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Abstract

Existing network visualization systems use variants and combinations of the node-

link diagrams of the graph layout and visual representation of the adjacency matrices.

However they cannot directly be used to show transformations on the graph, e.g.,

applying similarity functions on the adjacency matrix. Our proposed visualization

technique uses linked views of the node-link diagrams and matrices to simultaneously

view a network layout and its adjacency matrix. We use the clustering results from

the similarity matrix to perform multilevel clustering on the data to reduce its com-

plexity. We further propose parallel set-like representation to visualize a series of

similarity matrices of the same data, e.g. time series data, different subspace cluster-

ing, application of different similarity functions, etc. Our methods are motivated by

data mining applications for visually assessing clustering via similarity functions on

the network. The similarity functions used in network data include both Euclidean-

distance based ones, as well as role- or interactions-based ones, where the latter may

not be a linear function of the link-based adjacency matrix. It can be used to an-

alyze effectiveness of similarity function used for clustering by finding characteristic

clusters from the matrix visualization using seriation algorithms, key one being the

VAT (Visual Assessment of cluster Tendency) algorithm. For larger data sets, we

propose a parallel implementation of the VAT algorithm using CUDA and multilevel

clustering for simplifying the data set.
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Chapter 1

Introduction

Visual Assessment of cluster Tendency (VAT) [5] algorithm is regularly used for pat-

tern recognition applications. In this work, we use VAT in various capabilities to

understand and analyze large scale network data. A network can be characterized by

various matrices, the primary and foremost being the adjacency matrix. We use clus-

tering via similarity functions, a standard technique for reducing complexity in large

data sets. Application of similarity functions on a network gives similarity matrices.

Thus, in addition to adjacency matrix, using similarity matrix for visual analysis of

a network gives deeper insights to the data.

1.1 Problem Definition

Given a large-scale data set, we use clustering based on similarity functions to com-

press the data. Apart from studying clustering capabilities of the data, we use these

algorithms to track objects across clusters in a series of similarity matrices. The series

of similarity matrices can be constructed for the same set of nodes in a network in
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several ways, e.g., time series data set, application of various similarity functions or

permutation functions, or different subspace clustering in multi-attribute data.

For this study, we focus on small world networks in its undirected form character-

ized by a local structure where two connected nodes can have several neighbours and

our study is limited to using similarity functions, which yields similarity matrices, as

transformations to such a network. Though our work can be easily extended to any

network and any normalized symmetric matrix which is characteristic of the network,

its performance will vary depending on the type of the network.

1.1.1 Basic Definitions

A small world network is a type of mathematical graph in which most nodes are not

neighbors of one another, but most nodes can be reached from every other by a small

number of hops or steps.

A two-way one-mode representation uses a single mode, such as a set of objects,

and is represented in two dimensions, say in the form of a matrix.

An algorithm for optimal ordering of entities in a two-way one-mode representation

as a square matrix, like the adjacency matrix and similarity matrix, is a permutation

algorithm, also known as a seriation algorithm.

Similarity measure gives the value of similarity between two objects. Similarity

functions are binary functions on two objects that compute their similarity measure.

Similarity matrices are two-way one-mode representation of similarity function values

between any two elements in the set.
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1.2 Motivating Applications

Consider Wikipedia vote network [37] or other similar voting networks, in its undi-

rected form, where using a link-based analysis of the network, one can deduce who

is voting for whom from the link. The Wikipedia vote network is a directed graph

representing a network of wikidpedia users as vertices and where an edge from node

i to node j indicates that user i has voted on user j for an administrator election.

Generally a direct analysis cannot tell us all the nodes corresponding to who is being

voted on, which are “similar” based on their “roles”. Visualizing such a network using

linked views of popular techniques, such as graph layout and visual representation

of its adjacency matrix and similar applications, will be limiting as they exclusively

view the existing direct links without showing any transformations on the network.

Finding role similarities on a network can be considered equivalent to the net-

work being transformed in a non-Euclidean space, where its edges get transformed

and the nodes give a different layout. Our work is motivated towards showing such

transformations and subsequently tracking clusters in the network to help under-

stand the network in metric spaces other than the Euclidean space. Along similar

lines, recent research has shown that computing centrality can be considered to be a

transformation or a function of the adjacency matrix [8]. Hence, analysis using matrix

visualization of a network based on various centrality measures is incomplete with-

out the facility to visually analyse transformations on the adjacency matrix beyond

viewing the matrix itself.

Tracking membership of objects in clusters across series of similarity matrices

can help in finding trends, and patterns and also in gaining more insight about the
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underlying varying properties of the data. If we observe that two objects are present

in the same clusters in multiple instances in the series of similarity matrices, we

can conclude that the objects are positively correlated. Suppose we have time series

data of a network of co-authorship of n authors over x years and we apply k-ring

neighbourhood similarity function on the network in each time instance. Finding

two or more authors in the same cluster over large part of the x years may indicate

that they are working very closely to each other owing to their belonging to the same

workplace, or having the right set of complementary expertise in pursuing research on

the same topic. These authors not co-authoring a paper together after a while might

indicate that they no longer work together owing to change of employment or change

in research interests, etc. Information about such an event becomes very apparent

from the clustering tendencies found in similarity matrix series.

1.3 Clustering

Data analysis is a process of inspecting, cleaning, transforming, and modeling data

with the goal of highlighting useful information. Our goal is to find pattern in linked

views which will help in understanding clustering structure in the data. Using the

clustering patterns, one can obtain multiple levels of detail for looking at the graphs,

thus reducing the complexity of graph.

Objects are clustered or grouped to maximize the intraclass similarity and min-

imize the interclass similarity. Objects that are similar are grouped together and

objects that are dissimilar lie in different clusters. Clustering is also referred to as

data segmentation because it partitions large data sets into groups on the basis of sim-
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ilarity of their properties. Grouping the data can thus help in better understanding

of the complexity of the data.

The advantage of clustering-based process for data segmentation is that it is adapt-

able to changes and helps single out useful features that distinguish different groups.

By tracking these groups we can see the change in the trend or behavior of data, e.g.,

in time series data tracking membership of objects in clusters shows the temporal

evolution of the data.

1.4 Our Contributions

Our key contribution is a visualization system or tool to enable data analysis using

series of similarity matrices. We have made appropriate design choices by using

known methods, such as shaded similarity matrices, seriation algorithms, multilevel

clustering, and parallel sets, as components of this tool. Our contributions can thus

be summarized as the following:

1. A visualization tool to analyze the graph layout of a small world network and

its adjacency matrix and the transformations caused by applying a similarity

function to the network. We use linked views of matrix and node-link diagrams

to show changes in a network before and after transformation, with provisions to

identify clusters across transformations. We have compared various seriation or

permutation algorithms for showcasing clustering tendencies in the visualization

of the similarity matrix and presented how VAT is optimal for our application.

2. We propose parallelized VAT (pVAT), an optimal parallel implementation of

5



VAT using CUDA based on Bor̊uvka’s algorithm.

3. For data simplification we use multilevel clustering, i.e., recursively cluster the

data objects and after each iteration merge the clusters to form one node.

4. We propose parallel sets-like representation for tracking the cluster member-

ship of objects in series of similarity matrices, i.e., to view how constituency of

the clusters changes across the series. These series of similarity matrices can

be generated for every time stamp in time series data, application of differ-

ent similarity functions on the same data, or different subspace clustering in

multivariate data.
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Chapter 2

Related Work

In this chapter, we provide a broad overview of work related to this dissertation. We

discuss matrix visualization techniques, graph drawing and visualizing small world

graphs, linked views of graphs and its visualization similarity functions and parallel

sets.

2.1 Matrix Visualization Techniques

Liiv [38] have given an exhaustive overview of seriation methods across various disci-

plines; defining seriation to be “an exploratory combinatorial data analysis technique

to reorder objects into a sequence along a one-dimensional continuum so that it best

reveals regularity and patterning among the whole series.” Thus seriation is used

heavily in matrix reordering to facilitate finding patterns in clustering, which he con-

siders different from seriation due to the intermediate step that occurs between the

two, which is “clustering with optimal leaf ordering”. Liiv et al. [39] have presented

a cross-disciplinary collaborative tool for seriation, called Visual Matrix Explorer
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(VME), which facilitates comparisons of standard matrix reordering.

Bezdek and Hathway [5] have proposed a seriation algorithm along with a visual

representation to assess the layout of clusters in the matrix, known as VAT (Visual

Assessment of cluster Tendency). VAT uses a grayscale image of a permuted ma-

trix to show blocks along the main diagonal, which are representative of clusters.

