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ABSTRACT

Charts or scientific plots are widely used visualizations for efficient knowledge dissemination from
datasets. However, these charts are predominantly available in image format. There are various
scenarios where these images are interpreted in the absence of datasets used initially to generate
the charts. This leads to a pertinent need for data extraction from an available chart image. We
narrow down our scope to bar charts and propose a semi-automated workflow, BarChartAnalyzer, for
data extraction from chart images. Our workflow integrates the following tasks in sequence: chart
type classification, image annotation, object detection, text detection and recognition, data table
extraction, text summarization, and optionally, chart redesign. Our data extraction uses second-order
tensor fields from tensor voting used in computer vision. Our results show that our workflow can
effectively and accurately extract data from images of different resolutions and of different subtypes
of bar charts. We also discuss specific test cases where BarChartAnalyzer fails. We conclude that
our work is an effective and special image processing application for interpreting charts.

1 Introduction
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Figure 1: Our proposed workflow for data extraction from a given image of a chart using our proposed semi-automated
BarChartAnalyzer (BCA), with seven components (C1-C7), for applications including chart reconstruction and re-
design. Significant components include C1 for classifying the chart image to bar charts and its subtypes, C2-C4 for
feature extraction, C5 for text detection for data contextualization, and finally C6 for generating the data table.
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Data can be interpreted better when presented as visualizations, wherein one of the simplest and most ubiquitous forms
is the class of charts. Chart representation specifically is a widely used approach, which is evident from the inclusion of
the basic understanding of simple charts in the curriculum of primary school education. Simple charts, e.g., bar charts,
scatter plots, etc., are commonly found in documents (textbooks, publications), print media (newspapers, magazines),
and on the internet; and are most prevalent in image format. There are use cases of redesign and reconstruction of charts
for getting high-resolution images for applications such as generating accessible reading materials for differently-abled
students. The chart redesign also enables students with learning difficulty to understand data using alternative designs.
These applications pose a problem when the source data for the charts is not available alongside the chart image for
ready consumption. Thus, data extraction in the form of semi-structured tables [1] from these chart images is a relevant
problem, specifically in the space of improving assistive technologies.

Amongst all statistical plots, bar chart representation is the most commonly used one for visual summarization. Since
the design space for charts is large, in terms of chart types and their formatting, we focus on bar charts here. Bar charts
have subtypes, depending on the data type and user requirement, such as simple, stacked, grouped bar charts, to name
a few. Stacked and grouped bar charts help visualize multi-class or multi-series data. The grouped bar chart gives
inter-and intra-class trends, and the stacked bars give part-to-whole information for multiple classes.

The redesigning of multi-series charts is a motivating application, as they are relatively difficult to interpret [2]. The
redesign entails the requirement of source data that is used to generate the original plot as well as information about
classes/multi-series being represented in the image. The state-of-the-art in reasoning over scientific plots includes
bar charts [1, 3], where object detection using convolutional neural networks (CNN) for bars may fail for specifically
the stacked bars. Hence, we revisit the image processing method exploiting spatial locality for object detection [4].
We, thus, propose a semi-automated workflow (Figure 1), called BarChartAnalyzer, that can take an image as input,
identify the bar chart, sub-classify it to bar chart type, and then perform data extraction. The extracted data can be
further used for reconstruction to get customized charts of high-resolution image quality, as well as for redesigning
the complex to simpler charts.

Our contributions in this work are in:

• proposing a complete semi-automated workflow for digitizing images of bar charts and its seven subtypes,
including stacked bar charts,

• identifying appropriate state-of-the-art algorithms for text recognition in bar charts,

• generating training dataset for bar chart images covering all seven subtypes, and a complement set “others”,

• proposing a flowchart for templatizing text summary of bar charts from its images, and

• conducting a systematic study of limitations in our workflow for specific test cases.

2 Related Work

Chart analysis is generally divided into smaller tasks such as chart type classification, data extraction and optionally,
reconstruction or redesign, and summarization. Revision is a system that performs tasks like identifying chart type,
extracting visual elements, and encoded data by creating feature vectors and identifying geometric structures in pixel
space [5]. WebPlotDigitizer is another system that provides both automatic and manual procedures to extract data from
given chart images [6]. However, the tool requires extensive user interaction for aligning axes to select data points. It
works for simple bars but fails for stacked and grouped bar charts in giving class information.

