
A Simulated Annealing based approach for solving SplitSearch

Shreya Malani.∗ Sreenidhi T.∗ G N Srinivasa Prasanna.∗

∗ International Institute of Information Technology,
Bangalore, India.

shreya.malani@iiitb.org, sreenidhi.t@iiitb.org, gnsprasanna@iiitb.ac.in

Abstract

Real-time applications that provide location-based
services according to the user queries, can in general
be modelled as large-sized combinatorial optimization
problems. The primary criterion in such commonly
used location-based services is to provide an optimal
solution from a dynamically-changing solution space,
which is exponential in the input size, meeting real-
time constraints.

In this paper, we discuss a heuristic approach based
on Simulated Annealing technique to address one
such location-specific problem of SplitSearch. With
a user requesting for ’n’ services and there being
’m’ providers for each of these ’n’ services, Split-
Search addresses the selection of the optimal set of
providers, with respect to the distance travelled, that
can satisfy the requested services. The paper illustrates
the improvement in the quality of the solution thus
obtained in comparison with that of Greedy approach.
A mathematical formulation is also proposed for the
problem, in the form of an Integer Linear Program
(ILP).

1. Introduction

SplitSearch is a location-based search used to satisfy
user’s query for multiple services in an optimal way.
Objective of the algorithm is to choose a set of
locations that provide these requested services and also
optimize the distance (or number of nodes) travelled
for satisfying the same. For instance, if a user wants
to visit a hospital, a bank and a restaurant, SplitSearch

algorithm would select node(s) that together satisfy
these services with an optimized route. SplitSearch is
an intermediary of two NP hard problems and thus
itself is a NP hard problem. At one extreme where
each node (city) satisfies one specific service requested
by the client it is Travelling Salesman Problem (TSP),
and at the other extreme where communication cost is
zero, it is Set Cover Problem (SCP).

A user having multiple things to do, would generally
choose to go to the nearest point satisfying one of
his/her requirements, then to the next point nearest
from that point and so on, till all the required services
are satisfied. This obvious Greedy method of satisfying
one’s requirements is not necessarily optimal always.
In the following sections, we describe the approach
based on Simulated Annealing[1] that picks one node
from each of the sets satisfying user criteria and
iterates each time choosing a better feasible solution,
eventually tending towards the optimal path. The ILP
and the mathematical model for the problem are ex-
plained in further sections. The experimental results
of the algorithm thus implemented for Splitsearch
on different kinds of test graphs show considerable
improvement over the traditional Greedy approach and
the details of the same are discussed in the Experimen-
tal Results section of the paper.

2. Algorithm

Simulated Annealing (SA) is inspired from the
process of Annealing in metals. Annealing[2] is the
physical process of first heating the solid state metal
at a sufficiently high temperature and cooling it down

very slowly, according to a specific schedule. At each
temperature, sufficient time is given for the system to
reach a steady state. The lower the temperature, the
higher is the time given. If the heating temperature is
sufficiently high to ensure random state and the cooling
process is slow enough to ensure thermal equilibrium,
then the atoms shall place themselves in a pattern that
corresponds to the global minimum energy of a perfect
crystal.

In Simulated Annealing implementation, the above
physical process is imitated by first identifying the
correspondence between the metal and the optimiza-
tion problem and then using the algorithm to simulate
each step of annealing. Each basic step of simula-
tion perturbs the value of one of the variables that
determine the solution by a small amount. If the new
configuration has a favourable cost, the configuration is
accepted. If the new configuration has an unfavourable
cost, even then it is accepted with a certain probability.
SA algorithm repeats the application of the above
basic step until no more improvement in the cost
function is possible or a stable state is reached by
the system. As evident, SA allows hill climbing from
local optima. Acceptance of solutions of unfavourable
cost on a probabilistic basis ensures that the algorithm
does not remain in the valley of local optimum. The
SA algorithm is technically a local search algorithm
in which there are occasional upward moves that lead
to a cost increase and it is expected that these upward
moves will help escape from local minima, moving the
solution towards the global optimum.

