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Abstract— Networks in biology are widely studied to un-
derstand biological patterns and significance. The studies are
more significant for various disease diagnosis and treatments
obtained from biomedical data. We are interested in exploring
consensus methods to improve the accuracy of outcomes for
data mining, e.g., community detection. In our doctoral study,
we look at the novel applications of consensus methods in
two different case studies. In the first study, we use consensus
methods for community detection in resting-state brain func-
tional connectivity network obtained from functional magnetic
resonance imaging (fMRI) data. In the second problem, we use
consensus methods in aggregating different regression models
for constructing networks in the gene association study. Here,
the outcome is a network between DNA methylation features
and mRNA genes, derived from samples in cancer patients.

I. INTRODUCTION

The use of networks for analysing biomedical datasets has
been widely used for several decades. Networks generally
either occur in biomedical datasets naturally or are derived
based on the governing data model used for analysis. The
pathway networks in gene association study [1] belong to
naturally occurring networks, with appropriate semantics.
The correlation networks in brain structural and functional
connectivity studies [2], [3], as well as correlation and
regression networks in gene association study [4]. In our
doctoral work, we address some of the open problems in
two case studies, namely, functional segregation of brain
functional connectivity network at resting state [5], and
identification of significant genes in DNA (deoxyribonucleic
acid) methylation and mRNA (messenger ribonucleic acid)
gene expression using integrated analysis. The former is
derived from functional magnetic resonance (fMRI) for a
specific cohort [6], and the latter is derived from gene
expression profiles of subjects with specific cancer profile
in The Cancer Genomic Atlas (TCGA) dataset1.

II. CASE STUDY 1: RESTING-STATE BRAIN FUNCTIONAL
CONNECTIVITY NETWORK

The motivation for functional segregation, i.e., identifying
communities in brain functional connectivity network is
to understand how different regions of interest (ROIs) in
the brain get co-activated for specific cognitive tasks or in

1https://www.cancer.gov/tcga

resting-state. There have been several studies on the resting-
state analysis of the brain, as the data collection is done in a
relatively more controlled setting compared to the cognitive
task-based studies. We focus on the functional segregation
during resting-state here. The brain functional connectivity
network is computed using the correlation between ROIs,
where the fMRI signals for the region are aggregated over
space and time. Functional connectivity is inferred from
correlations between ROIs based on the blood-oxygenation
level dependent (BOLD) signals in fMRI imaging.

However, there are several points of contention on pro-
posed methods for analysing these networks, such as in the
use of threshold for the understanding topology of significant
sub-network [7], [8], global signal regression [9], eyes-open
versus eyes-closed studies [10], etc. Here, we consider the
case of finding functional segregation, in the form of node
partitions, using the complete (correlation) network of brain
functional connectivity, i.e., without applying a threshold for
edge-filtering.

There has been active research in consensus clustering
techniques across different domains. Our proposed method
is a combination of identifying a co-association matrix using
the consensus from an ensemble of clustering methods [11]
as well as multi-resolution methods used in clustering in
brain structural networks [12]. In our work, the challenge is
to perform the node partitioning in a complete network, given
we are not filtering edges using a pre-computed threshold.
In the general sense of correlation network, we see the
nodes or ROIs as random variables. Thus, we use exploratory
factor analysis [13] using appropriate parameter settings on a
correlation matrix, which is routinely done. We then identify
the resolution in our proposed method to be the number of
factors (nF ). We, thus, use a consensus method of identifying
the degree of co-association of any two given nodes, which
says how often two nodes will occur in the same module.
We compute a co-association matrix for each resolution, and
then aggregate them using an averaging operation. The co-
association matrix is now treated as a sparsified connectivity
matrix, which is then used for community detection as is
done for edge-filtered functional connectivity network. We
study the performance of different community detection
methods, e.g., Louvain community detection [14], on the
sparsified network, and analyse the biological significance



of the node partitions obtained using our consensus method.

III. CASE STUDY 2: DNA METHYLATION-MRNA
ASSOCIATION NETWORK

The motivation behind an integrated study of DNA methy-
lation and mRNA expression profiles is to identify the
influence of genes in different stages implied in the dogma
of molecular biology. An integrated study has been done
using regression coefficients [4], where the multilayered
regression networks have been constructed by aggregating
similarity matrices based on regression coefficients. The
multiple layers correspond to the gene-gene association at
the DNA methylation process, and mRNA expression, re-
spectively. Vangimalla et al. [4] have proposed the use of
multiple regression models, e.g., LASSO, GLASSO, etc., and
aggregating the outcomes of these models using similarity
network fusion [15]. However, there is a debate on the use
of regression coefficients analogous to a feature vector [16].
Hence, we propose new methods of generating networks
using outcomes of multiple regression models.

Here, we remodel the multivariate multiple linear regres-
sion between DNA methylation features, as independent
variables, and mRNA genes, as dependent variables, as
multi-layered networks. In our network model, we con-
struct correlation network of independent variables, partial
correlation network of dependent variables, and a bipartite
graph of cross-links between the two layers using regression
coefficients. We then analyse each of the layers and the cross-
links separately, first, and then, together. The idea here is to
modularise the dependencies within the sets of variables and
across the sets. Thus, we analyse each network component in
isolation as well as integrated. Some of the analytical tasks
performed on the layers are community detection, ranking of
genes based on their local neighborhood, and identification
of common genes across layers.

We use consensus of different regression models in ar-
riving at the cross-links as well as the partial correlation
network of the dependent variable. We determine appro-
priate aggregation operation for obtaining the consensus.
For example, we have experimented the use of similarity
network fusion [15] for aggregating the partial correlation
matrices. We use this analysis to study cancer genes obtained
from subjects for specific cancer profiles, e.g., lung, brain,
breast, etc., of the TCGA datasets. Our preliminary results
of this analysis have given significant genes as well as gene-
pairs within each genomic dataset as well as across different
genomic datasets. We have used gene ontological tools, such
as DAVID, STRING, to validate the identified genes in
specific cancer profile.

IV. CONCLUSIONS

The goal of our doctoral study is to determine novel meth-
ods of constructing and analysing networks from biomedical
datasets, using a combination of methods in network science,
matrix analysis and statistics. In this paper, we have demon-
strated two different case studies where we have re-modeled
an existing network as well as constructed new complex

(multilayered) networks using our proposed methodology. In
our work, we have exclusively focused on non-overlapping
communities, however, the consensus results can be gener-
ated using overlapping communities. Our future work is in
further network analysis as well as appropriate biological
validation using standard tools and findings in the literature.
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