Machine learning models have been effectively used for classification and/or object detection problems in chart analy-
sis. Beagle is a web-based system for classifying charts in scalable vector graphics format [7]. Text type classification
has been done using feature vector generated using the geometric property of text along with mark type classification
using a fine-tuned AlexNet [8]. FigureSeer uses a similar fine-tuning approach [9]. A convolutional neural network
(CNN) model used for chart classification, can also used for object detection, e.g., for chart objects such as bars in
the source image [3]. ChartSense uses GoogleNet for chart classification for line, bar, pie, scatter charts, map, and
table types [10]. ChartSense further uses the connected components method to extract bar objects, using the x-axis
as a baseline in the image. While this method works for simple bar charts, the charts with bars of multiple series
(e.g., grouped bars) get incorrectly identified as belonging to the same series. The existing methods using object
detection-based approach have not been shown to work for all subtypes of bar charts, e.g., stacked bars, for which
training data is currently unavailable.

Text detection is important for chart inference. Automated data extraction for bar charts has been done by identifying
graphical components and text regions independently [11]. Chart data is further extracted using inference.
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Chart analysis has been used for applications of automated question-answer systems. PlotQA is one such solution for
reasoning over scientific plots that uses a more accurate neural network for object detection for visual elements, such
as bars [1]. However, manual drawing of bounding boxes around bars fails for complex bar types, such as stacked
bars. Hence, we use the method that exploits spatial locality using second-order tensor fields for corner detection [4]
in our proposed system. While PlotQA is an example of an approach where data is extracted, an alternative approach
for chart question answering (CQA) is through the use of Transformers for answering questions from charts directly,
e.g., Structure-based Transformer using Localization, STL-CQA [12].

Textual summary of a chart is a relevant task for its interpretation. While its relevance may appear counter-intuitive
as the charts are visual summary of data, its text summarization is useful for the visually impaired users to read its
images, usually embedded in documents. Linguistic constructs have been used to generate a chart summary with
the help of semantic graph representation [13]. Three types of features have been selected from charts, namely,
salience, trend, and rank, that encode details like increasing or decreasing trend, any specific colored bar showing
highly prominent detail. However, we have found the summary output of the system to have a limited description.
Summaries, especially for bar charts, have also been generated by calculating differences using existing attributes
in chart images and providing the core message represented by the selected chart [14]. The iGRAPH-Lite system
generates a short summary explaining the visual description of the chart itself but does not provide insight into the
information provided by visualization using the chart [15].

3 Proposed Workflow & Implementation

Figure 2: (Left) The architecture diagram of our CNN-based classifier for identifying bar chart subtypes. (Right)
Human-guided annotation of the chart image, where the chart canvas is used for object detection.

We propose a workflow that extracts data from a given chart image, BarChartAnalyzer, which has seven main compo-
nents (Figure 1), namely, chart subtype classification, chart image annotation, canvas extraction, tensor field computa-
tion, text recognition, data table extraction, and chart summarization.

Chart Subtype Classification (C1): Data is represented using different chart types based on the number of variables
and user requirements. For example, scatter plots and bar chart representations visually encode the data differently,
which require different approaches for chart analysis. In the case of bar charts, there are subtypes available in the
design space, namely, simple bars, grouped bars, stacked bars, and of different orientations, depending on design
requirements. Since the process of data extraction from a given chart image depends on its chart type, identifying both
the type and subtype information is the first step of our workflow.

Image classification is a widely studied problem in computer vision, and it has been done using different CNN-based
classification models such as AlexNet, GoogleNet. These models were trained and tested for a set of natural images
provided during the ImageNet challenge [16]. The natural images contain characteristics other than the shape of the
object as well, like texture, finer edges, color gradients, etc. However, compared to natural images, the chart images
are sparser and more structured with repeating patterns. Hence, the models that work for natural images do not work
effectively for chart images.