The initial value for the annealing temperature,
threshold value of temperature and the type of an-
nealing schedule are specific to the problem being
addressed and are set based on experimentation.

In the Simulated Annealing based approach for
SplitSearch problem, the probabilistic selection or re-
jection of a path in every iteration is based on the
value generated by a function of current annealing
temperature and path length. In every iteration, the
new path is obtained by perturbing the path solution
of the previous iteration. This is done by picking one
node of the path satisfying a specific requirement at
random and replacing it with another node satisfying
the same requirement. The potential candidate for
the replacement node is chosen by sweeping for a
node satisfying same requirement in the vicinity of
the current node, which when included in the new
path does not differ from the previous path length by

begin
if temperature ≥ threshold temperature then

doAnnealing;
Tweak the solution obtained in previous
iteration ;
and based on random probability, accept
the solution ;

else
doGreedy;
Accept a tweaked solution only if it is
better ;

end
end

Algorithm 1: Simulated Annealing

more than a pre-defined scaling factor, which in our
implementation is taken as half. Refer to Section 2.1
for details on perturbation.

The initial temperature is initialized to a value of
100, in the implementation for SplitSearch. This tem-
perature value is decremented by a factor 1% in every
iteration until the solution stabilizes (The solution is
considered to be stable if it remains unchanged for fifty
successive iterations). The solution at every iteration is
accepted based on some probability until the threshold
temperature, which is 1.0E-4 in our implementation.

di f f erence =
pathLength−minimalLength

∑edgeLengths
(1)

probability = exp
(
−di f f erence
temperature

)
(2)

The probability is based on the difference in the
previous and present path lengths with some scaling
factor. In the implementation, this scaling factor is
taken to be the sum of the lengths of all the edges in
the graph as shown in equation (1). Equation (2) shows
the probability of accepting a new path. Algorithm 1
shows a pseudo-code for the implementation.

2.1. Perturbation

The implementation starts with a feasible solution
obtained from the Greedy approach. In the next
iteration, the solution obtained from Greedy algorithm
is changed a little by the above explained process
of tweaking. A solution formed after tweaking
is accepted based on some probability. At initial
temperature an unfavourable solution is also accepted
but as the temperature decreases only favourable

solutions are accepted. This allows the solution to
escape a local minima. The doAnnealing function
tweaks the solution in every new iteration and accepts
the solution based on some probability. Once the
threshold temperature is reached, only a solution
which is better than previous iteration is accepted.
The solution having minimum path length is stored
and updated accordingly after every iteration. Once
the solution stabalizes the best solution obtained so
far is given as the final solution.

In the implementation, perturbation involves the
following steps:

1 Choose a node randomly to alter and note the
service this node provides.

2 Find a node in the vicinity of the solution that
can replace the node to be altered. The vicinity
radius is heuristically decided. If this radius is too
large, an unacceptably large variation in the path
lengths is observed, whereas a smaller radius will
not change the path at all (as it might not find any
new node for replacement).

3 After the node is replaced, reorder the nodes to
obtain the configuration with the selected nodes
that has the shortest path length.

2.2. Integer Linear Program formulation for
SplitSearch problem

An outline of the mathematical representation for
the problem statement of SplitSearch is as follows:

Problem Statement:
Given a graph G(V,E), with the set of vertices V
representing the nodes satisfying various attributes
and set of edges E representing the links between the
nodes with edge weights as the routing cost. Find
the optimal path (distance-wise), that satisfies all the
requirements of a user.

Notations Used:

• Ck
i j - Cost(path length) of travelling from ith to

jth node, providing kth service at jth node.
• ek

i j - 0, if edge i to j is not selected, >= 1
otherwise. The value depends on the number of
times the edge is traced. ek

i j is by definition 0, if
the attribute satisfied by node j is not requested.

• Dummy start and end nodes are introduced to
satisfy flow equations at start and end nodes.
These dummy nodes are not part of the original

graph and do not satisfy any of the requested
services.

