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Abstract

For semantic classification of LiDAR point clouds, the features derived from the local geometric descriptors are routinely used
as features in (supervised) learning algorithms. In this study, our goal is to determine if the aleatoric uncertainty in the input to a
supervised semantic classifier influences the outcomes. We consider two sources of such uncertainty – one from the computation
of multiscale local geometric descriptors and the other, from class ambiguities at object boundaries. We perform ensembles of
experiments to measure the significance of these uncertainties in the semantic classification of airborne LiDAR point clouds,
when using random forest classifier. Our case study shows that the presence of aleatoric uncertainty improves the classification
outcomes.
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I. INTRODUCTION

Airborne Light Detection and Ranging (LiDAR) point clouds capture topographical data for widespread regions. Unlike
imagery, point clouds capture three-dimensional (3D) geometric information, and when integrated with the image data, they
provide rich information of the region [1]. Semantic classification is a widely used data processing method, which is increasingly
done using supervised learning methods [2]. The feature vector used for several algorithms is obtained from raw data, as well
as the eigenvalue decomposition of local geometric descriptors computed at each point [2].

However, there are unanswered questions on the influence of the uncertainties inherent in the point cloud data or those
introduced during computation of feature vectors, on the performance of the classifier. The uncertainty pertaining to the data
is called aleatoric uncertainty, which is different from the uncertainty with respect to the model governing the data, namely,
epistemic uncertainty [3]. We study the influence of the aleatoric uncertainty from two specific sources on the accuracy of
the classifier. We also look at the uncertainty computation when using different methods for aggregating the information
from multiple scales in the local geometric descriptor. Our work is an initial attempt to analyze uncertainty in the semantic
classification of LiDAR point clouds. It can be further generalized to uncertainties in data acquisition methods, e.g. non-uniform
point sampling density [2].

Here, we define terms, namely, saliency map-based Shannon entropy, Egeom, and semantic homogeneity, Hsem, which is
computed from multiscale probabilistic geometric classification [4] and the semantic composition of the point cloud, respectively.
We control Egeom and Hsem in our experiments to study their influence in the performance of semantic classification. Computation
of Egeom depends on the local geometric descriptor [5], and its computational methodology [4].
Related Work: Data-dependent aleatoric uncertainty has been recently used for object detection from 3D LiDAR point
clouds [6]. Shannon entropy has been used for measuring classification uncertainty, and total variance, for that of object
detection. This work has been done on mobile LiDAR, different from the work done in airborne LiDAR for forest data
analysis [7], and change detection in glaciology [8]. Thus, our work is novel in uncertainty assessment, specifically for
aleatoric uncertainty, for LiDAR point clouds for semantic classification. Our case study focuses on urban regions. We use a
random forest classifier, which is well-studied in the domain [2], and as of now, has performed better than the neural network
models in the benchmark data [9].
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II. OUR PROPOSED METHOD

