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Abstract. In this paper we present an application of robust optimization to capacity planning 

problems under uncertainty. We present the framework to handle uncertainty and discuss the 

computational complexity of capacity planning problems under this framework.  We show that 

the formulation is not only intuitive but the computational complexity of a large variety of 

problems is the same as linear (in general convex) programming. 
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INTRODUCTION 

A supply chain is a network of suppliers, production facilities, warehouses and end 

markets. Capacity planning decisions involve decisions concerning the design and the 

configuration of this network. The decisions are made on two levels: strategic and 

tactical. Strategic decisions include decisions such as where and how many facilities 

should be built and what their capacity should be. Tactical decisions include where to 

procure the raw-materials from and in what quantity and how to distribute finished 

products. These decisions are long range decisions and a static model for the supply 

chain that takes into account aggregated demands, supplies, capacities and costs over a 

long period of time (such as a year) will work. The challenge is to make these 

decisions under uncertainty.  

To deal with uncertainty, extensive research has been carried out in both 

Probabilistic (Stochastic) Optimization and Robust Optimization (constraints) 

frameworks. However, these techniques face difficulties in conveniently estimating 

the data that they require. For new products, such data may not even exist. We have 

proposed an extension of robust optimization to solve this problem intuitively and 

meaningfully in our earlier work [5], [6], [7], [8]. 

Below, in Section II we give an overview of the problem. Section III gives a 

mathematical formulation of the problem, and characterizes the properties of the 
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solution under linear metrics. Section IV gives a simple example of our ideas. Section 

V gives results on a wide variety of examples, including those with nonlinear costs 

with breakpoints. Section VI concludes. 

OVERVIEW 

Our framework is characterized by intuitive specification of uncertainty and its 

quantification. Classical robust optimization approaches are seen to be too 

conservative. To make the solutions more attractive, Bertsimas, Sim, Theile [2], [3], 

[4] have proposed an approach where the level of conservatism or the budget of 

uncertainty, for each constraint can be controlled based on probabilistic bounds of 

constraint violation. An advantage of their approach is that the robust counterpart of a 

linear programming problem is also a linear, thus maintaining computational 

tractability. But their model specifies uncertainty as a symmetric variation around a 

nominal point, which may not reflect economically meaningful information.  

Strengths of our Formulation 

In contrast to this, we represent uncertainty in a constraint based framework 

naturally derived from basic economic principles. Instead of specifying the data 

directly, we specify bounds on linear (& quadratic) combinations of the data, 

incorporating correlations amongst the data elements. The uncertainty sets (constraint 

sets) form a convex polytope,  built  from  simple  and  intuitive  linear  constraints  

(simple  sums  and  differences  of  supplies,  demands  etc)  those  are  derivable  

from  historical  time series data, which are meaningful  in  terms of  macro-economic 

behavior. Specifically, substitutive effects bound the sum of different demands, 

complementary effects bound differences, revenue constraints bound weighted sums, 

etc. The budget of uncertainty does not adequately reflect these underlying physical 

realities.  

With our specification, many kinds of future uncertainty can be specified. Not only 

does this specification avoid ad-hoc gravity models and their variants, as well as ad-

hoc probability distributions, but it is also simple and intuitive. Answers are globally 

valid over the entire range of parameter variation.  

In addition, we have a unique ability to quantify information content in the 

polytope using Shannon’s information theoretic concepts, based on which we can 

quantitatively compare different scenario sets for the future [7]. This is done as 

follows. 

 Assuming that in the lack of information, the parameters vary with equal 

probability in a large region R (taken to be of finite volume for simplicity initially), of 

volume Vmax. Then the constraints specifying the convex polyhedron CP specify a 

subset of the region R, of volume VCP. The amount of information provided by the 

constraints specifying the convex polyhedron can be equated to: 
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It can be easily seen that (1) reduces to the Shannon surprisal [9] of getting a set of 

parameters satisfying the constraints, assuming that the parameters are equiprobable in 

the large region R. While the estimation of polyhedral volume is a difficult problem 

and initial results with polyhedra obtained by practical constraints are promising. 

The identification of polyhedral volume with information content yields several 

powerful methods of data analysis. For example, we can construct new constraint sets 

equivalent in information content to an original set, by using orthogonal 

transformations, on the original set.  

The formulation of uncertainty is clearly very powerful. Simultaneously, however, 

it does not substantially increase the computational complexity of the optimization 

problems, and we shall show a few important cases in this paper.  

