On a converse to the Diophantus-Brahmagupta identity and unique factorization

Prof.C.S. Rajan (TIFR, Mumbai)

An instance of the Diophantus-Brahmagupta identity is that the product of two numbers each of which is a sum of two squares is again a sum of two squares. More generally,

$$
\left(x^{2}+n y^{2}\right)\left(u^{2}+n v^{2}\right)=(x u+n y v)^{2}+n(x v-y u)^{2}
$$

It was observed by Fermat that if a number is written as a sum of two coprime squares (a primitive representation), then their factors can alsobe written as a sum of two squares. However this property fails for the form $x^{2}+5 y^{2}$: the number $21=1^{2}+5 \times 4^{2}$, but its factors 3 and 7 cannot be written in the form $x^{2}+5 y^{2}$. We will discuss the failure of this property, the beginnings of abstract group theory, and how it is linked to the failure of unique factorization in quadratic number fields (time permitting)

