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A Distributed System for Optimal Scale Feature
Extraction and Semantic Classification of

Large-scale Airborne LiDAR Point Clouds
Satendra Singh, and Jaya Sreevalsan-Nair

Abstract

Airborne LiDAR (Light Detection and Ranging) or aerial laser scanning (ALS) technology can capture large-scale point
cloud data, which represents the topography of large regions. The raw point clouds need to be managed and processed at scale
for exploration and contextual understanding of the topographical data. One of the key processing steps is feature extraction
from pointwise local geometric descriptors for object-based classification. The state of the art involves finding an optimal scale
for computing the descriptors, determined using descriptors across multiple scales, which becomes computationally intensive in
the case of big data. Hence, we propose the use of a widely used big data analytics framework integration of Apache Spark
and Cassandra, for extracting features at optimal scale, semantic classification using a random forest classifier, and interactive
visualization. The visualization involves real-time updates to the selection of regions of interest, and display of feature vectors
upon a change in the computation of descriptors. We show the efficacy of our proposed application through our results in the
DALES aerial LiDAR point cloud.
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I. INTRODUCTION

Three-dimensional (3D) topographical data for large expanses of region is captured effectively using airborne Light Detection
and Ranging (LiDAR) technology. The data is procured in the format of point clouds, which are unstructured. Contextual
understanding of such data is necessary to make sense of the environment and its constituents. Hence, semantic classification
is a key processing method applied on the point clouds. The state of the art in semantic classification of LiDAR point clouds
is mostly supervised learning including ensemble learning techniques, such as random forest classifiers [1], and deep learning
techniques [2]. The feature vector for the learning task is obtained using local geometric descriptors computed using local
neighborhood, which is determined at multiple scales [3], [1]. The combination of feature extraction at optimal scale of local
neighborhood and a random forest classifier has been recommended as an appropriate framework for semantic classification
in terms of both accuracy and computational efficiency [1]. Upon evaluating multiple scales, the optimal scale is determined
at the argmin of Shannon entropy computed from eigenvalues of the covariance matrix representing the local neighborhood at
the scale.

However, the existing solutions for this compute-intensive combination do not directly scale for large-scale point clouds
in data analytic applications, such as, interactive feature visualization and semantic classification. As an example, DALES
(Dayton Annotated LiDAR Earth Scan) [2] is one of the largest publicly available annotated point cloud dataset acquired
using aerial laser scanning, with ∼0.5 billion 3D points at considerably high point resolution of 50 ppm (points per meter).
The dataset spans a region of 10 km2 in the city of Surrey in British Columbia, stored in 40 tiles, with each tile containing
12 million points. That said, existing big data tools and frameworks can be tapped into and re-purposed for addressing this
gap. In our previous work, we have proposed an integrated framework of Apache Spark and Cassandra to perform semantic
classification using feature extraction from local geometric descriptors using multiscale aggregation of saliency map [4]. Here,
we extend the framework for optimal scale feature extraction, and interactive visualization (Figure 1. Our main contribution
is in extending framework for semantic classification of large-scale point cloud using feature extraction at optimal scale and
conventional classifiers, such as random forest classifier.

Local neighbor search is one of the most compute-intensive steps in feature extraction for point cloud processing. The
computational requirements multiply when performing feature extraction across multiple scales by determining an optimal
scale based on Shannon entropy [3]. Parallel processing has been exploited for implementing semantic classification has been
implemented on large-scale point clouds. The classification of Semantic3D has been done using random forest classifiers using
OpenMP [5], and deep learning frameworks, such as Torch [6]. k-nearest neighborhood has been used widely used type of local
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Fig. 1: Our proposed 3-stage workflow for data management, optimal scale feature extraction, and visual analytics involving
interactive visual exploration and semantic classification of large-scale airborne LiDAR point clouds using Apache Spark-
Cassandra integrated framework. The processed data is managed using resilient distributed datasets (RDDs), and the framework
integration uses Datastax Spark-Cassandra-Connector.

neighborhood with deep learning methods to optimize the performance of these architectures. For instance, Adam optimizer
has been used in RandLA-Net [7], which also performs down-sampling of the point cloud on the GPU. While parallelized
and optimized machine learning frameworks can improve computational efficiency, the big data frameworks have been largely
used for both dataset management and processing. Apache Spark has been used for extraction of tree crowns from LiDAR
point cloud, using spherical neighborhood [8].