In general, with linear constraints, it is easy to model most optimization problems 

as linear programs. However, in practice a number of non-convex constraints like 

cost/price breakpoints and binary  0/1 facility location decisions change the problem 

from a standard LP to an non-convex ILP problem, and heuristics are necessary for 

obtaining the solution even with state-of-the-art programs like CPLEX. While such 

optimizations are very difficult, it is possible to bound the performance of the optimal 

solution reasonably simply. We show below that Linear Programming allows us to 

determine bounds on performance of any metric given one or more solutions. These 

solutions may have been obtained by ad-hoc or other heuristics. An ensemble of such 

solutions enables us to find tight bounds for the metrics encountered in various classes 

of optimization problems. Many classical problems can be generalized and solved 

using such a representation of uncertainty. 

Although getting the optimal answers is difficult but note that even bounds for the 

optimal solution are very useful information in the complex supply chain framework. 

Given this, the advantages of our approach are that bounds can be quickly given on 

any candidate solution using LP/ILP, since the equations are then linear/quasi-linear in 

the demands/supplies/other parameters, which are linearly constrained (or using 

Quadratic programming with quadratic constraints). The best case, best decision and 

worst case, worst decision are clearly global bounds, solved directly by LP/ILP. 

Details are skipped for brevity (see [9]). 

THE CAPACITY PLANNING PROBLEM 

From a theoretical viewpoint, the classical multi-commodity flow model [1] is the 

natural formulation for capacity planning. In the static multi-commodity flow model 

(at a single time instant) for each commodity, inflows Фij are equal to outflows Фik at a 

node j. In addition, the flows Фij are bounded. If we need to minimize cost we get the 

optimization (written for a single commodity): 
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Here i varies over all predecessors of j, and k varies over all successors of j, and dj 

is the amount of sourced/sinked flow at node j. The optimization task is to decide the 

flows in order to minimize the cost. A variety of optimizations result, based on 

auxiliary assumptions, and these are detailed below. We show that while these 

optimizations are NP-hard/non-convex, heuristic techniques exist which give solutions 

within 10-20% of optimal.  

A general supply chain is given in FIGURE 1, connecting suppliers to factories and 

markets. Capacity planning problem on such a chain would mean finding the optimum 

set of factory locations (suppliers and demands are taken as given), capacities and 

distribution policy for a given demand, including in general some uncertainty.  

 

 

FIGURE 1.  A general supply chain 

 

This problem can be formulated in various flavors, with a variety of assumptions on 

demands being fixed or variable, locations of factories being fixed / variable, costs 

being linear/piecewise linear, variables having integrality constraints etc. The 

computational complexity of these problems varies – we illustrate this by looking at 

problems at two extremes of the spectrum (next section has more details). 

At one extreme is a problem with fixed demands, locations, and linear costs. This is 

directly solvable using linear programming, as shown below. At the other extreme are 

problems with variable demands, locations, and nonlinear costs. This problem is 

computationally difficult, but we present a heuristic which comes to within 10-20% of 

optimal below. 

Fixed Demands and Fixed Locations with Linear Costs 

If the demands and the locations are known exactly, then a variety of optimizations 

can be formulated, and we mention two examples below. The problem of finding the 

minimum cost flow can be formulated as the following linear program. 
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Here, C is the vector of linear costs, Ф is the vector of flows, d is the demand vector 

and A is the incidence matrix defining the supply chain network. The solution to this 

LP is easily obtained. The maximum cost flow problem can be similarly solved. 

In order to find the maximum flow on any link satisfying the demand, the problem 

can be specified as follows. 
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Variable Polyhedral Demand and Fixed Locations with Linear Costs 

If the locations are fixed but the demands are variable but constrained within a 

convex polyhedral set ( edCP )(  ), the problem becomes more complex. The 

uncertainty manifested in the demand is classically tackled using recourse- adjustment 

of the solution after the demand has materialized. We note that another, static solution 

where all decisions are made before the demand has materialized can also be 

considered, but will be skipped for brevity.    

The optimization using recourse, takes an optimal decision, after the demand has 

materialized. To evaluate its performance, we have to determine the demand for which 

the optimal routing is most expensive. This is formulated as follows: 
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The maximization is over the demand variables dij’s, and the flow  for each set of 

demands is optimally chosen. As written, this problem is not an LP, since it is a max-

min. However, utilizing the theory of duality, we can transform this to a tractable 

optimization. 

Assuming strong duality with respect to the flow variables , with dual variables 

the above problem can be formulated as follows 
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This is a quadratic program and generally difficult to solve optimally, with the 

solution being possibly at an interior point. Also, the metric is not positive semi-

definite (it has a saddle point at (d, (0, 0)). However, we can considerably 

simplify the solution using the following lemma. 

 

Lemma: The optimal value of d and v are at the vertices of the polytopes defined by 

0
T

c A and edCP )( . 