The chart objects such as bars, scatter points, and lines are distinguishable based on their shape and geometry, unlike
objects found in natural images. The chart subtypes for bar charts also have similar geometry through chart objects.
Overall, contour-based techniques for chart subtype classification are inefficient. Some of the pre-trained models have
been used for chart type classification of images by imposing certain constraints, e.g., training with a small image
corpus; however, the classification outcomes have low accuracy. The classifier in ChartSense has used GoogleNet [10]
and has been trained on different chart types. This model classifies subtypes, such as grouped and simple bars, also,
since the features are similar in both subtypes. However, other subtypes of our interest, namely, stacked bar charts,
have not been explored. On the other hand, mark-based chart classification has been used [8], where the classifier is
trained to recognize specifically five mark types: bars, lines, areas, scatter plot symbols, and other type. This classifier
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is limited to identify the chart type without extension to subtypes. Thus, we explore all bar chart subtypes, including
the stacked bar charts and histograms, that have not been explored at all in the state-of-the-art.

Our classifier is inspired by the VGGNet (Visual Geometry Group Network) architecture [17], which is widely used
for object detection and segmentation tasks on image databases, such as KITTI [18], an image benchmark dataset
for road-area and ego-lane detection [19]. We choose the VGGNet architecture as it is efficient in feature extraction
from images, and addresses the issue of depth in convolutional networks. It is also simple to implement for a new
model, with the flexibility of adding more VGG blocks. The VGGNet architecture has a stack of convolutional layers
(Figure 2) that generalizes the deep learning tasks. Our CNN model is a combination of the convolutional, pooling, and
fully connected layers. The convolutional layers are responsible for extracting features by convolving images using
kernels or filters. Our classifier uses max-pooling to reduce computation by reducing the spatial size by half. The
tailing layers in our classifier are the fully connected layers that take the results of the pooling/convolutional layer and
assign it a label/class. Our classifier identifies the bar chart subtype of an input image. This classification also results
in checking if the given image is of bar chart type, as the workflow downstream accepts only bar charts, rejecting the
others.

Our chart image dataset consists of images of seven different subtypes of bar charts, namely, simple, grouped/clustered,
and stacked bar charts of horizontal and vertical orientations and histograms. For training our CNN model, the training
dataset consists of images of these seven subtypes, and additionally an “other” category. The “other” category of
images consists of scatter plots, line and pie chart images, which are commonly found charts, that are not bar chart
subtypes. Histograms are included as one of the subtypes of bar charts since some of the plotting tools, e.g., Google
sheets and Microsoft Excel®, use bar charts for histogram plots. Also, we observe that the geometry of bins in
histograms is the same as columns/bars in the bar charts. Our CNN-based classifier requires input images of fixed
size for training; hence, we first resize the images in the dataset to 200× 200 size. The image resizing and classifier
implementation has been done using Python imaging (PIL) and Keras libraries, respectively. Our CNN model for chart
sub-type classification is novel in its application for classifying bar chart subtypes. Our classifier assigns class labels to
an input image specifying the bar chart subtype and its orientation, except in the case of histograms, e.g., “horizontal
grouped bar”, “vertical stacked bar”.

Image Annotation (C2) and Canvas Extraction (C3): Image annotation is usually performed to prepare training
datasets for computer vision-related problems like object detection, segmentation, etc. The idea behind image annota-
tion is to provide labels to different regions of interest (ROI) in the images. These predefined labels are used to detect
and extract regions of interest. As this task requires contextual labels and appropriate associations between labels and
ROIs, human-guided annotation of images is a straightforward image annotation approach.

For chart images, manual marking and annotation of bounding boxes for ROIs have been widely used [3, 1]. Different
labels are decided for components of chart images based on their role in the visualization, such as canvas, x-axis, y-
axis, x-labels, y-labels, legend, title, x-title, and y-title. We use LabelImg [20] as a tool to mark and annotate bounding
boxes for ROIs of a chart image. LabelImg is a Python tool with a graphical user interface (GUI) for interactively
selecting an image, drawing a bounding box for an ROI, annotating the ROI, and labeling the ROI. We use the label
Canvas for the ROI that contains the chart objects such as bars, lines, or scatter points and is defined as chart canvas,
which is one of the chart image components [4]. The annotation is generated as an XML file that is processed to
extract the canvas region as well as for text localization. The former is used for chart extraction (C3), and the latter for
text detection (C5). Figure 2 (right) shows a sample annotated bar chart.