A. Background

Apache Spark is a unified data analytics engine for large-scale data using in-memory processing [9]. Integration of Spark
with storage systems, such as key-value stores, e.g., Cassandra [10], provides persistent storage. Both Spark and Cassandra
are horizontally scalable, as more distributed systems, or nodes, can be added to the cluster. Spark uses Resilient Distributed
Data (RDD) distributed across multiple cluster nodes for loading data in logical partitions across many servers for parallel
processing on the cluster nodes. Apache Spark-Cassandra Connector from Datastax 1 is used to query Cassandra tables from
RDDs, after which the query results are stored in Cassandra. The connector leverages data locality to mitigate the network
latency. Apache Spark also integrates complex tools such as MLlib, for machine learning.

II. METHODOLOGY

We use an integrated Apache Spark-Cassandra framework for semantic classification of large-scale airborne LiDAR point
clouds using optimal scale feature extraction, and interactive visualization. We design an appropriate 3-stage workflow for
utilizing this framework effectively. Here, the choice of Apache Spark with Cassandra has been made for: (a) parallelizing and
scaling with data as well as nodes, and (b) optimized performance in semantic classification using tools like Spark ML, and
interactive visualization. The persistent storage using Cassandra serves two purposes in our case: (a) storage of processed data
in compute-intensive interactive applications, e.g., visualization, (b) distributed data management, as, in a multi-partitioned
node, only a single partition can be in-memory in Spark at any given time. A partition key is needed for partitioning data
across nodes, and is computed based on the user-defined strategy on Spark. A hash value of the partition key is needed for
inserting and retrieving data and it is computed using a function Partitioner in Apache Spark during the read-write operations
on the cluster. We exploit the feature in Cassandra to store the data in distributed nodes based on the partition key and optimize
the search using clustering columns. In our work we partition 3D data in the x-y plane, assign the partitions a region-ID, use
the region-ID as the partition Key, and assign the x, y, z variables as the clustering columns. When the Spark executor and
Cassandra nodes are deployed on the same machine, the integrated framework processes the region data without incurring any
network traffic, owing to the use of Spark-Cassandra Connector.

1Spark Cassandra Connector, https://github.com/datastax/spark-cassandra-connector

https://github.com/datastax/spark-cassandra-connector
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A. Our Proposed Workflow

Our workflow implemented on the integrated framework comprises of the following three stages (§Figure 1): the partition
assignment of large-scale point cloud on the framework [S1S1S1], spatial partitioning and feature extraction [S2S2S2], and visual analytics
[S3S3S3]. Within S3S3S3, the framework performs interactive visualization of features in the point cloud, S3AS3AS3A, and semantic classification,
S3BS3BS3B. Compared to our previous work [4], here, we compute more features, modify S2S2S2 to determine the optimal scale, and
include S3AS3AS3A.

Stage S1S1S1: For initializing the framework, we load the 3D point cloud P into the Apache Spark as an RDD. We normalize
all points in P to be contained inside a cube of size 2 units centered at (0,0,0), without altering its aspect ratio. We then
partition only along one axis, referred to as the principal axis, to strategize the partition layout with fewer partition boundaries.
The partition boundaries pose an overhead of inter-node communication, as, for the points close to the boundaries, their
local neighborhoods are split across different partitions, and hence, across different nodes. Thus, fewer partition boundaries
are used to reduce the inter-node communication for collating neighborhood information. We select the axis with maximum
range as principal axis p, either x or y axes, here. Spatial partitions of P into N contiguous regions along the p axis, have
partition boundaries at pi, for i = 0,1,2, . . . ,N, where N is determined using the maximum scale value, lmax, range of data
along p-axis in P (∆p = pmax− pmin), and the number of available cluster nodes n. Thus, N = ∆p

lmax.n
, and the ith partition

boundary pi = pmin + i∗n∗ lmax. A region-ID assigned to each point x in P , serves as the partition key in Spark, K, where the
p-coordinate of the point satisfies the boundary condition, p(K−1) ≤ xp < p(K) for K = 1,2, . . . ,N. For each partition, a buffer
region is introduced by extending the right and left boundaries to pi± lmax, respectively. Buffer regions provide complete local
neighborhood information for boundary points, and features are extracted for all points except those in buffer regions. We store
the resultant RDD in the Cassandra cluster using partition key, K.

Stage S2S2S2: We create partitions with the assigned K in S1S1S1 using our custom partitioner in the RDD. The custom partitioner
enforces our computed partitioning, thus, overriding the default random one on Spark. The partition key is crucial for the spatial
contiguity in P as it ensures that a partition is contained in a single node without being split across nodes. A single node can
still load multiple partitions, and process them in parallel. The feature extraction algorithm consists of four sequential processes
implemented for each point, namely, local neighborhood determination, descriptor computation, its eigenvalue decomposition,
and feature vector computation. Point-wise processing makes the algorithm embarrassingly data-parallel. Here, we use the
cubical neighborhood [11] over the conventional spherical or k-nearest, to reduce computations. Cubical neighborhood uses
Chebyshev distance (infinity (L∞) or maximum norm) for neighbor-search, instead of Euclidean distance (L2 norm). A spherical
neighborhood of radius r is approximated by the cubical neighborhood of l = 2r.