There have been several improvisations done to VAT owing to its complexity being

O(n2). Successors of VAT relevant to our work are reVAT (revised VAT) [27], big-

VAT [28] and sVAT (scalable VAT) [21]. reVAT uses profile graphs to replace the

dissimilarity image thus reducing the number of computation. bigVAT and sVAT are

scalable algorithms based on sampling representative entities to reduce the size of the

data. We alternatively propose parallelized VAT where the implementation of VAT

uses a parallel implementation of finding minimum spanning tree in the graph using

Bor̊uvka’s algorithm, as implemented by Vineet et al. [53]. We propose the parallel

implementation of VAT (pVAT) because VAT is not scalable for large graphs and

scalable version of VAT, i.e. bigVAT and sVAT rely on good choices of representative

data to downsample the given graph.

Mueller et al. [45, 46] have performed a thorough analysis of vertex reordering

algorithms, which is relevant to representation of clusters in matrix visualization.

In [45], Mueller et al. have used pixel-level display to scale up the visualization

for larger data sets. In [46], Mueller et al. have referred to visual representation of

adjacency matrix as visual similarity matrices (VSM) and specified common structural

features of the VSM along with their graph-based interpretations. The matrix-node

link synchronized views show that the specific “features” in the VSM correspond to

a relational pattern between the vertices in the graph. One such feature, diagonal
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lines carry information of clustering tendencies, as showcased in VAT. Though VAT

focuses on blocking patterns along the diagonal of the matrix, Mueller et al. have

analysed diagonal entities on and off the main diagonals.

Wishart has discussed about shaded distance matrices [59] where similarity ma-

trices are reordered by constructing a dendrogram and reordering the dendrogram to

minimize the sum of weighted similarities. Wang et al. [55, 56] have used (a) nearest

neighbour clustering and ordering using decision tree algorithm to visualize a shaded

similarity matrix in [56], and (b) a combination of conceptual clustering in machine

learning, and cluster visualization in statistics and graphics whose complementary

properties help in interpreting clusters better, in [55]. Wang et al. [55, 56] also use

the hierarchical clustering to choose representative nodes to display in the shaded

similarity matrix. Shaded similarity matrices [56, 59] use a range of shading, just like

the VAT image, where dark to light shading implies decreasing similarity between

given two objects. Wang et al. [56] have used conceptual clustering by using a con-

cept tree to find clusters and have found a reordering of the matrix based on these

precomputed clusters. The shortcomings of this method are: (a) high dependency on

specific definition of similarity, (b) basic assumption of conceptual clusterability of

data, which is not guaranteed for all data, (c) limited scalability of shaded similarity

matrices. However shaded similarity matrices can be scaled using sampling and en-

semble approaches. Though results of VAT also depends on the similarity function

used and the inherent clustering in the data, VAT does not involve computation of

agglomerative hierarchical data structures, which becomes computationally intensive

for large data sets. Also VAT can be considered to be related to single-linkage al-

gorithm [22] as opposed to the average-linkage algorithms used in shaded similarity
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matrices [55, 56, 59].

2.2 Surveys of Graph Drawing and Visualization

Some of the survey papers on graph drawing and visualization are very relevant to our

work. These include the following: on graph visualization and navigation techniques

used in information visualization by Herman et al. [25], on graph layout problems

by Diaz et al. [10], and on the state of the art in visual analysis of large graphs by

Landesberger et al. [54].

In [25], Herman et al. have discussed about handling large graphs in the context

of information visualization and layout choices for particular types of data. In [10],

Diaz et al. have discussed about graph layout problems from an algorithmic point

of view, which include: (a) Minimum Linear Arrangement problem, (b) Bandwidth,

(c) Cutwidth problem, (d) Vertex Separation problem, (e) Sum Cut and Profile,

and (f) Edge and vertex bisection. In [50], Purchase has discussed the results of the

experiments conducted to check which graph drawing algorithms perform better than

the human-in-the-loop case. Different experiments were conducted to check the most

effective aesthetics graph drawing algorithms for relational information and graph

drawing algorithms from a human readability point of view.

2.3 Small World Graphs

Watts and Strogatz [58] have explained the characteristics of small world networks

based on the small world phenomenon, also known as six degrees of separation [18].
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nBarrat and Weigt [4] have used analytical and numerical tools to validate the ge-

ometrical properties of small world graphs. There are several multiscale, multilevel

visualizations of graph layout of large small world network (SWN) [3, 2, 52, 11],

which are scalable applications. Erdelyi and Abonyi [12] have worked on node sim-

ilarity based visualization is very similar to ours in the use of VAT for similarity

matrix representation. They have proposed a new similarity function and imple-

mented dimensionality reduction to obtain a similarity matrix in a lower-dimensional

embedding, on which subsequently VAT is used. Correa et al. [8] have computed and

used sensitivity of centrality measures to reduce a network. They have explored com-

puting centrality using a variational definition of an adjacency matrix, eigenvector

centrality and markov centrality.

2.4 Linked Views of Graphs

Koren and Harel [32] have discussed the integration of two approaches: hierarchi-

cal clustering using a dendrogram and low-dimensional embedding. Abello and van

Ham [1] have proposed a visualization system that is characterized by the available

screen real estate S and the available RAM M to provide graph and matrix views.

Henry and Fekete [23] have proposed a network visualization system, MatrixExplorer,

which uses two representations, namely, node-link (NL) diagrams and matrices, using

inputs from social scientists. Apart from standard interactive filtering and clustering

functions, MatrixExplorer has functionalities for both automatic and manual reorder-

ing matrices, annotating and comparing observations across different layouts and ar-

riving at consensus amongst several clusterings. They give an elaborate literature
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review on work done on graph visualizations. They used participatory design tech-

niques to arrive at MatrixExplorer. Some relevant results from the requirements they

obtained from the users, who are social science researchers, are: higher preference for

matrix-based representations over NL diagrams as it was faster to display and easier

to manipulate for larger data sets; cluster detection was essential for social networks

analysis; and aggregating networks using clusters presented results well. However

in [24], they have evaluated MatrixExplorer with the shortcoming of huge cognitive

load during context switches. Hence they [24] have proposed the idea of integrating

matrix and graph visualizations to give a hybrid representation called MatLink, which

consists of a matrix visualization with linear NL diagram overlaid on the edges of the

matrix and a dynamic topological feedback on mouseover. They used energy-based

clustering of graphs with non-uniform degrees (LinLog) algorithm [48] for the NL

representation in MatLink. Elmqvist et al. [11] have proposed Zoomable Adjacency

Matrix Explorer (ZAME), an interactive visualization tool for exploring large scale

graphs their representaion is based on adjacency matrix. ZAME can explore data at

many levels, aggregation of nodes is based on “symbolic data analysis” and aggregates

are arranged into a pyramid hierarchy.

2.5 Visualization Techniques for Linked Views

Ghoniem et al. [15, 16] have analyzed comparison of graph visualization techniques be-

tween node-link (NL) and matrix based representations using controlled experiments.

In [15], it was shown that NL diagrams are suited for graphs that were “almost trees”,

but performed very poorly for almost complete graphs and denser networks. Though
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the experiments conducted in [15] primarily were for low-level readability tasks and

not specifically for social networks, since SWN are locally dense, matrix visualization

is better suited for clarity and is less sensitive to density variations. However NL

scores better for networks with relatively lesser number of nodes.

Spectral graph partitioning is one such application where our proposed method of

linked views of graph, its adjacency matrix and a function of the adjacency matrix

will be effective. Spielman and Teng [51] have explained how matrix representation of

a graph is used for spectral partitioning where the eigenvector of the second-smallest

eigenvalue of the Laplacian matrix of the graph is used for finding separator of the

graph.

2.6 Similarity Functions

Liu et al. [40] have proposed guidelines to users on the choice of link-based similarity

measures depending on applications. We have identified for our experiments two

similarity measures which are not a linear function of adjacency matrix, namely, role

similarity [30] and matrix powering [64] for identifying k-ring neighbourhoods [13].

Computing centrality measures in a network can be done using linear or exponential

function of the adjacency matrix [13]. Thus one can compute k-ring neighborhoods

of a node using kth power of the adjacency matrix, which can be used as a similarity

matrix for clustering purposes.
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2.7 Parallel Sets

Finding trends and outliers in multivariate data is generally done using parallel co-

ordinates and parallel sets. In our work, in the case of visualizing trends in a series

of similarity matrices, such representations give better insight than using multiple

instances of matrix visualization. Parallel sets like representation collate the clus-

tering results across the series, which preserves the details of the clustering process

such as number of clusters, cluster size, etc. Such a representation weeds out other

information pertaining to the nodes in the graph.

In [29], Alfred Inselberg et al. have proposed parallel coordinate for visualizing

high dimensional data in a plane. In [62], Zhao et al. have used polyline clustering

and coordinate sorting for complex and large dataset using spectrum based clustering.