Objective Function:
Minimize the Cost or the total path length.

Min ∑ i ∑ j ∑ k Ck
i je

k
i j

Subject to Constraints:
1 Inflow Constraint:

∑ k ek
(dummystart)(start) = 1 (3)

There should be inflow in the system from the
dummy start node.

2 Outflow Constraint:

∑ j ∑ k′ ek
′

(j)(dummyend) = 1 (4)

There should be outflow from the system to
dummy end node that provides the service k

′
, not

in the set of requested services.
3 Atleast one outgoing edge from Start node.

∑ j ∑ k ek
(start)(j) ≥ 1 (5)

In the presence of loops, Start node can have more
than one outgoing edge.

4 Flow conservation:

∑ i ∑ j ∑ k ek1
i j = ∑ j ∑ l ∑ k ek2

jl (6)

The sum of all inflow over all services on jth node
from any node i should be equal to the sum of all
outflow over all services to some other node l.
Note: i, j and l are nodes that do not include
dummy nodes.

5 Satisfaction of all requests:

∑ i ∑ j ek
i j = vk (7)

where vk is the total number of visited links that
satisfy the kth request.

∑ k vk ≥ 1 (8)

6 Loop Constraint: We use an Oracle-based cutting
plane for removing disconnected self-loops if any,
from the solution.

The cutting plane ensures that there is an inflow to
or outflow from the cut sets, thereby eliminating the
possibility of having disconnected components in the
solution. It ensures connectivity between the start
node and the nodes satisfying various attributes. Since
the cut sets can be exponential in number, they are
chosen as needed with the help of an Oracle.

In the case of Multi-attribute Nodes, a node may
provide multiple services. Thus, visiting one node
might satisfy more than one of user’s requests. Also,
more than one node might be selected providing
the same service. Say, for example, a mall is a
multiattribute node as it provides an ATM, a theatre
as well as restaurants and coffee shops. The constraints
in this case are similar to the ones formulated for
Single-attribute nodes.

2.3. Example - Tree Topology

Figure 1 shows a sample graph. S is the starting

Figure 1: Sample Graph

location. The requested services are ’a’, ’b’ and ’c’.
Nodes a1 and a2 provide same service ’a’, nodes
b1 and b2 provide service ’b’ and nodes c1 and c2
provide service ’c’. The solution generated by the
implementation is explained as follows.
• Greedy Solution: S a1 c1 b1 = 15
• SA Solution: S a1 b2 c2 = 11
• LP Solution: S a1 b2 c2 = 11

2.3.1. Simulated Annealing Approach.
1 Find an initial feasible solution using the Greedy

approach, which is S a1 c1 b1 with path length
15 for the graph.

2 Simulated Annealing algorithm

i From the previous feasible path randomly
choose a node to replace, say c1 in this case.

ii Find a node that can take the place of the
node to be replaced (i.e. provides the same
service). Only node that provides same ser-
vice as c1 is c2, which makes the path length
as 23 (S a1 c2 b1).

iii Reorder these nodes to get minimum path
length. Order S a1 b1 c2 gives path length
21 < 23.

3 At a higher temperature this path is accepted with
random probability, even if its length is more than
previous computed path length.

4 Repeat steps under (2) for next iteration.
5 Say b1 is replaced by b2, path becomes S a1 b2

c2 with path length 11.
6 This new path in accepted and steps under (2) are

repeated till threshold temperature is reached.
7 At temperatures below threshold temperature, a

solution is accepted only if it is better than the
previous solution.

8 The process repeats till the system stabilizes and
the best of solutions obtained, one with path
length 11 is returned as the final solution.