Definition II.1. l-cubical neighborhood Nl of a point x in P , such that P = {p ∈ Rd}, is a set of points which satisfy the
criterion based on Chebyshev distance,

Nl(x) = {y ∈P | max
{0≤i<d}

(|xi− yi|)}.

The local geometric descriptor provides the shape of the local neighborhood, e.g. the covariance tensor T3DCM [12], and its
size is the scale. The eigenvalue decomposition of the descriptor gives the likelihood of the corresponding point being on a
surface, line, or junction (point) type feature [4], given by the saliency map [Cl ,Cs,Cp]. For eigen values of the descriptor,
such that, λ1 ≥ λ2 ≥ λ3:
Cl=(λ1−λ2)/∑λ , Cs=2(λ2−λ3)/∑λ , Cp=3(λ3)/∑λ ; for ∑λ =(λ1 +λ2 +λ3).

There are different 3D features computed using geometric and the shape properties [1]. The eight different local 3D shape
features using eigenvalues of the descriptors are: omnivariance Oλ , eigen-sum ∑λ , eigen-entropy Eλ , change of curvature
Cλ , linearity Lλ , planarity Pλ , scattering Sλ , and anisotropy Aλ . Oλ and ∑λ are tensor invariants of second-order tensor,
namely, determinant and trace; with Oλ = 3

√
λ1λ2λ3. Eigen-entropy gives the Shannon entropy in descriptor shape, given by

Eλ =−∑
3
i=1 λi ln(λi). Other measures are: Cλ =λ3/∑λ , Lλ =(λ1−λ2)/λ1, Pλ =(λ2−λ3)/λ1, Sλ =λ3/λ1, Aλ =(λ1−λ3)/λ1. Since

Cp and Cλ are equivalent, we ignore Cλ . The semantics of the saliency map [Cl ,Cs,Cp] and the descriptor shape [Lλ ,Pλ ,Sλ ] are
the same; thus, we keep [Cl ,Cs,Cp]. Of four geometric features we use, three are height-based, namely, the absolute height z
of each point, and the range z∆ and standard deviation zσ of the height distribution in the local neighborhood of the point. The
fourth feature is local point density D [1], given by D = (np +1)/( 4

3 πr3), where np is the number of points in the l-cubical
neighborhood, and r = 0.5l. Thus, we get a 11-feature vector at each point in P as:

v f = [z,z∆,zσ ,D,Cl ,Cs,Cp,Oλ ,∑λ ,Eλ ,Aλ ].
In the case of annotated data, the class label for each point is stored along with v f in an RDD in Spark and the Cassandra

cluster, using K. The class label is used for training data for the classifier, and validation.
Optimal scale determination: We compute the feature vector at different scales, i.e. size of the cubical neighborhood, l, such
that lmin ≤ l ≤ lmax, using ns uniform scales. Thus, scale step-size is ∆l= (lmax−lmin)

(ns−1) . The optimal scale is the argmin of Eλ .

We then use the feature vector v(i)f at the optimal scale at each point as the feature vector for the concerned point in the
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classification stage (S3BS3BS3B). These point-wise feature vectors at different scales are stored in the same RDD to determine the
global minimum of Eλ [3], and thus, the optimal scale.

Stage S3AS3AS3A: Our visualization tool is inspired by Potree [13], a browser-based visualization tool for large-scale point clouds
using WebGL. It loads the data from file, organizes data in the octree data structure, and stores on the local disk on the
web server. Potree provides interactive visualization of the point clouds loaded from file, using Poisson disk sampling. Potree,
however, does not perform real-time analytics. To facilitate real-time analytics and visualization, we load the Cassandra-resident
data on the local disk as required, and render the point clouds using OpenGL on a desktop application. We propose the system
architecture to perform not just interactive visualization but also perform selective analytics on the fly using Apache Spark.
The real-time performance is facilitated by Cassandra storage, and the Spark-Cassandra Connector. As an example usage of
our visualization tool, we change scale on the fly and visualize the features computed for the scale, using parallel processing.

Stage S3BS3BS3B: For training, the feature RDD of the training data is loaded into Apache Spark ML. Then, any classifier on Spark
ML, e.g. random forest classifier (RFC) or gradient boost tree classifer (GBT), is initiated, and stored as a classifier model in
file. For testing the model, the feature RDD of the testing data is loaded, and the classifier is run on v f to determine point-wise
class labels. The resultant RDD with the v f and the class label is stored in the local Cassandra node, and efficiently retrieved
using the Connector. We perform training/testing using 80/20 split, and for labelled data, we validate the model seamlessly.