Parallel sets is a variation of parallel coordinate system. Parallel coordinates is

a common way of visualizing high-dimensional geometry and analyzing multivariate

data. Adding more dimensions in parallel coordinates involves adding more vertical

axes. The order of the axes is critical for finding features, and in typical data analysis

many reorderings will need to be tried.

In [9], Dasgupta et al. have used a perceptually motivated metric i.e., screen space

based metrics for visualizing high dimensional time varying data as they feel that it

performs better than data-based metrics. They proposed an user centric approach

and integrated multiple views to benefit search in temporal patterns. To reduce

the cluttering of edges and effectiveness in visual clustering. Zhou et al. [65] have

proposed a framework where the shape of edges are changed and order is maintained.

To find clusters in parallel coordinates, Zhou et al. [63] have provided a mechanism
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to enhance the cluster effect by reducing the edge clutter. In [33], Kosara et al. have

proposed parallel sets for visualizing and exploring categorial data. Parallel sets allow

the user to remap the data to new dimensions.

2.8 Research Gaps

We find that in the information visualization community, matrix visualization has

been routinely applied for adjacency matrices for undirected graphs. Adjacency ma-

trices are generally visualized as a binary shaded representation of a matrix, indicating

presence or absence of edges between vertices. The matrices are represented in two-

way one-mode form. For our need for visualizing grayscale matrix representations for

similarity matrices, we find that shaded similarity matrices and VAT variants are apt.

While shaded similarity matrices involve construction of hierarchical data structures,

VAT is a simpler algorithm with low spatial overhead. Also, VAT is unconventional

compared with the popularly used seriation algorithms as VAT is equivalent to a

single linkage hierarchical algorithm, while the algorithms used in shaded similar-

ity matrices are average linkage. Since VAT has a quadratic time complexity, it is

inefficient for large scale data sets.

Multilevel clustering has traditionally been done on the node-link diagrams using

nearest neighbor consideration, which is satisfied by VAT owing to its relation to

single linkage algorithm. Clustering done in the matrix form of the network has been

carried out in ways specific to research communities: (a) in information visualization

community, multilevel clustering of adjacency matrices is done for visual assessment

and further processing pertaining to building focus+context representations, and (b)
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in machine learning community, multilevel clustering is done using similarity func-

tions. We have not found any work pertaining to multilevel clustering in a network

combining the two approaches.

We have narrowed down our current domain to be small world networks, owing to

the known behavior of similarity functions in such a network. While there is existing

research on visualizing similarity matrices for this domain, we have not found any

visual analysis for a series of similarity matrices. This is unique to our work, where

we have adapted parallel sets representation to see clustering trends in a series of

similarity matrices.
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Chapter 3

Basics

Our visualization system comprises of the algorithms for graph layout, seriation and

similarity functions and cluster isolation and tracking for enabling the system. We

have shortlisted algorithms for the user choices based on the popularity of these

algorithms in the concerned communities as well as our requirement to showcase a

system for proof of concept.

3.1 Graph Visualization

A graph can be visualized using a layout as well as a graphical representation of

its adjacency matrix, as shown in Figure 3.1 for the social network of coauthors

data set [42] consisting of 475 nodes(authors) and 1250 edges, edges connect the

authors who have co-authored one or more papers. As we explained in Chapter 2,

there has been a lot of work on the best representations of the graph in different

scenarios. Though the node-link layout is useful for us to study the transformation of

graph on application of a similarity function, our work primarily focuses on clustering
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tendencies in similarity matrices. Hence, we will be using the grayscale representation

of matrices more than the node link layout.

(a) (b)

Figure 3.1: Data set of network of coauthors [42] is visualized using (a) node-link

diagram using Fruchterman Reingold layout, and (b) grayscale representation of its

adjacency matrix. Same set of nodes has been highlighted in blue in both the repre-

sentations.

3.1.1 Graph Layout

A layout algorithm determines perception of various geometrical properties of a graph.

Thus an appropriate graph layout of a network can give us a better understanding of

its inherent clusters. We will be using the following nine layouts: in two-dimensional

space, circular layout; and in three- dimensional layouts: random, sphere, Fruchter-

man Reingold, grid Fruchterman Reingold, Kamada Kawai, springs, large graph, and
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Graphopt.

3.2 Similarity Functions

For an ordered set of elements, applying a similarity function on pairwise choice of

elements gives an idea of similarities and dissimilarities inherently present in the data.

Similarity matrices are two-way one-mode representation of similarity function values

between any two elements in the set. Subsequent clustering on a similarity matrix

gives insight to the data and can be used for reducing complexity of the data; and

hence is a useful data mining tool. Similarity matrices are normalized and symmetric.

In graphs, clustering can be done in a similar fashion using similarity matrix

based on its nodes or vertices. Usually the similarity matrix is a function of the

adjacency matrix, since both matrices are two-way one-mode representation of the

nodes. We focus on the following similarity functions: Identity, Jaccard, Dice, Inverse

log weighted, Cocitation, Bibliographic coupling, k-ring neighbourhood, and RoleSim.

A brief description of these functions:

1. Identity: The identity function implies the adjacency matrix is the similarity

matrix.

2. Jaccard: The Jaccard similarity coefficient of two vertices is the number of

common neighbours divided by the number of vertices that are neighbours of

at least one of the two vertices being considered.

3. Dice: The Dice similarity coefficient of two vertices is twice the number of

common neighbours divided by the sum of the degrees of the vertices.
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4. Inverse log-weighted: The inverse log-weighted similarity coefficient of two ver-

tices is the number of their common neighbours, weighted by the inverse loga-

rithm of their degrees. It is based on the assumption that two vertices should

be considered more similar if they share a low-degree common neighbour, since

high-degree common neighbours are more likely to appear even by pure chance.

Isolated vertices will have zero similarity to any other vertex.

5. Cocitation: Two vertices are cocited if there is another vertex citing both of

them. Cocitation simply counts the number of times two vertices are cocited.

6. BibCoupling: The bibliographic coupling of two vertices is the number of other

vertices they both cite.

7. k-ring Neighbourhood: k-ring neighbourhood function implies that two vertices

are similar if they have common neighbours in k-hops.

8. Role Similarity: RoleSim function [31] is based on the recursive node structural

similarity principle, which states that “two nodes are similar if they relate to

similar objects”.

Figures 3.2 and 3.3 show the effect of applying different similarity functions on the

co-authorship network [42], before using VAT as the seriation algorithm. The figures

show that for this particular co-authorship network except for the k-ring neighborhood

function, the other similarity functions do not show well-defined clusters.

20



(a) (b)

(c) (d)

Figure 3.2: For the social network of coauthors in [42], the adjacency matrix, as shown

in Figure 3.1(b), transforms on application of the following similarity functions and

seriation using VAT: (a) Identity, (b) Jaccard, (c) Dice, and (d) Inverse log-weighted.
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(a) (b)

(c) (d)

Figure 3.3: For the social network of coauthors in [42], the adjacency matrix (as

shown in Figure 3.1 (b)) transforms on application of the following similarity functions

and seriation using VAT: (a) Cocitation, (b) Bibcoupling, (c) k-ring neighbourhood

for (k = 2), and (d) Role simialrity for (β = 0.6).

22



3.3 Permutation Algorithms

An algorithm for optimal ordering of entities in a two-way one-mode representa-

tion [38] as a square matrix, like the adjacency matrix and similarity matrix, is a

permutation algorithm, also known as a seriation algorithm. Ordering a set of N ver-

tices can be done in N ! different ways. Graph theory states that ordering of vertices

to optimize a cost function is called minimum linear arrangement (MINLA/MinLA),

which is a known NP-hard problem. Hence, one uses heuristic algorithms to solve

ordering of vertices to achieve domain-specific optimization criteria. An ideal order-

ing algorithm should be linear or better, in terms of runtime complexity. The choice

of the starting vertex is critical to most ordering algorithms. We assume node 0 as

starting vertex and focus on the following eight permutation algorithms: VAT, reVAT,

Breadth first search (BFS), Depth first search (DFS), Reverse Cuthill-Mckee (RCM)

[7], Kings [44], Modified minimum degree (MMD) [41] and parallelized VAT (pVAT).

Figure 3.4 shows the adjacency matrix of the co-authorship network [42] transforming

after application of k-ring neighbourhood function and VAT seriation algorithm.

3.3.1 VAT

VAT [5] uses Prim’s algorithm for finding the minimum spanning tree (MST) of a

weighted graph to permute the order of objects to obtain a two-way one-mode rep-

resentation [38], which is a square matrix with rows and columns in the same order,

referring to the same entities. VAT shows clear clusters as black blocks along the di-

agonal when matrix is represented using a grayscale image, as shown in Figure 3.4(b).