Proof:  Note that  

 For a fixed d the metric T
d is linear in ν and vice versa. 

 The constraints on d and ν are decoupled. 

 

The metric d
T

 is linear in d for a fixed ν and vice versa. If the optimal point is 

denoted as (d
*
, ν

*
) d

*
 has to be at a vertex of the d polytope ( edCP )( ). Similarly 

the ν
*
 is at a vertex of the polytope 0

T
c A . Hence the optimal point (d

*
, v

*
) is 

found amongst the vertices of the polyhedron specified by ( 0 ,)(
T

ACedCP ). 

Since, the number of vertices is exponential in the number of constraints and 

variables, an exhaustive search is computationally infeasible. At this point of time 

we do not have a fast polynomial method for this optimization, and we propose a 

heuristic based on Lemma 1 

 

Heuristic-DV:  Heuristic-DV alternates between the d and ν spaces. An initial 

candidate solution satisfying the uncertainty constraints (CP)d <= e, is found in the 

d-space, and the vertex in the ν-space which optimizes the metric is determined 

using an LP. Then this vertex in the ν-space is kept fixed, and the best vertex in the 

d-space which optimizes the metric is determined using an LP. The process is 

continued till convergence is attained. Unfortunately, this search can get stuck in 

local optima, as the following example with 2 demands shows. Consider the 

vertices in the d = [d1, d2] space as [1, 1] and [2, 1/2]; and in the ν = [ν1, ν2] space 

as [1, 1] and [0, 4.5], then looking at FIGURE 4 it can easily be verified that if we 

start at d = [2, 0.5], then we get stuck at the local optimum -2.25 when clearly the 

global optimum is -2. 



Heuristic-DV is then enhanced using simulated annealing, where we perturb 

the solution obtained, and repeat the process. FIGURE 3 demonstrates the 

heuristic. 
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FIGURE 2: Heuristic-DV example 

 

 

FIGURE 3: Heuristic-DV 

Variable Polyhedral Demand and Variable Locations with Linear 

Costs 

In this case, the problem becomes an ILP as the locations are now variable so we 

need a location variable xi for each potential location i ( 1,0ix ). 
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The problem with recourse becomes: 
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Taking the dual, the resultant problem becomes a MIQP problem (details omitted 

for brevity). The problem is NP-hard in this case and cutting plane, branch and bound 

and similar techniques are required. 

Variable Polyhedral Demand and Variable Locations with 

Breakpoints and Multiple Fixed and Variable Costs 

In practice, there are seldom any costs that are without breakpoints. The problem is 

highly non-convex in this case, and heuristics are in general required. However, this 

computational difficulty is intrinsic to the cost function, and not a result of our 

uncertainty formulation. 

SIMPLE EXAMPLE 

The following simple illustrative example demonstrates all the aspects of the 

proposed formulation. It shows how uncertainty can be specified and how capacity 

bounds are derived for varying assumptions. 

 

FIGURE 4: Simple supply chain 

The single-commodity supply chain in FIGURE 4 consists of 2 suppliers, 2 plants, 

2 warehouses and 2 market locations. We want to minimize/maximize the total cost of 

the supply chain while satisfying the demand for the product at the markets.  

To evaluate the performance of our solution, we calculate the absolute bounds on cost 

– the minimum cost under the best decision for the best demand (min-min), and the 

maximum cost (max-max) assuming the worst possible decision for the worst case 

demand. Both are directly obtained using LPs, and serve as bounds for the 

performance of heuristic DV. If the costs are linear and the locations are fixed, we can 

use heuristic-DV to find the solution. 

In this example, the direct edges are low cost, 10 units/unit of flow, and the cross 

edges are 15 units/unit of flow. An example of a constraint set ((CP)d ≤ e) for the 

uncertain demand derived from historical data is below: 
 

 



dem_M0_p0 + dem_M1_p0 >= 200 

dem_M0_p0 + dem_M1_p0 <= 400 

dem_M0_p0 - dem_M1_p0 <= 20   

dem_M0_p0 - dem_M1_p0 >= -20 

 

These have an economic interpretation - the first two bound the sum of the first and 

second demand, a substitutive effect. The next two put bounds on differences, a 

complimentarity effect. 