III. EXPERIMENTS AND RESULTS
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Fig. 2: Visualization of a region 5110_54495 of DALES dataset (∼12 million points) – (a) Labeled data for training, and
partitioning strategy for reduced boundaries; (b) real-time updates of semantic classification of airborne LiDAR point clouds
in our visualization system interfacing with our distributed system, from (i) to (vi), and its real-time updates from unlabeled
points (black) to class labels; (c) tiling of the point cloud, computation of saliency map on the fly, and point rendering with
color (RGB) corresponding the saliency map (Cl ,Cs,Cp), with interactive rotation of the section.

We have used Apache Spark 2.4 and Apache Spark ML, integrated with Cassandra 3.0., with three executor nodes on Apache
Spark, of which one executor node runs on master node. All the four nodes use Intel i7 processor @2.80 GHz, 4 cores, 8 logical
processors, and 8GB RAM. For our experiment, we have used the Dayton Annotated LiDAR Earth Scan (DALES) dataset [2],
which is one of the largest aerial LiDAR point clouds (Figure 2), with 0.5 billion points across 8 semantic classes, stored in
40 tiles. In our distributed system, there are five spatially contiguous partitions (Figure 2), of which one partition is loaded on
the executor running on master node, and two each in the other executor nodes. We have used feature vectors computed at
optimal scale determined from 10 scales, with cubical neighborhood sizes l={1m,2m,3m,4m,5m,6m,7m,8m,9m,10m} in the
normalized coordinates. We have trained the RFC on Spark ML using ∼34 million points in tiles 5110_54460, 5110_54475,
and 5110_54495 of DALES (Figure 2), and tested on ∼11 million points in another tile of DALES, 5080_54470.

In our case study, we observe that the buffer regions add data for 10m, on either side of each partition. This implies each
partition has up to 8K points (∼1.3MB) overhead, with 50 ppm. This becomes a significant overhead when we consider massive
point cloud datasets, as the buffer region grow proportional to the point cloud size. However, when we take a closer look at
the feature vector, we observe that the local descriptor used for generating a predominant part of the vector is an additive
tensor. Hence, when the local neighborhood is truncated for the boundary points in a partition, the local descriptor is a coarser
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TABLE I: Semantic classification result for our case study of DALES point cloud, using 33,825,345 training points, using
different classifiers in a distributed system

Buffer Region OA mean ground vegeta cars trucks power fence pole building
(# test points) -tion line

Random Forest Classifier (RFC)
With 0.817 0.357 0.781 0.739 0.154 0.199 0.238 0.159 0.190 0.395

(10,773,000)
Without 0.798 0.327 0.760 0.703 0.155 0.186 0.153 0.134 0.182 0.346

(12,654,558)
Gradient Boost Tree (GBT) Classifier

With 0.792 0.351 0.746 0.626 0.030 0.110 0.447 0.177 0.206 0.464
(10,642,978)

Without 0.773 0.341 0.719 0.657 0.041 0.133 0.487 0.217 0.149 0.321
(12,654,558)

approximation. The overall accuracy (OA) of semantic classification is not expected to be affected drastically owing to the low
percentage of boundary points. As an experiment, we estimate the trade-off.

We have determined the Intersection Over Union (IoU) values for mean, overall accuracy (OA), and per class (Table I). RFC
gives an OA of 81.7%, with 78.1% for ground class. We observe that the absence of buffer region gives us an OA of 79.8%
with 76% for ground class. For each square tile of 0.5km, the total buffer region with 5 partitions is 0.1km. Thus, we observe
that we can have a trade-off of 16% of additional storage by 2% reduction in overall accuracy in semantic classification. RFC
and GBT classifier perform comparably. We demonstrate the use of our visualization system in progressive rendering of the
progression in semantic classification as the results get updated; and the visualization of saliency map in the point cloud, on
the fly after sectioning (Figure 2).

IV. CONCLUSIONS

In this paper, we have explored the use of an integrated Apache Spark-Cassandra framework as a distributed system for
optimal scale feature extraction from a point cloud and its semantic classification, using customized region-based spatial
partitioning. Our proposed partitioning includes buffer regions for including the local neighborhood of the partition boundary
points. Overall, our proposed 3-stage workflow for interactive visualization and semantic classification has been effectively
implemented on the integrated framework using these design choices. We have observed that not using buffer region saves the
additional 16% of storage needed, with only 2% reduction in overall accuracy of classification. We are currently improving
classification results on our system and exploring larger datasets on it, over a wide range of other applications in point cloud
management and processing.
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