However VAT fails for cases where (a) there are no natural clusters in the data and
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(a) (b)

Figure 3.4: For social network of coauthors data set [42], after applying similarity

function of k-ring neighbourhood for (k = 2) on the original matrix in (a), the trans-

formed matrix on application of VAT seriation algorithm is as shown in (b). A cluster

of nodes identified after transformation is highlighted in blue in both representations.
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(b) clusters cannot be identified if the cluster types can not be identified using single

linkage.

The original VAT works only on symmetric matrices. Hence, our inputs are either

undirected graph or symmetric adjacency matrix. VAT ordering and display algo-

rithm is as given in Algorithm 1.

3.4 Graph Transformations

Our work focuses on the display of the similarity matrix as opposed to the original

adjacency matrix, as we believe that post processing of the network by the application

of a similarity function reveals more information of the network than that portrayed

by the adjacency matrix alone. We assume the original graph to correspond to the

adjacency matrix and the transformed graph to the similarity matrix. We also focus

on series of similarity matrices which can be assumed to be a transformation on

the input graph. Summarizing, we will be discussing the following kinds of graph

transformations in our work:

• Transformation using similarity functions on the adjacency matrix: Similarity

function should be such that it links data point. The notion of similarity de-

pends on the kind of data set we are using. Though for social network data

k-ring neighborhood function is good similarity measure, for several other data

sets it does give any useful information. The transformation function that we

apply on the adjacency matrix is not necessarily reversible in nature, hence we

retain a copy of the adjacency matrix. We can see from the application the
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Algorithm 1: Visual Assessment of cluster Tendency (VAT) Algorithm

Input : Dissimilarity matrix (R) of n× n where n is the number of vertices.

Output: VAT ordering

K = {1, 2, . . . , n}; I = J = ∅;

P[0] = (0,...,0)

double max = 0; int iForMax;

for i= 1 to n do

for j =1 to i do

if R[i][j] > max then

max = R[i][j];

iForMax = i;

P[0] = i;

I = {i};

J = K - {i};

minj= 0;

for r = 2 to n do

for i belongs to each element of I do

for j belongs to each element of J do

find minimum Rij and store value j in minj;

P(r) = j

I← I∪ {j}

J← J-{j}
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original graph, transformation of graph and retrace where the element are in

transformed graph.

• Transformations inherent in a series of similarity matrices: This kind of trans-

formation can be found in time series data, application of various similarity

functions or permutation functions on the same data, or different subspace

clustering in multi-attribute data. For time series data, we can see tempo-

ral evolution of a network. For multi-attribute data, we can compute various

subspace clusterings, i.e. selecting a subset of attributes and studying their re-

lationships. Those attributes which do not comply with the general behavior of

data set is removed as noise or exception, those attribute are known as outliers.

The series of matrices computed using various similarity functions can show the

robustness of these functions and also the conditions under which two objects

are in a cluster; e.g., two objects which are very similar might not be affected by

the change in similarity function and will feature in the same cluster for most

similarity functions.

3.5 Discussions

Graph layouts are dependent on the properties of the data set. We briefly describe

here how certain graph layouts are the best for chosen data. VAT algorithm can

be treated as a single-linkage algorithm which is probably the reason for it to give

clear clusters. We briefly discuss the relationship between VAT and single-linkage

algorithms here.
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3.5.1 Graph Layouts

Spherical layout is not very helpful for large data set, edge occlusion makes it difficult

to see any of the network’s structure. Fruchterman Reingold layout generally gives

good insight of network’s structure. Circular layout is one of the layouts that rely on

good ordering as discussed by Muelder et al. in [43].

3.5.2 VAT and Single-Linkage Algorithms

When an algorithm uses the minimum distance dmin(Ci,Cj) to measure the distance

between clusters, it is called a nearest-neighbour clustering algorithm. If the clustering

process is terminated when the distance between nearest clusters exceed an arbitrary

threshold, it is called a single-linkage algorithm. If we view the data points as nodes

of a graph with edges forming a path between the nodes in a cluster, then the merging

of two cluster, Ci and Cj, corresponds to adding an edge between the nearest pair of

nodes in Ci and Cj. As edges linking cluster always go between distinct clusters, the

resulting graph will generate a tree. Thus, an agglomerative hierarchical clustering

algorithm that uses the minimum distance measure is also a minimal spanning tree

algorithm.

In [22], Havens et al. have discussed about VAT being similar to single-linkage

algorithm owing to the requirement of construction of minimum spanning tree (MST)

for clustering. VAT reorders the relational data with a modified Prim’s algorithm

that is used for constructing a MST. We have leveraged the relation of the MST to

both VAT and single-linkage clustering to prove that single-linkage clustering always

produces aligned clusters of the VAT-reordered data for the case of a unique MST. In
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cases of data that may have more than one MST, single-linkage will still, in practice,

produce aligned clusters of VAT-reordered data. If both VAT and single-linkage are

initialized so that they lead to the same MST, this analysis applies.
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Chapter 4

Linked Views

Our work explores linked views of matrix and graph visualization of a given network.

Our goal is to use a visualization tool with linked views to find patterns which will

help us in understanding clustering structures in the data. Our tool has helped us in

determining the effectiveness of various seriation algorithms.

4.1 System Architecture

We showcase how application of similarity matrix on a network can be considered

to be a graph transformation. As shown in the schematic diagram of our system in

4.1, we apply a transformation on the input graph G represented by its adjacency

matrix A(G). When a similarity function s is applied to A(G) which gives a similarity

matrix S(G). S(G) is a two-way one-mode representation which can be treated as

an adjacency matrix to a weighted graph, G′ i.e., S(G) = A(G′). Thus, s can be

considered to be a transformation on G, and hence we refer to G′ as the transformed

graph and A(G′) as the transformed matrix. Our tool uses synchronized node-link
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Figure 4.1: Schematic diagram of our visualization system. The input graph G and

its adjacency matrix A(G) are used to find the similarity matrix S(G). Aij are the

element of matrix A(G). s(G) is the similarity function applied on the graph. We

consider S(G) to be equivalent to an adjacency matrix of a transformed weighted

graph G′, thus S(G) = A(G′). Sij is an element of the similarity matrix S. The graph

layouts are applied on G and G′, the transformation functions on A(G), and seriation

or permutation algorithms on A(G) and A(G′) which is shown by a double box in the

schematic diagram.
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diagram and matrix visualization to view G and G′. When A(G) is not a linear

function of A(G′), one can see a lot of variations in the views of G and G′, which can

give a different perspective of the graph. Various graph layouts can be applied on G

and G′, and permutation algorithms can be applied on A(G) and A(G′). To study

the clustering capability of the similarity functions, we visually assess the clusters

that are formed as blocks on the diagonal, as done in VAT.

4.2 User Interface

We have built a visualization tool complying with the architecture specified in Sec-

tion 4.1. As shown in Figure 4.2, the user interface of our visualization tool consists

of four display panels and a control panel. The top two display panels are for the

input graph and the bottom two are for the transformed graph. The left panels show

the graph layout and the right, the matrix visualizations. The control panel allows

users to browse files to input data, choose graph layout, similarity and permutation

functions, and clustering matrix i.e., adjacency or transformed matrix.

The user interface has a feature to hop from cluster to cluster and to select specific

clusters or elements in the matrix. When a cluster is selected in any of the matrices,

the four panels are synchronized to track the elements of the cluster. A cluster chosen

in the adjacency matrix shows elements highlighted in green in all four panels, while

one chosen in the transformed matrix uses blue highlight, as shown in Figures 4.5, 4.6,

and 4.8. While all four panels are provided with zooming and translation controls,

rotation is restricted to the graph layouts. The two highlight colors indicate where the

cluster was located, i.e., in the adjacency matrix or the similarity matrix. Though only

32



our tool enables only a single select-and-highlight operation across all four windows,

we have provided the two highlights for the user to identify in a glance if the selected

cluster was formed before or after transformation. This feature has helped us to find

the location of the cluster in instances where nearly similar clusters occur before and

after transformation.

Figure 4.2: User interface of our tool shows four display panels and a control panel.

The top panels show the graph layout and its adjacency matrix of the input graph

(G) and bottom panels show the same for the transformed graph (G′). The control

panel on the right,as shown in the inset, allows users to browse data sets and choose

graph layout, seriation algorithm, and similarity function.
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4.2.1 Locating Clusters

Since clustering is a process of our interest, we enable accessing clusters in both the

adjacency and the transformed matrices. After seriation algorithm is applied on the

matrix, we navigate through the clusters formed as blocks along the diagonal using

Algorithm 2. Worst case complexity of this algorithm is θ(N2) for N nodes in the

graph.