Assuming linear costs and fixed locations, the min-min solution to the problem is 

given by FIGURE 5 and the max-max solution is given in FIGURE 6, where dark 

edges carry flow and light edges do not carry any flow. The min-min solution has low 

demand (as low as permissible under the constraints). It carries flow only on the least 

cost edges (each costing 10 units per unit of flow), and the max-max pushes all the 

flow to the cross edges, each costing 15 units per unit of flow 

 

 

FIGURE 5: Optimal routing for the min demand with fixed locations and linear costs (lower bound on 

cost) 

 

 

FIGURE 6: Worst routing for the max demand with fixed locations and linear costs (upper bound on 

cost) 

The min-min cost for operation was 6400.00 units. The max-max cost for this 

problem was 18000.00 units. We note that these are absolute bounds – with maximum 

optimism and pessimism about the demand and decision both. In practice, these will 

not be used for operational decision, but furnish performance limits.  

Given these bounds, we are interested in finding the cost of optimal routing with 

worst case demands (a max-min) and for that we can use Heuristic-DV.  

We first take an initial random vertex in the demand space (satisfying constraints 

1.1) as follows: 

9011021 ddD  

 

We maximize with respect to the dual variables (flow variables) and get an 

objective function value of 7350. We now find the values of dual variables and 

fixing those, we maximize with respect to the demand variables and get an objective 



function value of 9450. Then we repeat the process. Table 1 summarizes the result of 

this exercise.  

The cost for the random demand vertex was 7350. In the next step, maximizing 

with respect to demand variables keeping dual variables fixed, the cost was 9450. The 

new demand vertex is now [210 190]. We maximize with respect to dual variables and 

get a solution of 14850, fix the dual variables and maximize with respect to the 

demand variables. At this point we come back to the previous demand vertex [210 

190]. It could be a local optimum and so we perturb the demand vector and choose 

another random point [150 130]. The steps of the heuristic are summarized in Table 2. 

The heuristic again converges to the same solution. 

 

 
TABLE 1. Heuristic-DV For Small Example With Initial Random Demand 

Vector = [110 90] 

Demand vertex 
Objective function 

value with D fixed 

Objective function 

value with V fixed 

[110 90] 6400 12800 

[210 190] 12800 12800 

[210 190] 12800 12800 

 

 
TABLE 2. Heuristic- DV For Small Example With Initial Random Demand 

Vector = [150 130] 

Demand vertex 
Objective function 

value with D fixed 

Objective function value 

with V fixed 

[150 130] 8960 12800 

[210 190] 12800 12800 

[210 190] 12800 12800 

 

The maximum value for the objective function that we obtained was 12800.00. The 

min-min solution for this example was 6400.00 and the absolute maximum was 

18000.00. Thus the answer obtained by Heuristic-DV is within 29% of the upper 

bound on the cost, and reflects the improvement obtained by making optimal 

decisions, once the demand has materialized.  

RESULTS 

In this section we present some results from our simulations. All of our results were 

produced on an Intel Celeron 1.60 GHz processor, with a 512 MB RAM. 

First, we illustrate Heuristic-DV with a larger example. We consider a supply chain 

with 5 suppliers, 5 factories, 5 warehouses and 5 markets. There is only 1 product 

demand for which the supply chain services hence there are 5 demand variables (one 

for each market). The demands are constrained as follows: 

 
dem_1 + dem_2 + dem_3 + dem_4 + dem_5 >= 200 

dem_1 + dem_2 + dem_3 + dem_4 + dem_5 <= 700 

dem_1 - dem_2 <= 100 

dem_1 - dem_2 >= -100 

dem_4 - dem_3 <= 80 



dem_4 - dem_3 >= 20 

dem_5 - dem_3 - dem_1 >= 10 

dem_5 - dem_3 - dem_1 <= 130 

 

Given per unit transportation costs through all the links in the supply chain, we 

want to find the demand for which the optimal routing is most expensive. This is the 

robust optimal solution. We formulate the problem as given by (5) and taking the dual, 

we get (7). We now apply Heuristic-DV. We first take a random vertex in the demand 

space as follows 

34.1334.8334.3100054321 dddddD  

 

We maximize with respect to the dual variables and get an objective function value 

of 7000.00. We now find the values of dual variables V and fixing those, we maximize 

with respect to the demand variables and repeat the process. Table 3 summarizes the 

result of this exercise.  

 
 

TABLE 3.  Heuristic-DV Example 2 

Demand vertex 
Objective function 

value with D fixed 

Objective function 

value with V fixed 

[0 100 3.34 83.34 13.34] 7000 24500 

[216.67 116.67 0 20 346.67] 24500 24500 

[216.67 116.67 0 20 346.67] 24500 24500 

 

The cost for the random demand vertex was 7000.00. In the next step, maximizing 

with respect to demand variables, the cost was 24500.00. From here we came to the 

demand vertex [216.67 116.67 0 20 346.67]. We fix the demand vertex, maximize 

with respect to the dual variables, fix the dual variables and get the same demand 

vertex back. If the heuristic proceeds further, it will keep cycling through this demand 

vertex. The maximum value for the objective function that we obtained was 24500.00. 

