
Title: Infrastructure in Financial Precision: Theory and Simulation

Authors:

1. Abhilasha Aswal
International Institute of Information Technology, Bangalore
Address:

26/C Electronics City,
Hosur Road,
Bangalore – 560100

Mobile: +91 – 9620058383
E-mail: abhilasha.aswal@iiitb.ac.in

2. Ganesh Perumal M
International Institute of Information Technology, Bangalore
Address:

26/C Electronics City,
Hosur Road,
Bangalore – 560100

Mobile: +91 – 9986673971
E-mail: ganesh_perumal@iiitb.ac.in

3. Prof. G. N. Srinivasa Prasanna
International Institute of Information Technology, Bangalore
Address:

26/C Electronics City,
Hosur Road,
Bangalore – 560100

Mobile: +91 – 9844226959
E-mail: gnsprasanna@iiitb.ac.in

mailto:abhilasha.aswal@iiitb.ac.in
mailto:ganesh_perumal@iiitb.ac.in
mailto:gnsprasanna@iiitb.ac.in

I. INTRODUCTION

Traditionally, calculations in the financial world are specified in decimal arithmetic. Many

early computers used decimal arithmetic in hardware level, but binary computing in hardware

soon took over.One main reason for this was major issues in hardware and software reliability

around the 1950’s [6], [7]. Von Neumann et al [7] noted that binary arithmetic gave reasonable

precision for scientific calculations, but it may not be sufficient for today’s many high precision

applications. The use of binary hardware seemed necessary at the time, but now computer

hardware is cheaper and far more robust, yet most computers today still use

binaryhardware.IEEE standards were developed to provide standard algorithms for developing

portable software[8]. It is interesting to check the impact of using binary arithmetic directly for

financial transactions. Our study quantifies the resultant impact.

Our work is based on examination of the error which is defined as the difference between the

answer produced using arbitrary precision decimal arithmetic, and that produced by the IEEE

754 binary arithmetic, afterfinancial rounding rules are applied.

For this study we have a theory that predicts the worst case error and a simulation

infrastructure that can be exercised to get error behaviors and to do statistical analysis. The

simulator can compare arbitrary precision decimal arithmetic results with those of finite

precision binary arithmetic, can generate sequences of transactions including deposits,

withdrawals, transfer of funds, interest calculations etc. both in a single currency and multi-

currency setting, has currency specific rounding rules implemented and can perform basic

statistical tests such asChi-squared, KS, T and F tests.Our theory predicts that if malicious agents

have the knowledge of the system, then they may trigger an attack by deliberately choosing

transaction amounts such that errors are made to their advantage. Sequence of such transactions

will lead to accumulation of large errors which may go unnoticed in basic statistical tests.

A natural question is: if binary arithmetic cannot be used for financial calculations, then what

are the financial software using? Contemporarily, software libraries are used for high precision

computations such as financial transactions. However, these specialized software libraries suffer

from considerable performance penalty over hardware [4]. If for the sake of performance, IEEE

binary standard was used for financial computations, then the results may not be same as the

exact decimal results. If a malicious agent can determine this difference then they can manipulate

the system to their advantage and they may end up gaining significant sums of money illegally.

Figure 1 shows a fairly recent invoice of an airline ticket, which shows the total amount as

4132.639999999999 instead of 4132.64. This indicates that the airlines probably used IEEE 754

double precision for calculation instead of a high precision decimal library and testifies to the

importance of the problem.

Figure 1: An airline ticket invoice

Our major contribution is the creation of the simulation infrastructure and the theoretical

analysis. In summary, our results indicate that the use of binary arithmetic to perform decimal

arithmetic is inappropriate from at least a legal standpoint. The errors are typically very small in

magnitude, but sequences of transactions exist, whose cumulative error is significant, and we

showed that almost any required error process can be generated.

Our work is very relevant for financial institutions like banks, capital marketing, stock

market etc., as well as for applications in retail and high precision machine design as they can

utilize our error quantifying techniques.

In the rest of this proposal, we give an outline of these ideas (details available on request).

Section II contains a brief overview of the simulation infrastructure. Section IV discusses

analysis of error patterns using a theoretical analysis and shows that sequences of transaction

volumes exist which can cause errors in each transaction. Section IV concludes.

II. SIMULATION INFRASTRUCTURE AND ITS POWER

We quantified the effects of using ubiquitous IEEE-754 binary arithmetic for financial

calculations using our simulator.Figure 2 shows the architecture of our simulator. It has 3 major

parts-

1. Input: This module generates the input traffic for the simulator and uses recent exchange rate

data from the internet.