4.3 Experiments and Results

We have used our visualization tool to study the representation of the coauthorship

network data [42] using various graph layouts, similarity functions, and permutation

algorithms. The results shown in Figures 3.2, 3.3, and 4.3-4.6 show how useful our

tool is for comparing various settings, namely, choice of seriation algorithm, similarity

functions, and the graph layouts. These figures show the clustering effects of similarity

functions for the social network of coauthors [42].

Figures 3.2 and 3.3 show how the matrix visualization looks before and after

transformation when using various similarity functions.

Using the similarity function to be k-ring neighbourhood function for k = 2, we

have isolated a specific cluster and shown how the graph layouts look before and af-

ter the transformation in Figures 4.3 and 4.4. These figures show the adjacency and

similarity matrices, where the latter are constructed using k-ring neighbourhood as

similarity function and VAT as seriation algorithm. The nodes belonging to the se-

lected cluster in similarity matrix are highlighted. We can see that nodes are together

in different layouts corresponding to similarity matrix.
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Algorithm 2: Algorithm for locating clusters

Input : n×n matrix

Output: Total number of clusters with their starting and ending points

int startx = 0, starty =0, clustercount=0, check=0, x, y, cluster[n][2]

// set the start of first cluster[clustercount][0]=0

while ( last block (n, n) is not reached startx ! = n and starty ! = n ) do

move to block below current block tempx=startx+1 and tempy=starty

check = 0 ;

while (x > y ) do

// check if the block above the current block cannot be clustered

if arrangedMatrix[x][y]-arrangedMatrix[x-1][y] ≤ allowedDifference

then

set check=1

increment y by 1

if (check == 0) then

// set the ending point of the cluster

cluster[clustercount][1] = x

startx++

else

// set the ending point of the cluster

cluster[clustercount][1] = x-1;

startx++;

// reset the starting point

starty = startx;

clustercount++;
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(a)

(b)

(c)

Figure 4.3: Using k-ring neighbourhood function, for (k = 2) for transformation of

network of coauthors [42] and seriation using VAT, we see: (a) matrix visualization,

and graph layout using (b) sphere, and (c) circular; where the left and right images

show before (G) and after (G′) transformation, respectively. Blue blocks in the ma-

trices and blue nodes in the graph layouts show how we can track the elements of a

cluster identified after transformation, shown in the inset in (a).
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(a)

(b)

Figure 4.4: Using k-ring neighbourhood function, for (k = 2) for transformation of

network of coauthors [42] and seriation using VAT, we see: (a) Fruchterman Reingold,

and (b) random layouts; where the left and right images show before (G) and after

(G′) transformation, respectively. Blue blocks in the matrices and blue nodes in

the graph layouts show how we can track the elements of a cluster identified after

transformation, shown in the inset in Figure 4.3(a).
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(a) (b)

(c) (d)

Figure 4.5: For social network of coauthors data set [42], after applying similarity

function of k-ring neighbourhood for (k = 2) on the original matrix in (a), the trans-

formed matrices show differences in the visual representation of clusters on applying

the following permutation algorithms: (b) VAT, (c) reVAT, and (d) BFS.
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(a) (b)

(c) (d)

Figure 4.6: For social network of coauthors data set [42], after applying similarity

function of k-ring neighbourhood for (k = 2) on the original matrix in Figure 4.5(a),

the transformed matrices show differences in the visual representation of clusters on

applying the following permutation algorithms: (a) DFS, (b) RCM, (c) Kings, and

(d) MMD.
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(a) (b)

(c) (d)

Figure 4.7: For social network of coauthors data set [42], on applying k-ring neigh-

bourhood function and seriation using VAT, the transformed matrices for value of k =

(a) 3, (b) 5, (c) 6, and (d) 10, show that clustering capability of the similarity function

changes. No changes after k = 5 reflect the theory on six degrees of separation.
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(a) (b)

Figure 4.8: For the peer-to-peer file sharing network data set [34], we can see here

how a cluster seen in the original matrix, identified after using VAT in (a), moves

after applying dice similarity function and subsequent seriation using VAT in (b).

Figures 4.5 and 4.6 show the effect of applying different permutation algorithm

on the coauthorship network data set [42] using k-ring neighbourhood for (k = 2) as

similarity function. In Figures 4.5 and 4.6, we have highlighted the nodes forming a

cluster in 4.5(b). In Figure 4.5(a) which shows the adjacency matrix itself, we can

see that the nodes are scattered while in Figure 4.5(c) they can be seen in physical

proximity, forming a cluster. In Figures 4.6(d) and 4.5(d), though the highlighted

nodes are not forming cluster still they are found to be close to each other after matrix

reordering. Thus we can see from Figures 4.5 and 4.6 that VAT brings together all the

nodes at the diagonal and maximizes size of the clusters. From the above examples, by

visual assessment we can conclude that VAT performs better than the other seriation

algorithms with respect to partitioning the matrix in terms of clusters.
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Figure 4.7 shows how we can visually assess the clustering capability of the similar-

ity functions. On applying the k-ring neighbourhood function on the data set of social

network of coauthors [42], Figure 4.7 shows how varying k gives different clustering

results. We have observed that increasing value of k after 6 does not show differences

in the clustering pattern, which reflects the theory on six degrees of separation (which

corresponds to the function when k = 6). Six degrees of separation is the theory that

everyone and everything is six or fewer steps away, by way of introduction, from any

other person in the world, so that a chain of “a friend of a friend” statements can be

made to connect any two people in a maximum of six steps.

Just as we can track a cluster after transformation, we can also track how ele-

ments in a cluster seen before transformation move after transformation, as shown in

Figure 4.8, for data set on peer-to-peer file sharing network [34].

4.4 Discussions

In this section we briefly discuss a form of validation for the clustering provided

by seriation algorithms, comparison of seriation algorithms, on validation of graph

layouts, and the effectiveness of our proposed tool.

4.4.1 Clustering Results from Seriation Algorithms

In the absence of a generic analytical metric to evaluate the correctness of the visual

assessment of clustering after transformation in our tool, we have used a metric called

“clustering coefficient” specifically for the application of the k-ring neighborhood

similarity function, as shown in Table 4.1. A small world network can be quantified
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using a “clustering coefficient” C(p) [4] for varying k in k-ring neighbourhood, as it

measures the “cliqueness” in the network. If ci is the number of neighbours of a vertex

i, there are a priori ci
(ci−1)

2
possible links between these neighbours. Ci the fraction

of these links that are really present in the graph, C(p) is the average of Ci over all

vertices. Using varying k in k-ring neighborhood function to show different similarity

functions, we have evaluated for the social network of coauthors [42], the trend in the

number of clusters seen in the visualization of transformed matrix after permutation.

We see that our visual assessment follows the same trend as the clustering coefficient.

k 2 3 4 5 6 10

C 4.07 3.42 3.28 3.16 3.09 2.97

n(VAT) 127 117 107 104 104 104

n(reVAT) 129 114 107 104 104 104

n(DFS) 132 118 107 104 104 104

n(BFS) 139 123 107 104 104 104

n(Kings) 194 176 160 157 157 157

n(RCM) 186 176 160 157 157 157

n(MMD) 193 149 141 140 140 140

Table 4.1: Using k-ring neighborhood function on social network of coauthors [42] to

compute clustering coefficient C, and check its trend against the number of clusters

(n(P )) automatically counted assessed on using various permutation algorithms (P )

on the transformed matrix.
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4.4.2 Comparison of Seriation Algorithms

We have compared the performance of several standard techniques used in visualiza-

tion community with the VAT algorithm which is widely used in the pattern recogni-

tion community. We have found by visual assessment that VAT performs very well in

terms of identifying clusters for our experiments in comparison to other permutation

algorithms we have included in our tool. Hence in the remainder of our work, we will

be using VAT as the default seriation algorithm and used it for further analysis.

To show an example of VAT’s effectiveness, Figure 4.9 shows clear clusters when

using VAT over RCM seriation algorithms for various datasets: social network of

coauthorship [42], Wikipedia’s who-votes-on-whom data set [37] and collaboration

network of jazz bands [17].