The canvas extraction step (C3) includes image preprocessing methods to remove the remaining elements other than
chart objects such as gridlines, overlaid legends, etc. The subsequent step (C4) on tensor field computation is sensitive
to the presence of these extraneous elements, which lead to erroneous results. Image processing techniques marker-
based watershed segmentation and contour detection algorithm have been used to remove such components in the chart
canvas effectively [4]. These steps also fill hollow bars, as required, since the tensor field is computed effectively for
filled bars. Highly pixelated edges in aliased images lead to uneven edges in each bar object. This issue is addressed
by using the contour detection method to add a fixed-width border to bars [4]. Overall, we perform these steps to
extract a chart canvas containing chart objects used in C4.

Tensor field Computation (C4): Tensor fields have been widely used to exploit geometric properties of objects in
natural images [21] using structure tensor and tensor voting. We use local geometric descriptor as a second-order
tensor for tensor vote computation [22] that further leads to corner detection in case of bars for a given bar chart.
Structure tensor Ts at a pixel provides the orientation of the gradient computed from the local neighborhood, computed
as:

Ts = Gρ ∗ (GT G), where G =
[

∂I
∂x

∂I
∂y

]
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is the gradient tensor at the pixel with intensity I; convolved (using ∗ operator) with Gaussian function G with zero
mean and standard deviation ρ. The tensor vote cast at xi by x j using a second-order tensor K j in d-dimensional space
is, as per the closed-form equation [23]: Si j = ci jRi jK jR′i j,

where Ri j = (Id−2ri jrT
i j); R′i j = (Id− 1

2 ri jrT
i j)Ri j,

Id is the d-dimensional identity matrix; unit vector of direction vector ri j = d̂i j, with di j = x j − xi; σd is the scale
parameter; and ci j = exp

(
−
(
σ
−1
d .‖di j‖2

2
))

. The gradient Tg can be used as K j [24].

Anisotropic Diffusion: As the tensor votes Tv in normal space have to encode object geometry in tangential space,
we perform anisotropic diffusion to transform Tv to tangential space [22, 4]. The eigenvalue decomposition of the
two-dimensional Tv yields ordered eigenvalues, λ0 ≥ λ1, and corresponding eigenvectors v0 and v1, respectively.
Anisotropic diffusion of Tv using diffusion parameter δ, is:

Tv-ad =
1
∑

k=0
λ′k.vkvT

k , where λ′k = exp
(
− λk

δ

)
.

Diffusion parameter value (δ = 0.16) is widely used [25, 4].

Saliency Computation: The saliency of a pixel to belong to geometry features of line- or junction/point-type is deter-
mined by the eigenvalues of Tv-ad [4]. We get the saliency maps at each pixel of an image of its likelihood for being a
line- or junction-type feature, Cl and Cp, respectively, Cl =

λ0−λ1
λ0+λ1

and Cp =
2λ1

λ0+λ1
,

using eigenvalues of Tv-ad of the pixel, such that, λ0 ≥ λ1. The pixel with Cp ≈ 1.0 is referred to as a critical point or
degenerate point in the parlance of tensor fields. Our goal is to find all the critical points in the chart canvas in the C4
step.

DBSCAN Clustering: The critical points of chart image computed from tensor field computation form sparse clusters
at the corners of each bar [4]. These pixels are localized using density-based clustering, DBSCAN [26], and cluster
centroids are computed by adjusting hyperparameters of DBSCAN clustering to specific chart types. These cluster
centroids are treated as corners of the bar. Using the positional layout or arrangement of these corner points based on
the specific chart type and subtype, we heuristically compute the height of each bar in pixel space.

Text Recognition (C5) and Information Aggregation for Data Extraction (C6): The data we have extracted from
the chart image, using tensor field computation, is in the image (or pixel) space. However, the extracted data has to
be in the data space for accurately summarizing, and optionally, reconstructing the chart. Hence, to transform the
data from the pixel space to the data space, we now combine the data in pixel space with the text information in the
image. We perform text detection to get x-axis and y-axis labels and compute the scale factor between the pixel and
data spaces. The recognition of other textual elements, namely, plot title, legend, x-axis, and y-axis titles, also plays a
crucial role in analyzing chart image, e.g., the information is used in summary (C7).