2. Simulation engine: This module can find arbitrage opportunities from currency or stock

exchange rate graphs and also performs basic stock and banking transactions.

3. Error process analysis: This module performs statistical analysis on the error process and

generates reports.

Figure 2: Architecture of the simulator

Arbitrage
(Stock/currency)

Stock
Transactions

General Banking
(Single/multi

currency)

Single
bank

Multiple
banks

Currency/stock
exchange rates

Transaction
generator

Statistical
tests

INPUT

ERROR PROCESS
ANALYSIS

Reports

DATABASE

SIMULATION ENGINE

Random
transactions

Non - random
transactions

Worstcase
fromtheory

The simulator can simulate a random sequence of transactions and statistically analyze the

simulation results or it can also re-run an earlier simulated sequence with a different precision

level in binary arithmetic. Transactions include simple deposits, withdrawals, splits – where

money is withdrawn from an account and split up into nparts and deposited in n different

accounts, simple / compound interest calculations, and buying and selling of stocks. In addition,

the transactions can be in a single account, between a pair of accounts having same base

currency or pair of accounts having different base currency which involves a currency

conversion. The system has currency specific rounding rules built in and can be updated to have

the latest currency conversion rates. To improve the performance of the simulator a parallel

multithreaded version was developed and a speed up of 94% was achieved. The simulator can

perform roughly 18000 transactions/second without multithreading and 35000

transactions/second with multithreading on an Intel dual-core 2.26 GHz processor.

Figure 3 and Figure 4 show snap shots of the simulator and Table 2 shows the result of a

statistical analysis. Figure 3 shows the simulator with multiple banks using which multi-currency

transactions can be simulated. Figure 4 shows the error process resulting from a simulation of

single currency transactions using IEEE 754 single precision.

Figure 3: Binary (IEEE 754 Single Precision) vs. Decimal balances

Figure 4: Error pattern when using IEEE 754 single precision

In addition, our simulator can process real-time currency/stock exchange rate data and search

for arbitrage opportunities. Figure 5 shows an example of 2 arbitrage cycles in 5 currencies

(currency exchange rates as applicable on Sept 29, 2009), one is shown in blue and another in

red. The gain in 100 cyclic traversals in blue cycle is just over 4%and in red cycle is 37%.Figure

6 shows another example with 19 currencies (currency exchange rates as applicable on 16th Nov

2009). The gain in this case was just over 7% in 1 cycle. For simplicityspreads are not accounted

for in these examples.

Figure 5: Arbitrage example with 5 currencies

Figure 6: Arbitrage example with a cycle having 19 currencies

III.THEORETICAL ANALYSIS

In addition to the simulator we have a theory to analyze the error process. Our theoretical

analysis, compared to previous work [3, 4, 5], systematically categorizes financial transactions,

and shows the existence of arbitrary error patterns by a suitable choice of transaction amounts.A

novel tabular approach is used to examine the worst case errors, as outlined below. For

simplicity of exposition, we have considered a single payer or payee (single currency

transactions).With capitalization amounts exceeding 1013 (243), errors are possible in additions

using IEEE 754 double precision. Here, using a tabular approach, we demonstrate a sequence of

transaction amounts, such that an error is made in every transaction.

Table 1: Transaction error matrix (TEM)

First, we define the capitalization-transaction error matrix (TEM) (,), where is the

number of decimal digits in the fraction and is the number of binary bits in the binary

approximation, as an × matrix, with entries= Error in adding Transaction amount ∆ to Capital ,

where is the number of possible capitalization values and is the number of possible

transaction amounts. This error is with respect to exact decimal arithmetic.

Analysis of this matrix T(D, B) enables us to generate worst case, and in general arbitrary

transaction sequences.The following lemma can be proved about the TEM-

Lemma:

1. The TEM (,) is completely specified by using only all possible values of the fractional

(decimal) portion of transactions and amounts. The integer portions add exactly, and do not

cause errors.

2. (,)is a symmetric matrix for deposits and skew symmetric for withdrawals and the rows

and columns correspond to the smallest currency unit.

3. Since the row corresponds to using all possible decimal fractional values <= unity, the error

period is <= the row length.

Based on 3, we can show (proof omitted) that sequences of transaction amounts exist which are

biased while still passing basic statistical tests for randomness. Our algorithm works by

randomly choosing one of the many choices available. More details will be given in the

presentation.

An example of a TEM is shown in Table 1 for 2 decimal digit values approximated using 4

bits. We have shown only every 5th row and 5th column of the TEM for brevity.