4.4.2.1 Comparison of VAT with nearest neighbor traveling salesman

problem ordering

Figure 4.10 shows the comparison of VAT with one of the most popular reorder-

ing/seriation algorithm used in the information visualization community currently,

i.e., the one based on the nearest neighbor traveling salesman problem (NNTSP), as

shown in the case of ZAME [11]. On applying the k-ring neighborhood similarity

function, for (k = 2), to the social network of coauthors data set [42], we can see from

Figure 4.10 that VAT performs better than NNTSP in partitioning the matrix with

respect to identifying clusters.
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(a)

(b)

(c)

Figure 4.9: Original similarity matrix, with VAT and RCM reorderings in the left,

middle, and right columns, respectively for: (a) social network coaurthor data set

[42] using 2-ring neighborhood similarity function; (b) Wikipedia’s who-votes-on-

whom network [37] using 6-ring neighborhood and Jaccard similarity functions; (c)

collaboration network between jazz bands [17] using dice similarity function.
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(a) (b)

Figure 4.10: For social network of coauthors data set [42], after applying similarity

function of k-ring neighbourhood for (k = 2) on the original matrix in (a) VAT, and

(c) NNTSP.

4.4.3 On Graph Layouts

As discussed in Section 3.5.1, we have found for the coauthorship network data [42]

that the spherical layout gives the most coherent representation for ordered data in

comparison to the other layouts we have considered.

4.4.4 Effectiveness of Proposed Tool

In terms of layout, our tool may seem equivalent to two instances of an existing ap-

plication of linked views of matrix representation and node-link diagrams applied to

the adjacency and the transformed graphs of a network. However our tool provides

additional value in the synchronization of the two linked views. e.g., our tool can

navigate through clusters in the transformed matrix or adjacency matrix and simul-

taneously locate the entities in the cluster before and after transformation in the
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node-link diagrams as well as in the matrix views. The synchronization of all the four

display panels help in tracking elements within or outside a cluster which makes our

tool useful for visual analytics.

We have performed an informal user study on our tool and collected responses from

fifteen users. The participants of the user study were students of masters’ degree

in Information Technology at IIIT-Bangalore. Before the questionnaire was given

to them, they were given a brief introductory talk on clustering and the different

clustering techniques discussed in the thesis. The users were then provided with

the software and were asked to perform certain operations and their observations

were recorded. The operations included opening a file, choosing specific similarity

function, permutation functions and graph layouts to visualize the data, and track

specific clusters. The users were given 30 minutes to use the tool before answering

the questionnaire.

The users have confirmed that matrix based visualization is a better representation

technique when data set is large. Figure 4.11 shows a summary of the user study which

includes the users’ perception about the effectiveness of our tool in visually assessing

clustering capability of similarity functions.
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(a)

(b)

Figure 4.11: Survey analysis showing: (a) users’ rating of our tool on the basis of

usability, visual appeal, data exploration and user interaction (b) how effective our

tool is in visually assessing clustering capability of similarity functions.

48



Chapter 5

Improving Performance

We have compared the performance of several standard techniques used in visual-

ization community with the VAT algorithm [5], which is widely used in the pattern

recognition community. As shown in Chapter 4, we have found that VAT performs

very well in terms of identifying clusters for our experiments. However its runtime

complexity of O(N2) for a matrix withN nodes makes it unsuitable for large networks.

We propose parallelized VAT (pVAT), i.e., using CUDA for parallelizing VAT.

5.1 pVAT

Since VAT has a runtime complexity of O(N2) for N nodes in the graph, it is not

scalable for large data sets. Though bigVAT [28] and sVAT [21] are scalable, they

rely on good choices of representative data to downsample the given graph. Hence

we propose the parallel implementation of VAT (pVAT).

VAT is based on Prim’s algorithm for finding the permuted order of elements in

the similarity matrix. We propose using Bor̊uvka’s algorithm for finding the minimum
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spanning tree (MST) as implemented by Vineet et al. [53]. In the serial implementa-

tion of VAT, Prim’s algorithm is used for constructing MST however using Bor̊uvka,

we exclusively order the nodes without constructing the actual MST or evaluating the

feasibility of constructing one. In a disconnected graph, a MST cannot be constructed

but we can still get an ordering and construct the ordered image in VAT, which is

an advantage of our approach. Thus Prim’s and Bor̊uvka’s algorithms will give us

different orderings in disconnected graphs. Bor̊uvka’s approach is generally favored

in parallel implementation owing to its recursive nature. The workflow for pVAT is

as shown in Figure 5.1. Our proposed algorithm for pVAT is as given in Algorithm 3.

Figure 5.1: Schematic diagram of parallelized VAT (pVAT) algorithm.

5.2 Experiments and Results

We have used the following data sets: coauthorship network [42], snapshots of peer-

to-peer file sharing network [34, 35], who-votes-on-whom network data [37], and coc-
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Algorithm 3: pVAT: Parallel implementation of VAT

Input : Graph (G) with n nodes in set V and e edges

Output: Parallel VAT ordering

for each vertex belong to V do

find the minimum edge

while No more vertices can be merged do

vertices are merged to form disjoint component

merged vertices act as new vertices

get the ordering of graph

itation network [36]. Implementation of pVAT algorithm requires CUDA [49] and

CUDPP [20] libraries. We have performed the experiments using Nvidia GeForce

GTX 480 and 4GB RAM.

Performance measurements comparing pVAT to the serial implementation of VAT

on different data sets are as given in Table 5.1, which shows as expected that the

former is far more efficient than the latter.

5.3 Discussions

In the remainder of our work, we have used the serial or the parallel implementation

of VAT as deemed efficient for the size of the concerned data set.
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Data set #Nodes #Edges Serial VAT pVAT

(msec) (msec)

Coauthorship network [42] 475 1250 1x103 2.42

Peer-to-peer file sharing network [34] 6301 20777 1.8x106 4.55

Who-votes-on-whom network [37] 7115 103689 2.4x106 5.21

Peer-to-peer file sharing network [35] 8114 26013 3.8x106 4.07

Cocitation network [36] 9877 51971 6.6x106 3.92

Table 5.1: Performance measurements of serial and parallel implementations of VAT

for various network data sets.
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Chapter 6

Data Simplification

Data simplification implies elimination of unnecessary and redundant data. We have

used clustering of data into groups for simplifying data. Hierarchical clustering groups

objects like a tree data structure, where the root is a superset and the leaf nodes are

the minimal subset i.e., data objects. Hierarchical clustering can be further catego-

rized as agglomerative or divisive.

6.1 Multilevel Clustering

In our work, we have used agglomerative hierarchical clustering for achieving multi-

ple levels of detail. It works in bottom-up manner, initiliazed by all data objects as

leaf nodes and each single data object node belonging to a cluster node. For imple-

menting multilevel clustering, we merge all the nodes in a cluster into a single node

when moving from a finer to a coarser level of detail and recursively apply cluster-

ing algorithm on the new set of nodes. Suppose we have n nodes (x1, x2, . . . , xn)

and after applying similarity function and permutation algorithm, we get k clusters
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(c1, c2, . . . , ck) where k < n. In general, the condition k 6= n should be held because

k = n implies that every cluster contains a single node, which in turn implies that

there are no inherent clusters in the data set. This condition helps us to ensure that

every cluster has a subset of nodes which will be merged in the next level of detail

to form a single node. Suppose clusters c1 and c2 have the following constitution in

level 1: c1 = {x1, x5, x7}, c2 = {x2, x3, x4, x9}, in level 2, the nodes get merged and c1

and c2 become the new nodes.

When moving to a coarser level of detail, the merged nodes replace the con-

stituent nodes. For sake of simplicity, we will assume clusters to contain one or more

nodes. Thus all the nodes in the subsequent coarser level of detail can be assumed

to be merged nodes. When moving to a coarser level of detail, the adjacency matrix

changes, leading to the requirement of recomputation of the similarity matrix. In our

work, we have not derived an appropriate formulation for the attributes of a merged

node which has to be derived from an appropriate aggregation of the attributes of

the constituent nodes from the finer level. Hence we use a simple similarity function

of finding the maximum weighted edge between the clusters. This function reduces a

n× n matrix to a k × k matrix, where n nodes have reduced to k clusters across one

level of detail. Owing to the absence of an appropriate aggregation of the attributes,

for multilevel clustering we will not be using the similarity functions offered in our

tool.

We terminate the multilevel clustering algorithm when none of the nodes can be

further merged or there are no more clusters. At the coarsest level of detail, the

similarity matrix is the same as the adjacency matrix, i.e., an identity transformation

of the adjacency matrix.
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Algorithm 4: Multilevel Clustering Algorithm

Input : clusterSize number of cluster in after applying similarity function,

VAT and clustering it.

arrangedMatrix[n][n] is permuted matrix

clusterx first element of every cluster

clustery last element of every cluster

Output: arrangedMatrix[c][c] where c is the number of node in matrix after k

levels of clustering

void multilevel()

for i=0 to clusterSize do

for j= 0 to clusterSize do

if i==j then

groupedMat[i][j]=1;

else

groupedMat[i][j]= findSimilarity(i,j);

int findSimilarity(int cluster1 , int cluster2)

int max=0;

for i=clusterx[cluster1] to clustery[cluster1] do

for j=clusterx[cluster2] to clustery[cluster2] do

if arrangedMatrix[i][j] >max then

max=arrangedMatrix[i][j];

return max;

if group button is pressed then

VAT(groupedMat);

assign groupedMat to arrangedMatrix

multilevel();
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6.2 Experiments and Results

We have used the following data sets: coauthorship network [42, 47], who-votes-on-

whom network data [37], taro exchange network [19], and karate club network [61].