Tesseract-OCR is known for its popularity in text detection and recognition [27]. It works effectively with scanned
document images with a clean background with regular font, plain layout, and single uniform color. However, Tesser-
act fails for text images with different colors, sizes, orientations, curvy fonts, and different languages, along with
interferences or issues in the text, such as low resolution, exposure, noise, motion blur, out-of-focus, varying illumi-
nation, etc. Here, chart images may have text with numerical characters, small text font size, formatting, and blurry
appearance. Yet, few of these cases are solved by improving image resolution, varying orientations in text regions like
axis labels and chart title in a chart image are falsely recognized. Also, Tesseract tends to incorrectly detect non-textual
elements, such as arrows, color boxes in legend, etc., in the image.

We explore the use of deep-learning-based OCR, namely Character Region Awareness for Text Detection, CRAFT [28]
for effective text area detection, including arbitrarily-oriented text. This approach is designed for relatively complex
text in images, and it works by exploring each character region and considering the affinity between characters. A
CNN designed in a weakly-supervised manner predicts the character region score map and the affinity score map
of the image. The character region score is used to localize individual characters and affinity scores to group each
character to a single instance. So, the instance of text detected is not affected by its orientation and size. The text
orientation is inferred from the detected text boxes and is then rotated to horizontal orientation for the extraction.

The CRAFT text detection model can be followed by a unified framework for scene text recognition that fits all variants
of scenes, called the scene text recognition framework, STR [29]. Being a four-stage framework consisting of trans-
formation, feature extraction, sequence modeling, and prediction, STR resembles the combination of computer vision
tasks such as object detection and sequence prediction task, and hence, uses a convolutional recurrent neural network
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(CRNN) for text recognition. We find that the CRAFT model, along with the STR framework, works efficiently to
retrieve labels and titles of the chart image better than Tesseract OCR.

In our workflow, we transform the data extracted in pixel space to data space and add appropriate textual information
for the variable name and bar width to extract the data table in C6. For both stacked and grouped bar charts, we identify
class or series information using the legend to add to the extracted data table. However, BarChartAnalyzer can only
be used to distinguish bars and stacked segments differentiated based on color, but those differentiated using texture
will not give correct output with our workflow.

Chart Summarization (C7): Today chart images are increasingly used in mass media and other print media for
knowledge dissemination. However, such information encoded in the graph remains inaccessible to the visually im-
paired. While we aim to retrieve the data table from the chart image, the users with the need to access the encoded
information may not find this data table useful. Instead, the brief, significant details of this data and/or chart itself are
useful. Thus, our next step is to generate a summary of the chart image based on its retrieved data table and the chart
image, thereby allowing the user to know enough about the chart image before having the option to access the data
table to learn more about the chart.

Describe  
titles & chart type

Is the
chart subtype
is histogram?

Extracted
data table

Describe binwidth,
range and mode

Is the
chart image  

a plot of ordered 
attributes?

Yes

No

Compute best fit
distribution and 

describe it No

Is the
chart subtype
is simple bar?

Yes

 

Yes

No

Is the
data in

sorted order?
Yes

Describe legends,
range and 

standard deviation

No

Compute Spearman
correlation, describe

if value > 0.5

Describe any single
item creating an 

exception in trend

Describe data 
range & mean

Describe trends in
graph, if any

Figure 3: The proposed flow chart of sentence structure formation for chart summary generation in text format (C7).

An effective summary should be accurate and concise for readers to consume. We present a well-built sentence
structure to generate a summary of bar charts using the data table retrieved from the chart image in a way that captures
the core information of the data table. The sentence structure is heuristically produced based on features identified
from the extracted data. Based on this sentence structure produced, the summary for the intended graph image is
generated. The features of the chart used in summary depend on its type and subtype. For the histogram type chart, we
focus on features like the type of distribution, range, and mode. For bar charts with categorical variables, we check for
ordinal variable type, e.g., age, date, day, month, and year in the image, and extract the variable-based trend patterns
in the chart image. Apart from these, we consider the statistical descriptors, such as the range of attributes, correlation
between them, standard deviations, and mean values based on cases mentioned in our proposed flowchart (Figure 3).
We, thus, generate the chart summary using the template abstracted in the flowchart.
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4 Experiments & Results
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The mode of a histogram is 2.0 with a 
frequency of 200. The frequency distributio 
histogram is the norm with following 
parameters loc=0.00, scale=1.00.