2.3.2. LP formulation. Objective

Minimize 7∗ e0
s a2 +6∗ e1s b2+1∗ e2

b2 c2+

5∗ e1
s b1 +2∗ e0

s a1 +3∗ e2
s c2

(9)

Subject to the constraints:
1. Inflow and Outflow in the network. ’k’ is some

dummy category not requested by the user.

ek
dummyStart s = 1 (10)

ek
a1 dummyEnd + ek

a2 dummyEnd + ek
b1 dummyEnd

+ek
b2 dummyEnd + ek

c1 dummyEnd + ek
c2 dummyEnd = 1

(11)

2. At least one outgoing edge from start node.

e0
s a1 + e0

s a2 + e0
s b1 + e0

s c1 + e0
s c2 ≥ 1 (12)

3. Flow Constraint Equations
For node a1

e0
s a1 = ek

a1 s (13)

For node b2

e1
s b2 + e1

c2 b2 = e2
b2 c2 + ek

b2 s (14)

Similarly for nodes a2 b1 c1 c2.
4. Each service request should be satisfied For Ser-

vice 0
e0

s a1 + e0
s a2 ≥ 1 (15)

e1
s b1 + e1

s b2 ≥ 1 (16)

e2
s c1 + e2

b2 c2 ≥ 1 (17)

5. Loop Constraints

e0
s a1 = 1 and ek

a1 s = 1 =>

ek
a1 dummyend + e0

s a2 + e0
s b1 + e0

s c1 + e0
s c2 = 1

(18)

3. Experimental Results

The SA based approach for SplitSearch problem
has been implemented in Java, currently addressing
queries based on Bangalore geo-data. The database
currently consists of geospatial information of
points of interest belonging to 200 different service
providers. The SA based algorithm is found to
produce the output path for a SplitSearch problem
in few milliseconds for real-life inputs of about 200
nodes and 20 requested services.

The algorithm has been tested on graphs with
the parameters scaling upto 10000 nodes and 100
requested services, generated randomly. In all these
test runs, SA was found to generate solutions of
quality better than or equal to that obtained by Greedy
approach.

Figure 2 shows the behaviour of the algorithm as the
number of nodes increases, with number of requested
services fixed at 20.

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000

Ti
m

e
 in

 m
ill

is
e

cs

No of Nodes (20 Categories)

Simulated Annealing Response Time for Random data

Figure 2: Scalability Graph

Test
Case

Size Characteristic Results

1 Uniform
Distri-
bution

4
Nodes
4 ser-
vices

Every
service
had equal
number of
providers

Optimal
comparable
to Brute
force

2 Biased
Distri-
bution

4
Nodes
3 ser-
vices

One
particular
service
had more
number of
providers

Optimal
comparable
to Brute
force and
ILP Solution

3 Biased
Distri-
bution

4
Nodes
2 ser-
vices

One
particular
service had
only one
provider
located far
away from
all nodes

Optimal
comparable
to Brute
force and
ILP Solution

4 Fooling
Greedy

4
Nodes
4 ser-
vices

Local
optimum
is not the
global
optimum

Optimal
comparable
to Brute
force

5 Star
Topol-
ogy

5
Nodes
3 ser-
vices

Every
service
provider is
linked to the
start node
only

Optimal
comparable
to Brute
force and
ILP solution

6 Line
Topol-
ogy

4
Nodes
4 ser-
vices

The
optimum
solution
involved a
zig-zag path

Optimal
comparable
to Brute
force and
ILP solution

7 Random
Distri-
bution

100
Nodes
10 ser-
vices

Each service
had random
number of
providers
distributed
randomly

Better
solution
than Greedy
approach
(ILP is
intractable)

8 Random
Distri-
bution

1000
Nodes
100
ser-
vices

Each service
had random
number of
providers
distributed
randomly

Better
solution
than Greedy
approach
(ILP is
intractable)

9 Random
Distri-
bution

500
Nodes
20 ser-
vices

Each service
had random
number of
providers
distributed
randomly

Better
solution
than Greedy
approach
(ILP is
intractable)

Figure 3: SplitSearch Output Map

The above table shows the scenarios the
implementation is tested for(all these tests are
for single attribute nodes i.e. each node satisfies one
and only one request by the user).