Every transaction will either produce an exact answer or an approximate answer, depending

on the numbers involved. We classify these results as zero error, positive error and negative

error, where positive error is encountered when the approximated binary result is greater than the

exact decimal result and negative error is encountered when the approximated binary result is

less than the exact decimal result. We have devised a randomized algorithm to find a sequence of

transaction amounts for this such that either always a negative error is made or always a positive

error is made.

For the TEM in Table 1, we used our algorithm to get an exemplary sequenceof 100

transactions which has errors that are positively biased and still passes basic statistical tests. This

is summarized in Table 2. The table lists the total gain and the chi-squared values for 6 degrees

of freedom which signify randomness for 100 transactions.

Total Gain

(in currency units)
Chi-Square value

1.15 46.18

Table 2: Total gain and chi-squared value for example sequencefor TEM in Table 1

Figure 7 shows a TEM created for 2 decimal digit values approximated using IEEE 754

double precision. We show positive and negative errors in color-coded form where the positive

errors are represented by dark cells and negative errors are represented by lighter cells and zero

errors by white cells. The figure also shows a sequence with all positive errors and another

sequence with all negative errors.

Figure 7: Sample error sequences in a TEM matrix

The graph in Figure 8 illustrates accumulation of error in 60,000transactions cycling over the

2 transaction sequences shown in Figure 7. These were obtained using our simulatorbased on our

theoretical analysis.

Figure 8: Error accumulation over large number of transactions

TEM enables us to design transaction volumes which do not always cause errors, but whose

error process appears random and passes statistical tests but gains/loses money over a long

enough time horizon.

Positive
Error
SequenceNegative

Error
Sequence

Multi-currency transactions

While the single-currency examples used very large transaction amounts, this is not required

when multi-currency transactions are used. When we have a transacting pair with different base

currencies, it is still possible, with relatively small capitalizations, to find a sequence of

transactions that will always give an error. This can also be done by finding a path through the

TEM as explained earlier. Also, there may be multiple TEMs in this case, depending on the

currency rounding rules.

IV. CONCLUSIONS

If financial software neglect the effects of IEEE-754 finite precision, then the results could be

disastrous and huge monetary losses may occur.Our work quantifies these losses/gains using a

simulator and a theory.Using the simulator, we have done statistical analysis of the error process.

Using the theory, we showed that binary arithmetic can be exploited to create arbitrary error

sequences, with considerable possibilities of financial arbitrage. These sequences can be chosen

so as to pass many common statistical tests, and thus avoid detection. We note that good

financial software should use exact decimal arithmetic andalso the importance of statistical tests

in analyzing the errors.All these ideas will benefit applications in financial, retail and design

sectors.

REFERENCES

[1]. David Goldberg, “What every computer scientist should know about floating-point

arithmetic”, Computing Surveys, 1991

[2]. Nicholas J. Higham, “The accuracy of floating point summation”, SIAM J. Sci. Comput.,

July 1993

[3]. Michael F. Cowlishaw, “General decimal arithmetic”, July 2008

[4]. Michael F. Cowlishaw, “Decimal floating-point: Algorism for computers”, Proceedings

of 16th IEEE Symposium on computer arithmetic, 2003

[5]. Michael F. Cowlishaw’s page at IBM, “Decimal Arithmetic FAQ”,

http://speleotrove.com/decimal/decifaq.html

[6]. Paul M. Cohen, “Reflections on Early Computers”, available at -

http://www.paulcweb.com/reflect/Chap04.html

http://speleotrove.com/decimal/decifaq.html
http://www.paulcweb.com/reflect/Chap04.html

[7]. John von Neumann, “First Draft of a Report on the EDVAC”, IEEE Annals of the

History of Computing, Vol. 15, No. 4, 1993

[8]. W. Kahan, “IEEE Standard 754 for Binary Floating-Point Arithmetic”, Lecture notes,

University of California, Berkeley, 1996

[9]. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery,

“Numerical Recipes in C”, Second edition, Cambridge university press, 1992

[10]. “The ASTRÉE Static Analyzer”, available at - http://www.astree.ens.fr/

[11]. Donald Knuth, “The art of computer programming: Seminumerical

Algorithms”, Second edition, Addison-Wesley, 1981

[12]. W. Kahan, “Floating-Point Arithmetic Besieged by “Business Decisions””, Keynote

address, ARITH17.

https://jal.iiitb.ac.in/exchweb/bin/redir.asp?URL=http://www.astree.ens.fr/