A

C

B

D

E The plot depicts a Vertical Grouped Bar Graph 
illustrating Employed Workers by Gender for 
Select Jobs. The plot is between Employed on 
y-axis over Job on the x-axis for women, and
men. The list of 'Job' values is actor, 
bartender, dentist, engi ineer, scientist, and 
scientist. The 'women' range from 0.0 to 
232592.19, with a standard deviation of 
76529.27. The 'men' range from 30206.07 to 
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123926.7. The categories 'women' and 'men' 
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rank correlation. All except for bartender 'men' 
is greater than 'women'

The plot depicts a Vertical Stacked Bar Graph 
for brand c, brand b, and brand a. The list of 
'X-axis' values is jan, feb, mar, apr, june, jul, 
aug, and aug. The 'brand c' range from 0.0 to 
80.42, with a standard deviation of 30.2. The 
'brand b' range from 0.0 to 80.42, with a 
standard deviation of 30.33. The 'brand a' 
range from 0.0 to 89.32, with a standard 
deviation of 38.0. The categories 'brand c' and 
'brand a' are positively correlated by 0.56 
Spearman rank correlation. The categories 
'brand b' and 'brand a' are positively correlated 
by 0.61 Spearman rank correlation

(i) (ii) (iii) (iv)

Figure 4: The key steps in our BarChartAnalyzer workflow of corner detection (C4), text detection (C5), data extraction
(C6), chart reconstruction, and chart summary (C7) of the source input chart images. We observe the ordering of the
series could be reversed in (ii) the grouped and (iii) stacked bar charts, even though the data is extracted accurately.

In C1 of the BarChartAnalyzer, we have trained the CNN model for classification using 1000 images belonging to
eight types of charts, namely, the seven subtypes of bar charts and a complement set, “others”, consisting of chart
images of line charts, scatter plots, and pie charts. The training set excludes images for charts with textured, hollow,
or hand-drawn bar objects. The training accuracy for our classifier is currently at 85%. For testing, we have used
a dataset of 50 chart images each from these eight types. For experiments, we generated a dataset that includes bar
chart images of these eight types from two sources, namely images downloaded from the internet and synthetically
generated images. The latter is from bar charts generated using Python plotting library, matplotlib from known data
tables.

The results from the BarChartAnalyzer for a subset of our experiments are shown in Figure 4. The images are first
classified, and only those of bar charts and its subtypes pass through the BarChartAnalyzer. The source images
are given in Figure 4(A). The tensor field analysis on extracted canvas detects the corner of the bars using critical
points identified by the saliency value calculation. The results of pixels identified by corner detection are shown in
Figure 4(B). The critical points are detected at the top and bottom corners of bars and at the bar segment junctions
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nMAE=0.009, MAPE=0.89% nMAE=0.011, MAPE=1.07% nMAE=0.025, MAPE=6.55% nMAE=0.021, MAPE=2.26%

nMAE=0.003, MAPE=0.33%

nMAE=0.006, MAPE=0.61%

nMAE=0.008, MAPE=6.51%

nMAE=0.005, MAPE=0.52%

nMAE=0.004, MAPE=0.53%

nMAE=0.020, MAPE=12.65%

nMAE=0.051, MAPE=51.88%

nMAE=0.040, MAPE=38.62%

nMAE=0.012, MAPE=1.38%

nMAE=0.006, MAPE=0.65%

nMAE=0.014, MAPE=1.20%

nMAE=0.002, MAPE=0.18%
(i) (ii) (iii) (iv)

Figure 5: Reconstruction of synthetically generated bar chart images with their error evaluation in normalized mean
absolute error (nMAE) and mean absolute percentage error (MAPE).

in the stacked bar chart. The histogram displays the distribution of such points at the junction where the transition
between bins occurs. The visualization of critical points at corners also guides us in deciding the hyperparameters for
DBSCAN, e.g., distance (eps), minPts.

The OCR based text detection model [28] works with 0.95 F1 score on ICDAR 2013 dataset. The model fails to
detect certain text components during testing, as shown in Figure 4(C, ii). Our workflow addresses this limitation
while performing data extraction based on pixel scaling and the intervals retrieved from the detected text/values. Our
reconstructed charts in Figure 4(D) can be visually compared with the original images in Figure 4(A).