As part of testing the quality of the solution given
by the implemented algorithm, the linear program(lp)
files for the same test graphs were generated and
executed on Cplex.

The solution obtained from SA based approach was
comparable to that provided by Cplex on solving the
ILP for small-sized problems. For realistic problems
with say, 10000 nodes, the ILP requires millions of
decision variables making it intractable. However,
Simulated Annealing based approach is scalable to
handle such inputs.

Figure 3 shows the Output Path for SplitSearch as
obtained from SA based approach.The output image
shows the final solution comprising of nodes satisfying
each of the 20 services requested by the user.

4. Conclusion

The current implementation of SplitSearch using
Bangalore geo-database, works in the order of
milliseconds for real time inputs of magnitude
200 nodes and 20 requested services. From the

experimental data, the performance of Simulated
Annealing based approach (using route or node set
perturbation), is found to be almost 200% better
than Greedy approach. The algorithm provides better
quality solutions for optimal path than Greedy
algorithm, especially in cases when the optimum
collection of nodes is located far from the start node.

Future work involves working on Set Cover based
approach for SplitSearch. Traditional Set Cover has
no communication cost but SplitSearch includes edge
costs as communication cost to find the Minimum Set
Cover. Here, every node is a set providing a set of
services and considering the path length between two
nodes as communication costs, the solution would be
set of nodes that satisfy all services requested by the
user and has least cost.

Further enhancement to the algorithm is to consider
mobile amenities such as bus fleet, ambulance, mobile
fruit vendors, etc. Dynamic criteria such as routes
based on traffic, load at the nodes providing one or
more requested services (balance/queue at the ATM,
queue/appointment schedule at the hospital, etc) can
also be considered in future, while assessing the
quality of the optimum path to be selected.

Appendix: Mathematical Analysis of SA

The most popular model assumed is a (time
inhomogeneous) Markov chain. A Markov Chain
is a discrete-time stochastic process in which the
probability distribution of the state at time t+1
depends on the state at time t and does not depend on
the states the chain had passed through on the way
to time t. This is exactly what happens in SA, the
solution is created from the previous state solution
only and does not depend on what the states earlier
to the previous state were.

Before going in detailed proof of convergence
of SA, here is a proof of convergence of Markov
chains.[3]

In the study of Markov Chains it is assumed
that for all states i and j at all t,
P(Xt+1 = j|Xt = i) is independent of t.

P(Xt+1 = j|Xt = i) = pi j (19)

where pi j is the probability with which the system
will go to state j at time t+1 if it is at state i at

time t. These are called transition probabilities.The
above equation implies that the probability law
relating the next state to the current state does not
change over time. However, in case of SA with
time the temperature changes and thus the transition
probabilities change. At high temperatures some
transitions can be accepted (to get out of local
minima) but at lower temperatures, the acceptance
probabilities for these transitions decrease drastically.

In Markov Chains, given that the process state
at time t and t + 1 is i and j respectively, it can be
stated that for each i,

ΣP(Xt+1 = j|Xt = i) = 1 (20)

Σpi j = 1 (21)

All entries in the transition probability matrix are
non-negative and the above equation implies that
entries in each row must sum to 1(from some state,
state j is reached).

Given if a Markov chain is in state i at time m,
then what is the probability that n periods later the
Markov chain will be in state j?

P(Xm+n = j|Xm = i) = P(Xn = j|X0 = i) = Pi j(n) (22)

From definition of transition probability Pi j(1) = pi j.
Now for Pi j(2), if the system is now in state i, then
for the system to end up in state j two periods from
now, it must go from state i to some state k and then
go from state k to state j.

Pi j(2) = Σ(pik ∗ pk j) (23)

which is just the scalar product of row i of the P
matrix with column j of the P matrix. Hence, Pi j (2)
is the i jth element of the matrix P2.

Similarly,

Pi j (n) = i jth element of Pn

Also, probability of being in state j at time n is Σ

(probability that state is originally i) x (probability of
going from i to j in n transitions).
For large n, Pn approaches a matrix with identical
rows. This means that after a long time, the Markov
chain settles down. And this is independent of the
initial state i.