Our goal is to quantify aleatoric uncertainty in the semantic classification of airborne LiDAR point clouds. We give a
background of probabilistic geometric classification with the multiscale approaches and feature vector used for semantic
classification. We then propose metrics to measure aleatoric uncertainty, and conduct specific experiments, where uncertainty
used for training in a supervised classifier is controlled.
Probabilistic Geometric Classification: Local geometric descriptors are used for identifying the shape of the local neigh-
borhood [10]. Here, we use covariance tensor T3DCM as the local geometric descriptor. The descriptor is computed from
either a k-nearest or a spherical (local) neighborhood. The parameter, k or the radius r of the neighborhood, is the scale.
The neighborhood shape can be classified into “line-”, “surface-” and (critical) “point-” type features, which are the geometric
classes [4]. The likelihood of the point belonging to these classes, Cl ,Cs,Cp, respectively, are computed using eigenvalues of the
descriptors at multiple scales [4]. The tuple {Cl ,Cs,Cp}, called as saliency map, gives the probabilistic geometric classification
of the point [4].
Multiscale Approaches: It has been widely understood that the outdoor environmental scenes captured by airborne LiDAR
point clouds have larger uncertainties involved in scene understanding, which makes the single-scale analysis of the local
neighborhood of the points insufficient [2], [4], [9], [10], [11]. Therefore, information is gathered from multiple scales, and
then either the descriptors or features, such as {Cl ,Cs,Cp}, are aggregated across scales. We use two computational methods
for the descriptors. Firstly, we use k-nearest neighborhood, for 10≤k≤100 , with step-size of 10, aggregated as a descriptor at
optimal scale [10]. Secondly, we use three scales of the spherical neighborhood, where only the saliency maps are aggregated
using averages, justified as they are treated as probabilities of multiple independent events [4]. The saliency map computed
using these methods are T3DCM(OptmSc) and T3DCM(MultiSc), respectively.
Semantic Classification: We use a random forest classifier for semantic classification with N features per point per scale [2],
[12]. The (N=12) features include : Rλ ,2D, ∆Z (maximum height difference), σ(z) standard deviation of height values of
the local neighborhood, D (local point dimensionality), V (verticality), Aλ (anisotropy), Eλ (eigenentropy), ∑λ (the sum of
eigenvalues), Cλ (change of curvature), Lλ (linearity), Sλ (Sphericity), Pλ (Planarity). We use the point coordinates, (x,y,z),
as additional features. Thus, the feature vector obtained from the descriptor with optimal scale has (N+3) features, and that
with multiple scales with averaged saliency map has (nr·N+3) features, where nr is the number of scales used for spherical
neighborhood.

Fig. 1: (Top) Saliency map-based Shannon entropy Egeom increases from vertices to the centroid of the triangle in its barycentric
representation. (Bottom) Semantic homogeneity Hsem is determined based on the percentage of the local neighborhood of a
point belonging to its semantic class. As per definitions, 0.0≤ Egeom ≤ ln(3), and 0.0≤ Hsem ≤1.0.

A. Measuring Uncertainty

We consider two metrics to quantify uncertainty arising from different processes in the data analytics workflow. These
metrics, namely saliency map-based Shannon entropy and semantic homogeneity, are defined and illustrated (§Figure 1) here.
We then design an experimental setting for using these measures of uncertainties in a controlled manner.
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Fig. 2: Top view of Area-2 and Area-3 of Vaihingen site showing probabilistic geometric and semantic classifications
– geometric classification when using covariance tensor, with (left) multiscale averaging of saliency map in spherical
neighborhood, T3DCM(MultiSc), and (middle) optimal scale with k-nearest neighborhood, T3DCM(OptmSc); (right) semantic
class composition of Area-2 with high-rise buildings, and Area-3 with small houses.

Definition II.1. Saliency map-based Shannon entropy Egeom of a point x is the Shannon entropy of the saliency map. Using
{Cl ,Cs,Cp}(x):

Egeom =−Cl .ln(Cl)−Cs.ln(Cs)−Cp.ln(Cp).
Egeom is proportional to the uncertainty in the probabilistic geometric classification. Since Egeom depends on the local geometric
descriptor, the aleatoric uncertainty measured using Egeom is a task-dependent or homoscedastic uncertainty.

Definition II.2. Semantic homogeneity, Hsem of a point x, is the proportion of points in the neighborhood of x that belong to
the same semantic class as that of point x. It is expected that, in a segmented point cloud, Hsem of points in the interior of
the segments is lesser than that at the inter-segment boundaries. Since Hsem depends on the ground truth (semantic) labels, the
aleatoric uncertainty measured using Hsem is a data-dependent or heteroscedastic uncertainty.

Proposed Ensemble of Experiments: We compute the two metrics at each point. Using probabilistic geometric classification
and Egeom at each point, using T3DCM(MultiSc) as well as T3DCM(OptmSc), we compute Egeom. We find Hsem using semantic
class labels. For each metric, we train the supervised learning model for semantic classification, using subsets of the point
cloud containing specific intervals of the metric, and then test the model on a point cloud. We repeat an ensemble of runs for
different intervals of the metric. The use of intervals isolates the influence of the presence or absence of the specific uncertainty
on the accuracy of the semantic classifier. We use bounds of the interval starting from 0.0 to the maximum value of the metric,
in step-size of 0.1. A combination of lower bound (bl) and upper bound (bu) defines the interval chosen for each run, and
(bl < bu). Overall, we run a total of 66 experiments for Egeom in an ensemble, and similarly, 55 for Hsem. We use two different
point clouds for training and testing to compare the accuracy of the classifier for each run. We also compare the performances
of the classifier between the descriptors, i.e., T3DCM(MultiSc) and T3DCM(OptmSc).