Color is an important property of the images of the multi-series bar charts like grouped and stacked bar, as color is
a visual encoding of the metadata of the series. In such cases, color represents the identity of the class or series the
data item belongs to. But, in the case of simple bar charts and histograms, the use of color is cosmetic. Our algorithm
preserves the source color value only in the case of it being a visual encoding, where we use the color value identified
in the legend for the bars during reconstruction. In the cases where color is not used as a visual encoding for the chart,
we use a default color value, i.e., black, during reconstruction. Thus, color is preserved in reconstruction for charts in
Figure 4(ii, iii), but not in Figure 4(i, iv). However, even where color is preserved, the order of rendering the series
is not guaranteed to be preserved, as shown in Figure 4(ii, iii), as ordering of the classes or series is not an important
property in the multi-series bar charts.
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The plot depicts a Horizontal Stacked Bar 
Graph illustrating Male age structure. The plot 
is having Population, millions on x-axis for 14 o 
years a, 15 64 years i, and older 65 and years. 
The list of 'Y-axis' values is united states,
brazil, russia, japan, mexico, germany, and 
germany. The '14 o years a' range from 5.63 
to 29.61, with a standard deviation of 8.64. 
The '15 64 years i' range from 20.41 to 91.49, 
with a standard deviation of 21.93. The 'older 
65 and years' range from 3.4 to 15.11, with a 
standard deviation of 3.8. The categories '14 o 
years a' and '15 64 years i' are positively 
correlated by 0.89 Spearman rank correlation.

The plot depicts a Horizontal Simple Bar Graph 
illustrating Fatalities in filght accidents. The 
plot is between Flight Id on y-axis over 
Fatalities on the x-axis. The Flight Id with the 
highest Fatalities 112.04 is '2'. The Flight Id 
with the lowest Fatalities 2.72 is '4'. The mean 
Fatalities of Flight Id is 39.18.

The plot depicts a Vertical Simple Bar Graph 
illustrating Percentage of United States Women 
in the Labor Force. The plot is between 
Percentage of Women on y-axis over Year on 
the x-axis. The Percentage of Women has an 
overall increasing trend from 1956 to 2012.

The plot depicts a Histogram with the bins 
ranging from 3 to 43 with 4.87 bin width. The 
mode of a histogram is 23 with a frequency of 
397. The frequency distribution of histogram is 
the norm with following parameters loc=0.00, 
scale=1.00.

(i) (ii) (iii) (iv)

Figure 6: Examples of bar chart images that give erroneous results in BarChartAnalyzer. The errors in the chart
reconstruction are indicated using red translucent boxes in row D.

(a) Textured  grouped bar (b) Hollow bars with text inside (c) Bar chart with graphics (d) Hand drawn bar chart

Figure 7: Bar charts generated in different design spaces, which are known to not work with our chart analysis
workflow, BarChartAnalyzer.
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Evaluation: The premise of our work is to extract data from images of charts that do not have accompanying data
tables, i.e., the ground truth. Hence, to compare the extracted data with source information, we run our algorithm on
images of charts generated using the plotting library, e.g., matplotlib, from known data tables. While our algorithm
works well with such synthetically generated images owing to their high resolution and fidelity, they are useful in
computing exact numerical errors in the extracted data table. The extracted data achieved by mapping pixel location
of cluster center of degenerate points and text location extracted using OCR. We observe that the extracted values
have numerical precision errors predominantly. Hence, to compare the difference between the extracted values, we
compute the normalized Mean Absolute Error (nMAE), and the Mean Absolute Percentage Error (MAPE) for the
synthetic images (Figure 5), which are bounded in [0,1]. MAPE is commonly reported in a percentage format. We
observe that nMAE captures our performance better than MAPE, as it does not augment numerical precision errors as
much as MAPE. MAPE is augmented in the case of missing extracted data in grouped bar charts (Figure 5(ii)) and
stacked bar charts (Figure 5(iii)) owing to relatively short bars or bar segments. For N data items with source data
value xi and its corresponding extracted value x(e)i ,

nMAE=

N
∑

i=1
|xi−xe

i |

N
∑

i=1
xi

; and MAPE = 1
N .