Now for the Mathematics behind SA,
The objective is to minimize cost function J defined
on a space E. This algorithm creates a Markov chain

Xn on E in the following way(Θ is temperature) If Xn
is given, then at random choose a neighbour x of Xn,

compute ∆J = J(x) - J(Xn),
if ∆J < Θ∗Zn, (where Zn is exponential variable and

J(x) is the cost function) the transition is accepted
and Xn+1 = x, otherwise Xn+1 = Xn.

If the state with the minimum cost visited so far is
tracked by the Markov chain, the objective will be
achieved.
Assuming the Markov chain is irreducible and
aperiodic, then Xn is reversible Markov chain and its
invariant probability distribution is given by

π(i) =
1

ZT
exp
−J(i)

T
(24)

where ZT is normalizing constant and T is current
temperature.[4] This shows when T approaches zero
the probability distribution is concentrated on global
minima of J. This probability distribution is known
as Gibbs distribution. The algorithm will converge if
limit t tends to infinity, i.e. prob[X(t)] = 1.

Theorem by Hajek
A state i communicates with E at height h if there
exists a path that starts from i and ends at some
element in E such that the largest value of J along
the path is J(i) + h. Let d∗ be smallest number such
that every i in E communicates with E at height d∗.
Then SA converges if limit at t tends to infinity, T(t)
= 0 and Σ exp[-d∗/T(t)] = infinity.

The cooling schedule is of the form T(t) = d/log(t)
(for SA). So the theorem states SA converges if d≥d∗.
The constant d∗ is a measure of the difficulty for X(t)
to escape local minimum. Consider a local minimum
of depth d∗. The SA makes an infinite number of
trials to escape from it and the probability of success
at each trial is of the order of exp[-d∗/T(t)]. Now as
Σ exp[-d∗/T(t)] = infinity, so an infinite number of
such trials will be successful.

For a better convergence, consider the cooling
schedule. The schedule T(t) = d/log(t) can be
approximated as, let t1 = 1 and tk+1 = tk + exp(kd).
Let T(t) = 1/k for tk ≤ t ≤ tk+1. If the cost function
J has unique global minimum the relaxation time
is approximated by exp(kd∗). This yields another
interpretation of convergence condition d ≥ d∗ for
the schedule T(t).
If d < d∗ then at each temperature 1/k we cannot
be sure that Xn+1 is close to Xn but at d > d∗, the

relaxation time is exp[k(d∗-d)] which implies at k
tends to infinity Xn+1 is close to Xn.

The reason why SA works well -
If a given state is far from optimal then there exists
a large number of paths(candidate paths) that lead
to another state with lower costs. The probability
that the state X(t) escapes local minimum of depth
d along any particular path, in single trial, is at
most exp(-d/T). On the other hand if the number
of candidate paths is very large the probability of
escapes is substantial. So constant temperature SA
would work in polynomial time if the relaxation time
were poly-logarithmic in the size of the state space.

Acknowledgments

We would like to extend our sincere gratitude to
our guide Prof. G N Srinivasa Prasanna for providing
us with an opportunity to work on the project -
A Simulated Annealing based approach for solving
SplitSearch. We are heartily thankful to him for his
constant encouragement, valuable sug- gestions and
the motivation that we got from him. The completion
of the paper would not have been possible without the
constant feedback, guidance and motivation from our
professor.

References

[1] J. M. P. V. S Kirkpatrick, C D Gelatt, “Optimization of
simulated annealing,” Science, vol. 220, no. 4598, 1983.

[2] R. Carr, “Simulated annealing from mathworld a wol-
fram web resource, created by eric w. weisstein.”

[3] W. Winston, “Operations research applications and al-
gorithms,” vol. 4th Edition, 2003.

[4] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,”
Statistical Science, vol. 8, no. 1, pp. 10–15, 1993.