The absolute minimum cost for this example was 6000.00 and the absolute maximum 

was 31500.00. Thus the answer obtained by Heuristic-DV tightens the upper bound on 

cost by 22%. This could be a local optimum and we can apply a simulated annealing 

step here to come out of it. 

In another example, supply chain given in FIGURE 7 is considered. In this example 

there are 10 demand variables and the constraints on demand are given as follows: 
 

dem_1 + dem_2 + dem_3 + dem_4 + dem_5 + dem_6 + dem_7 + dem_8 + dem_9 

+ dem_10 >= 700 

dem_1 + dem_2 + dem_3 + dem_4 + dem_5 + dem_6 + dem_7 + dem_8 + dem_9 

+ dem_10 <= 2000 

dem_1 + dem_2 + dem_3 - dem_4 - dem_5 - dem_6 >= 100 

dem_5 + dem_6 + dem_7 - dem_8 - dem_9 - dem_10 >= 150 

dem_3 + dem_4 + dem_5 >= 300 

dem_9 + dem_10 <= 100 

dem_9 - dem_10 >= 20 

dem_2 - dem_3 >= 35 

dem_8 - dem_9 >= 20 

dem_1 - dem_4 >= 45 

dem_4 - dem_6 >= 35 

dem_6 + dem_7 >= 150 

dem_6 + dem_7 <= 250 



dem_6 - dem_10 >= 40 

dem_10 >= 30 

 

 

 

FIGURE 7: A medium supply chain 

 

 

A random demand vertex is chosen as follows for the first iteration:  

30507018070195105100350200
10987654321

ddddddddddD

 

Table 4 summarizes the results of further iterative procedure.  

 
TABLE 4.  Heuristic-DV Example 3 

Demand vertex 
Objective function 

value with D fixed 

Objective function 

value with V fixed 

[200, 350, 100, 105, 195, 70, 

180, 70, 50, 30] 
42500 63866.67 

[663.33, 35, 0, 105, 423.33, 70, 

180, 443.33, 50, 30] 
63866.67 63866.67 

[663.33, 35, 0, 105, 423.33, 70, 

180, 443.33, 50, 30] 
63866.67 63866.67 

 

 

The maximum value for the objective function that we obtained was 63866.67. The 

absolute minimum cost for this example was 2600.00 and the absolute maximum was 

90000.00. Thus the answer obtained by Heuristic-DV tightens the upper bound on cost 

by 29%.  

TABLE 5 compares the time taken to find the absolute bounds on cost to the time 

taken to run Heuristic-DV for the present example as well as for the example in the 

previous section.  



These are the preliminary results from our investigation. We will apply this 

technique to solve large scale supply chain optimizations with multiple products in the 

future.  

  

TABLE 5. Time taken to solve heuristic-dv examples of sections IV and V 

Nodes Problem Variables 
Time taken in 

seconds 

Time for LP 

relaxation in seconds 

8 Min-Min 16 0.14 0.06 

8 Max-Max 16 0.16 0.05 

8 Heuristic-DV 8 0.4 0.25 

20 Min-Min 80 0.13 0.05 

20 Min-Max 80 0.17 0.05 

20 Heuristic-DV 20 1.44 0.81 

25 Min-Min 100 0.14 0.06 

25 Min-Max 100 0.06 0.03 

25 Heuristic-DV 30 0.33 0.15 

 

 
FIGURE 8: (a) A medium sized supply chain example 

(b) Solution for the min-min problem 

 



We have solved larger problems of different classes. The example given in 

FIGURE 8 (a) shows a medium sized supply chain with 40 nodes and 3 products. 

There is one breakpoint in the costs, and the locations are also variable. If all demands 

range between a minimum of 100 units and a maximum of 5000 units, then the 

optimal routing for the minimum demand as found using ILOG CPLEX solver is 

shown in FIGURE 8 (b).  

CONCLUSION 

We have shown a technique for solving capacity planning problems under our 

intuitive uncertainty formulation, which is tractable. Examining a wide variety of 

capacity planning problems, we focused the problem with recourse in detail, showing 

that it is a quadratic program, under the assumptions of linear costs and fixed 

locations. We presented a primal-dual heuristic - DV which comes to within 10-20% 

of optimal. Realistic costs with breakpoints lead to integrality constraints, which 

increase the computational difficulty, but initial results from our heuristics are 

promising. This approach presents a promising generalization of the range constraints 

of Bertsimas, Sim, Theile [2], [3], [4]. 
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