N
∑

i=1

∣∣∣∣ xi−x(e)i
x

∣∣∣∣.
In our representative examples in Figure 5, we observe relatively low nMAE values. Histograms are not included in
this analysis as the source, and extracted data in its case is a frequency table, different from a data table in the case of
bar charts.

BarChartAnalyzer achieves near-perfect accuracy for high-resolution bar chart images, created with standard or mini-
mal formatting available commonly across all plotting libraries. The morphological methods for image preprocessing
in C3 in BarChartAnalyzer improve data extraction accuracy from low-fidelity images. The aggregated accuracy for
PlotQA [1] for CQA is 22%, and STL-CQA [12] achieves near-perfect accuracy, but with synthetic datasets. However,
comparing our work with the CQA algorithms is not a fair comparison, as the goals are different, even though there
are overlapping outcomes. Accuracy-based comparison is not a complete exercise in itself.

Limitations: In a limited number of cases, our system suffers from errors in detection, specifically when DBSCAN
clustering does not distinguish small/insignificant height differences between bars/bins [4]. We have identified two
such cases. The first case is of false negatives when bars are close to the baseline, which is the x-axis and y-axis for
column and bar orientations, respectively (Figure 6(D, ii)). The second case is when heights of adjacent bins in a
histogram have relatively small height differences, and the extracted data does not capture the differences (Figure 6(D,
iv)). This error is also manifested as missing values in grouped and stacked bar charts when the bars or bar segments
are relatively short (Figure 5(ii),(iii)).

The text recognition model [29] identifies text with F1 score of 0.93 on ICDAR 2013 dataset. This recognition model
misidentifies and confuses the alphabet ’O’ or ’o’, irrespective of the case, as the numeral ’0’ and vice versa in chart
images. Also, the model has gaps in handling special characters, such as $,%,£, sign(-), and cannot handle superscript
symbols, e.g., degrees, and exponents (Figure 6(C, iii)). These shortcomings affect the accuracy of extracted data scale
(Figure 6(C, i)). The inaccurate results in text recognition also manifest as errors in the textual summary of the source
image. Some of these errors in text detection are shown in the reconstructed chart in Figures 6(D, i) and (D, iii).

Thus, the key drawback in our BarChartAnalyzer is in the false positives for corner detection in relatively low-fidelity
images, owing to aliasing and subsequent pixelation. Also, our classification model cannot handle variants of bar
charts with textures in the bars or hollow bars. Our workflow fails for chart canvas extraction for such special test
cases, e.g., images shown in Figure 7. Even though not considered a best practice, bars may be created with text or
bar value written inside each bar, as shown in Figure 7(b). BarChartAnalyzer also fails for another test case where
the data extraction process cannot identify negative bars, as shown in Figure 7(c). The text recognition model fails to
identify text written in the hand-drawn chart shown in Figure 7(d). One of the drawbacks in our methodology, just as
is the case with the state-of-the-art, lies in human-guided canvas extraction and interactive hyperparameter setting for
DBSCAN for clustering corner points.

5 Conclusions

As a next step, such a subtype-based analysis can be extended to other chart types, such as scatter plots. Our workflow
requires user interaction for tasks such as image annotation for canvas extraction and setting hyperparameters of DB-
SCAN. We are considering methods to make the workflow more automated. We currently use tensor field computation
on the chart images, which can be made more robust to separate chart objects from the source image. As VGGNet has
been widely used for object detection tasks, our goal is to improve our classifier to automate the canvas extraction step
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to reduce user dependency. Super-resolution algorithms may be explored as an additional component in our algorithm
to improve the accuracy of both OCR and object detection, especially for severely aliased images.

In summary, we propose a workflow BarChartAnalyzer using standard image processing techniques and deep learning
models to perform the critical task of chart image digitization and summarization for bar charts. BarChartAnalyzer
is novel in handling seven different bar chart subtypes. Our contributions include the mapping between pixel space
data and the data space using the text detection model. We introduce the chart type- and structure-based templatized
text summarization for the data extracted from the chart image. The summarization achieved from our system has the
potential of being used in a language processing module, such as gtts in Python, to generate an audio summary of the
given chart image for the visually impaired audience. As discussed, our workflow has limitations of the dependency
of workflow on the image fidelity, object size, training dataset, a variety of chart images, etc. Overall, our work is a
step towards chart image digitization.
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