We have used the k-ring neighbourhood function for (k = 2) for computing similarity

matrices and VAT as the seriation algorithm. At every transition in the level of

detail, we perform the following steps: (a) compute the new similarity matrix, (b)

merge nodes in cluster to form new nodes, and (c) apply VAT on the new similarity

matrix. Table 6.1 summarizes the number of nodes in transitions between levels of

detail when implementing multilevel clustering. Applying multilevel clustering for

social network of coauthors data set [42], using recursive application of similarity

function of k-ring neighbourhood for (k = 2) on the similarity matrix and VAT for

seriation, we can see from Figure 6.1 that the number of nodes reduce from 475 to

133 to 115 across three levels finally giving 109 clusters. Figure 6.1 shows a how the

nodes in a selected cluster in the coarsest level, shown by blue highlight, were placed

in the finer levels.

6.3 Discussions

When using VAT as the seriation algorithm, any one of the minimum spanning tree

amongst all possible ones is used which makes the results of our multilevel clustering

combinatorial. The number of clusters for a particular combination of data set,

similarity function and seriation algorithm may vary for all transitions to the coarser

levels except the last one. The last transition gives the same result as multilevel
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(a) (b)

(c)

Figure 6.1: For social network of coauthors data set [42] of 475 nodes, recursively

applying similarity function of k-ring neighbourhood for (k = 2) on the original

matrix and using VAT for seriation gives (a) similarity matrix at finest level with 133

clusters. Transitioning by a level of detail, the similarity matrix has (b) 115 clusters,

and (c) 109 clusters, which is the coarsest level. A cluster in the coarsest level of

detail is tracked across the levels of detail using blue highlight.
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Data set #Nodes #Nodes in Level Transitions #Levels

[61] 22 22 →10→ 5→4 3

[19] 34 34 →7→2 2

[42] 475 475 →133 → 115 → 109 3

[47] 1589 1589 → 615 →238 →122 →113 5

[37] 7115 7115 →3216 →1983 →927 → 725 → 635 6

Table 6.1: Simplification of network data sets using multilevel clustering based on

VAT algorithm for seriation and cluster identification after recursively applying 2-ring

neighborhood similarity function.

clustering terminates when no further merges can occur, i.e., the similarity matrix

in the coarsest level is an identity matrix of size u where u is the minimum number

of nodes to which data set can be simplified. For example, in the coauthorship

network data set [42], when using k-ring neighbourhood for (k = 2) as similarity

function and VAT as seriation algorithm, more than one minimum spanning trees are

possible as shown in Figure 6.2, showing two possible matrix visualizations for the

same combination of data set [42], k-ring neighbourhood for (k = 6) as similarity

function and VAT as seriation algorithm. Since the choice of MST determines the

ordering, two different MSTs gives different number of clusters. Irrespective of the

path of reduction of nodes in the multilevel clustering, we have observed from our

experiments that the minimum number of nodes a data set can be reduced to in the

coarsest level of detail is specific for a data set.

One application of multilevel clustering would be to efficiently distribute infor-
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(a) (b)

Figure 6.2: Two possible results after applying VAT as seriation algorithm on social

network of coauthors data set [42] containing 475 nodes, using k-ring neighbourhood

for (k = 6) as similarity function on the original matrix. However, irrespective of

the choice of minimum spanning trees during the transitions of levels of detail, the

coarsest level of detail of this network always contains 109 nodes when using our

approach.
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mation or resources efficiently to all the nodes in a network. One can distribute the

resource to all the nodes in the coarsest level, where each node can further pass it on

to the cluster of nodes it represents at the subsequent finer level of detail. Thus the

new nodes created by merging nodes in a cluster at a level of detail can be considered

to be a good representative node for the entire set of nodes. For example, in the coau-

thorship network [42], we want to update the number of publications of each author

in the network by a certain number, say, k, the operation can be performed top-down

from the coarsest level to the finest level in a broadcasting fashion. Thus instead of

distributing the function to all 475 nodes, a single distribution will probably have to

communicate with at most 109 nodes, which is the number of nodes in the coarsest

level of detail.
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Chapter 7

Visualization of Similarity Matrix

Series

Similarity matrix series refers to multiple similarity matrices obtained for a set of

data objects or nodes, either in the form of time series, or by application of various

similarity functions or permutation functions, or by generating different subspace

clusterings. Membership of objects in clusters in each of these similarity matrices is

a salient aspect of the series as well as of the entire data set. Tracking the cluster-

membership of objects will enable us in identifying trends and patterns in the data.

We propose parallel sets-like representation for tracking cluster-membership of objects

across similarity matrices.

Figure 7.1 shows the parallel sets-like repesentation for the social network of

coauthorship data set [42], where series of similarity matrices are obtained by applying

different similarity function. The matrix representation for the series is shown in

Figures 3.2 and 3.3.
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Figure 7.1: Parallel sets-like representation of similarity matrix series obtained by

varying the similarity function on the social network of coauthorship data set [42]

and using VAT for seriation.
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7.1 Parallel Sets-like Representation

Visual exploration of multidimensional data is of great interest to the information

visualization community, however visualizing it in a single visual space is a tedious

process. Visual exploration of multidimensional data enables us to analyze trends,

patterns, outliers and relationships among variables. Some of the constraints of the

process are: limited screen space, not a single process to show all attributes simulta-

neously and insufficiency in the display of intuitive structures.

Combining cluster analysis and parallel sets-like representation makes the visual-

ization system scalable. We display data objects in clusters in a single dimension on

a line instead of data points. Objects are ordered in each attribute or timestamps

using VAT to form clear clusters. While looking at the multiple similarity matrices

in gray scale representation is tedious, we can look at a single snapshot of the series

using a parallel sets-like representation for an overall analysis.

Kosara et al. have proposed parallel sets representation [33] to represent categori-

cal data. Parallel sets has the following features: (a) it shares the parallel coordinate

layout, treating all dimensions to be independent of each other, and (b) instead of us-

ing a line connecting values of coordinates to represent a data point, boxes are used to

display categories and parallelograms between the axes to show the relations between

categories. In our representation, the axes indicate the permuted order of objects in

the seriated similarity matrix. We use blocks of axes to indicate clusters and lines

between axes to indicate location of an object in the permuted order in the similarity

matrix, similar to boxes and parallelograms in the parallel sets representation. Hence

we refer to our technique as “parallel sets-like.”
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In the parallel sets-like representation, the horizontal axis provides no specific

information. Each vertical axis corresponds to a n× n similarity matrix in the series

and displays the ordered set of n data objects or nodes. Each node has a label which

can be tracked. Nodes are assigned color on the basis of the cluster to which the node

belongs, and the colors are assigned alternately along the vertical axis to indicate

start and end of clusters. A node is displayed using a line that connect the same data

object in the orderings across the vertical axes. Tracking these lines enables us to see

the evolution of the data object in terms of the changes in its membership in clusters

across the series. There are some attributes for which trend is completely different or

they do not comply with general behavior of the other attributes of data sets they are

know as outliers. Outliers are the noise or exceptions in data set which are generally

detected using statistical tests.

Algorithms 5 and 6 show how to obtain the coordinates for the data objects in

the parallel set-like representation and how to display them using a line, respectively.

7.2 Experiments and Results

We have implemented our visualization technique on three different types of data

sets: univariate data [42], multiattribute data [6], and timeseries data [14].

We have generated similarity matrix series from univariate data of the social

network of coauthorship [42] in two different ways: by varying (a) similarity func-

tions using VAT as the seriation algorithm, and (b) permutation algorithms us-

ing 2-ring neighborhood function as similarity function. Figures 7.1 and 7.2 shows

the parallel sets-like representation for the two series of similarity matrices, respec-
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Algorithm 5: Parallel Sets-like Representation

Input : Input file has N number of vertices and M number of attributes and

adjacency matrix for each attribute,

Similarity function choice,

Permutation algorithm choice.

