain messages,
caching and proxying which are essential for IoT systems. Our work is a stepping
stone towards providing formal semantics of IoT protocols and behaviour of IoT
systems.

Future research would focus on modeling the other aspects of protocols like
security, user authentication, encryption and different attacker modules. We
would also like to move verification of more properties from the concrete pro-
tocol models to the common abstract model. We would like to further compare
other protocols for IoT like AMQP and XMPP by modeling them using our
framework. It would also be interesting to integrate the protocol model into an
existing model of IoT system and verify the properties required at the system
level.

21

References

1. Event-B, http://www.Event-B.org/
2. Abrial J.R., Modeling in Event-B: System and Software Engineering, Cambridge

University Press(2010)
3. Evans, N., Butler, M.: A proposal for records in Event-B. In: International Sympo-

sium on Formal Methods, pp. 221-235. Springer, Berlin Heidelberg (2006)
4. Rodin Tool, http://wiki.Event-B.org/index.php/Rodin Platform
5. Rodin Hand Book, https://www3.hhu.de/stups/handbook/rodin/current/pdf/rodin-

doc.pdf
6. ProB Tool, https://www3.hhu.de/stups/prob/index.php/Main Page
7. Gartner newsroom, http://www.gartner.com/newsroom/id/3165317
8. Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., Alonso-Zarate J.: A survey

on application layer protocols for the internet of things. In: Transaction on IoT and
Cloud Computing, 3(1):11-7 (2015)

9. MQTT Version 3.1.1 Specification, http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

10. MQTT-SN Version 1.2 Specification, http://mqtt.org/new/wp-
content/uploads/2009/06/MQTT-SN spec v1.2.pdf

11. The Constrained Application Protocol (CoAP) Specification RFC7252,
https://tools.ietf.org/html/rfc7252

12. Extensible Messaging and Presence Protocol (XMPP) Core RFC6120,
http://xmpp.org/rfcs/rfc6120.html

13. Advanced Messaging Queuing Protocol Version 1.0 Specification,
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf

14. Pascal, C., and Renato, S.: Event-B model decomposition, DEPLOY Plenary Tech-
nical Workshop (2009)

15. Salehi Fathabadi A., Butler M., Rezazadeh A.: A Systematic Approach to Atom-
icity Decomposition in Event-B. In: 10th International Conference, SEFM. Thessa-
loniki, Greece (2012)

16. Aziz, B.: A Formal Model and Analysis of the MQ Telemetry Transport Protocol.
In: Ninth International Conference, Availability, Reliability and Security (ARES),
pp. 59-68. Fribourg (2014)

17. Gawanmeh, A.: Embedding and Verification of ZigBee Protocol Stack in Event-B.
In: Procedia Computer Science, Volume 5, pp. 736-741. ISSN 1877-0509, (2011)

18. Che, X., Maag, S.: A Passive Testing Approach for Protocols in Internet of Things.
In: Green Computing and Communications (GreenCom), IEEE and Internet of
Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber,
Physical and Social Computing, pp. 678-684. IEEE Press (2013)

19. Lee, S., Kim, H., Hong, D. K., Ju, H.: Correlation analysis of MQTT loss and delay
according to QoS level. In: The International Conference on Information Network-
ing(ICOIN), pp. 714-717. IEEE (2013)

20. Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.: Performance evaluation
of MQTT and CoAP via a common middleware. In: IEEE Ninth International Con-
ference, Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
pp. 1-6. IEEE Press (2014)