III. EXPERIMENTS AND RESULTS

We have used the labeled point clouds of Area-2 and Area-3 of the Vaihingen site, given in the ISPRS benchmark data
[13], for our ensembles of experiments. The probabilistic geometric classification of T3DCM(MultiSc) and T3DCM(OptmSc)
have subtle differences (§Figure 2). The datasets are composed of four semantic classes, namely “Low vegetation,” “Road,”
“Building,” and “Tree” (§Figure 2). Training the random forest classifier with 70% of Area-3, and testing with the remaining
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Fig. 3: Confusion matrix of a random forest classifier, when (left) training with Area-2 and testing with Area-3, and (right)
training with Area-3 and testing with Area-2.

30% gave 95% accuracy. However, in order to get comparable results from running an ensemble, we train with and test on
different point clouds. Training with Area-3, and testing on Area-2, gave 70% accuracy. On the other hand, training with
Area-2, and testing on Area-3 gave 78% accuracy. The confusion matrices (§Figure 3) show that low vegetation has been
mostly misclassified as road, and building as tree. The misclassification may be attributed to similarity in geometric properties
between the classes. Owing to higher accuracy, we present results of the ensembles with Area-3 and Area-2, as training and
testing data, respectively.

Fig. 4: (Left) Visualization of accuracy results from running ensembles of experiment by controlling the amount of Egeom and
Hsem in the training set of the random forest classifier, using the values of lower and upper bounds. (Right) The orthoimage
of Vaihingen site shows Area-2 and Area-3. (Image courtesy: http://www2.isprs.org/commissions/comm3/wg4/tests.html)

The training set of points with Egeom in the interval [0.5,0.8] performs at par with the models containing the entire point
cloud (§Figure 4(A)). Thus, the training set containing points with Egeom ∈ [0.5,0.8] is sufficient for training using a random
forest classifier, which is demonstrated by both T3DCM(MultiSc) and T3DCM(OptmSc). Training sets with points of lower Egeom,
e.g. interval [0,0.5], or high Egeom, e.g. interval [0.8,1.1], give lower accuracy.

http://www2.isprs.org/commissions/comm3/wg4/tests.html
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Hsem in intervals varying between [0.1,0.5] and [0.2,0.8] show good accuracy results (§Figure 4(B)), for both the descriptors,
T3DCM(MultiSc) and T3DCM(OptmSc).

We see relatively better accuracy with T3DCM(MultiSc) than with T3DCM(OptmSc), possibly because the uncertainty owing
to Egeom is reduced in optimal scale by design. Even though Hsem is semantic information-dependent, we find differences in
results with T3DCM(MultiSc) and those with T3DCM(OptmSc). This is attributed to the improvement in accuracy results with
the increase in the number of features in T3DCM(MultiSc). The lower values of accuracy in the ensembles can be attributed
to the variation in the location of Area-2 and Area-3 (§ Orthoimage, Figure 4), including proximity of Area-2 to River Enz,
leading to the differences in the habitats and socio-economic trends between the regions.

IV. CONCLUSIONS

In this work, we have demonstrated how we can use saliency map-based Shannon entropy, Egeom, and semantic homogeneity
Hsem, for determining aleatoric uncertainty in the semantic classification of airborne LiDAR point clouds. These metrics are
computed using probabilistic geometric classification and ground truth semantic labels, respectively. We have shown how an
ensemble of experiments is formulated to study the influence of the sources of uncertainty, using our proposed metrics. Our
results show that the features aggregated across multiple scales show a better outcome in classification accuracy than the
features at the optimal scale. Our work in the systematic analysis of aleatoric uncertainty in the semantic classification of
airborne LiDAR point clouds is novel.
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