Output: Parallel set-like Representation

int PemrutedOrder[M ][N ];

std::vector<int> locationInAttributes;

double distanceBetAttributes = 30.0/M double lenNode = 30.0/N ;

for each attribute belong to M do

for each adjacency matrix N ×N do

Apply similarity function( similarityFunctionChoice)

Apply Permutation algorithm( algorithmChoice)

Save the PermutedOrder

for i =0 to N do

for j = 0 to M do

for k =0 to N do

// if vertex corresponding to vertex number i is found

if PermutedOrder[j][k]==i then

save k in an vector locationInAttributes

For vertex i the location in every attribute is found

drawLine(locationInAttributes)
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Algorithm 6: Algorithm for drawing a line to represent a data object across

similarity matrices

void drawLine(std::vector <int> lineBetweenAttributes)

for i = 0 to M do

draw line between these two vertices

Vertex(leftmargin+(j*distanceBetAttributes),

(topmargin+(k[j]*lenNode))+(lenNode/2))

to

glVertex(leftmargin+((j+1)*distanceBetAttributes),

(topmargin+(k[j+1]*lenNode))+(lenNode/2))

tively. We can compare these against the matrix representation of the similar-

ity matrices in Figures 4.5 and 4.6. We have highlighted cluster 37 in the ma-

trix representation using the blue highlight, we highlight the same cluster in the

permutation functions-based similarity matrix series in red in Figure 7.2. Cluster

37 comprises of 26 nodes or authors, namely, BarrettA.Lee, BarryWellman, Beat-

eVolker, BelaJanky, BenedettaBelli-McQueen, BennyJose, BeomJunKim, Bernard-

Grofman, BihchiiLauraYang, BlydenB.Potts, BonnieH.Erickson, BrentSimpson, Bri-

anL.Foster, BrianMullen, BridgetA.Browning, BrunoMorra, CraigWilson, Cullen-

Goldblatt, J.DavidJohnson, J.J.Hox, J.JillSuitor, J.M.Hyman, KatherineFaust, Kather-

ineL.Woodard, KathleenM.Carley, and LenoardWaverman. Five of these 26 nodes,

namely BrentSimpson, BrianL.Foster, BrianMullen, BridgetA.Browning and BrunoMorra,

shown by yellow highlight in Figure 7.2. We can see that these authors form a cluster

irrespective of the permutation algorithm. We can also see that in the original simi-
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larity matrix without applying reordering, all the five nodes except BrentSimpson lie

in the same cluster.

The employee interaction data set [6] is an observational data on 14 Western

Electric (Hawthorne Plant) employees from the bank wiring room. The employees

worked in a single room and include two inspectors (I1 and I3), three solderers (S1,

S2 and S4), and nine wiremen or assemblers (W1 to W9). The interaction categories

include: RDGAM, participation in horseplay; RDCON, participation in arguments

about open windows; RDPOS, friendship; RDNEG, antagonistic(negative) behavior;

and RDHLP, helping others with work. From Figure 7.3, we can see (W1, S4) and

(W9, S1) participate in horseplay and are friends who participate in argument about

open window, do not behave negative with each other and help each other in their

work. They are similar in all attributes and hence they lie in same cluster for each of

the attributes. We can see from Figure 7.4 that most of the employees are friends and

are ready to help each other in their work and a small group of people participate in

horseplay, show negative behavior and argue about open windows. We can conclude

that there are no outliers amongst these attributes as all are showing behavior that

is expected from a group of employees working together.

Since we could not obtain a timeseries data for a social network, we have applied

our technique on timeseries of an univariate data set to show proof of concept. From

the monthly record of industrial production indices data in U.S.A. [14] data set from

1947-1993, we use ten years data from year 1947-1956. For every month, following

eight attributes are given: industrial Production(IP) index, manufacturing, durable,

nondurable, mining, utilities, products total, materials. These attributes define the

indices for each month that mean they are the feature vector of months. Similarity
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Figure 7.2: Parallel sets-like representation of a series of similarity matrices generated

using k-ring neighbourhood for (k = 2) as similarity function on social network of

coauthorship data set [42] and varying the seriation algorithm. Red highlight shows all

the 26 nodes or authors in cluster 37 highlighted in blue in the matrix representation of

the similarity matrices in Figures 4.5 and 4.6. Yellow highlight traces the membership

of five specific authors who are in a cluster irrespective of the permutation algorithm.
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Figure 7.3: Parallel sets-like representation using k-ring neighbourhood function and

VAT as seriation algorithm, for (k = 2) for transformation of employee interaction

data [6] for the following attributes: RDGAM, participation in horseplay; RDCON,

participation in arguments about open windows; RDPOS, friendship; RDNEG, an-

tagonistic (negative) behavior; and RDHLP, helping others with work.
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(a) (b)

(c) (d)

(e)

Figure 7.4: Matrix representation of the similarity matrices generated using k-ring

neighbourhood function, for (k = 2) for transformation of employee interaction data

set [6] for five attributes and seriation using VAT, for the following attributes: (a)

RDGAM, participation in horseplay (b) RDCON, participation in arguments about

open windows (c) RDPOS, friendship (d) RDNEG, antagonistic(negative) behavior;

and (e) RDHLP, helping others with work.70



score is computed between two months using cosine similarity function, which gives

us ten similarity matrices of 12×12. This series of similarity matrices shows how the

indices vary every year and which the groups of months that have similar indices are.

Figure 7.5: Parallel sets-like representation of industrial production data set [14] after

applying cosine similarity as similarity function and VAT as seriation algorithm.

We can see from the parallel sets-like representation in Figure 7.5 that October,

November and December lie in same cluster for every year although their order change

for year 1952 and 1953 but they are back at the same location in 1954. This is

not apparent from the matrix representations in Figure 7.6. We can also see from

Figure 7.5 that there is not much change in the data in the months of October,

November and December every year.

Summarizing, our proposed parallel sets-like representation of a series of similar-

ity matrices is a minimalistic representation of the clustering results in the similarity
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1947 1948 1949

1950 1951 1952

1953 1954 1955

Figure 7.6: Representation of series of similarity matrix constructed by applying co-

sine similarity function and using VAT as seriation algorithm on industrial production

data set [14] for the years 1947-1955.
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matrices, showcasing how changes in the similarity matrix can perturb the clustering

tendency in the network. It is a snapshot of the entire series, as opposed to view-

ing individual matrices to track the clustering behavior of the objects/nodes in the

network.

7.3 Discussions

Multivariate visualization is an important subfield of data visualization that focuses

on multivariate data sets. In [60], Wong and Bergeron have referred to multivariate

data as “multidimensional multivariate data.” They have stated that multivariate

data can be defined as a set of observations X, where the ith element xi consists of a

vector with m variables, xi = (xi1 , . . . , xim ). Each variable may be independent

or dependent on other variables, dependent variables are referred to multidimensional

variables and dependent variables are referred to multivariate.

For time series data, every similarity matrix is independent of each other, which

can be treated similar to multidimensional data.

For multivariate datasets the order of attributes or vertical lines can increase and

decrease the visual appeal of the parallel sets-like representation. In our work we are

not experimenting with changing the order of attributes in the input.
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Chapter 8

Conclusions

We have presented a novel ensemble for a visualization tool to visually assess clus-

tering techniques in a small world network. Our tool compares the effectiveness of

different similarity functions, layouts and permutation/seriation algorithms using syn-

chronized matrix representation and node-link diagram of a network. We have shown

that amongst our chosen list of seriation algorithms, VAT shows better clustering

tendency assessment.

There have been several improvements to VAT since its inception to handle scala-

bility, its scalable versions bigVAT [28] and sVAT [21] downsample data which could

lead to inadvertent loss of information. We have proposed a parallel implementation

of VAT, pVAT, using CUDA which will enable preserving all data. As expected,

performance of pVAT is more efficient compared to the serial implementation VAT

which makes our tool scalable when using VAT as a seriation algorithm.

We have proposed using a parallel sets-like representation to visually explore mul-

tidimensional data which can be posed as a series of similarity matrices. This repre-
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sentation enables us to track the membership of data objects in clusters across dif-

ferent similarity matrices which correspond for different time stamps, dimensions or

attributes, characteristic function, such as similarity function or seriation algorithm.

It has indirectly helped in visually detecting the outliers in the data set.

Since our work heavily depends on VAT, it inherits the limitations of VAT as

well. Our future work will address the following shortcomings: (a) representation of

dense graphs and for network data without any inherent clusters, and (b) theoretical

evaluation for our assessment of the clustering capability of the similarity functions.

For highly dense networks with large number of nodes, node-link diagram suffers

from occlusion. Highly dense graphs will inherently have fewer number of clusters

which will cause multilevel clustering to fail. Though matrix representation is limited

by a spatial complexity of O(N2) is not scalable with data size, it can be resolved

using pixel-level displays. VAT will have to be substituted by a suitable permutation

algorithm for such graphs.
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