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Abstract
Topographic Light Detection and Ranging (LiDAR) captures geometric information of the topography of a geographical region,

often using airborne platforms. The research and practice of analysis of point clouds acquired using LiDAR is more recent in
comparison to that of LiDAR imagery. Point clouds are unstructured datasets, where its geometric or structural classification labels
the constituent points as belonging to line-, surface- or point-type features. We focus on line-type features in the LiDAR point
clouds of urban residential areas, which enables extraction of building outlines. We use a multi-scale local geometric descriptor
(LGD), computed using tensor voting and gradient energy tensor to enhance specific line-type features, e.g., gable roofs. Given
that LGDs are positive-semidefinite second-order tensors, we propose a tensor-based data analytic workflow for extraction of
boundaries in building roofs using the LGD. We use the tensor representation of the LGD to extract “tensorlines,” which are then
post-processed for extracting feature lines of the building roofs. Our proposed workflow provides the flexibility to the human-
in-the-loop for exploration of point clouds for roof boundary tracing for selected buildings. We demonstrate the workflow for a
two-plane gable roof.

Index Terms
Structure tensor, Tensor voting, Gradient Energy Tensor, Contour extraction, Tensorlines, LiDAR point clouds.

I. INTRODUCTION

TOPOGRAPHIC Light Detection and Ranging (LiDAR) technology has advanced from using imagery to point clouds as its
data format for reconstructing geographical regions. Recent literature indicates that there is active interest in investigating

what analyses the point clouds can exclusively provide [1]. While the community has access to few interactive visualization
tools for LiDAR point clouds, which provides end-to-end process workflows, there still remains a gap in tools which can be
used for computational analysis of the data. We attribute the gap to the absence of a formal, but generic, data analytic workflow
definition for LiDAR point clouds.

Our motivation is to demonstrate a data analytic workflow, leading to an interactive tool, where scientists and researchers
can use computational models to explore the datasets. At the same time, our work focuses on maximizing the use of data
structures already being used in LiDAR point cloud processing. For instance, the covariance matrix provides local geometric
information from these point clouds acquired from airborne LiDAR, and is predominantly used for object-based or semantic
classification [2]. We have demonstrated that multiple local geometric descriptors (LGDs), which can be represented as positive-
semidefinite symmetric second-order tensors, can serve the purpose of inferring local geometry [3]. Thus, LGDs can be treated
as data elements, which encode the information about the shape of local neighborhood of a point. Here, we propose exploiting
the tensor analysis of these data elements in applications of airborne LiDAR point clouds, wherein, we focus on contour (or
line segment) extraction of roofs. Even though the LGDs give structural (or geometric) classification, they are conventionally
not used beyond providing features for semantic classification of point clouds. Covariance matrices, which are computed point-
wise, often provide the feature vectors or parameters in various classification or clustering techniques, e.g. supervised learning
techniques [4], [5], [6], [7], unsupervised techniques [8], etc.

Boundaries of roofs are traced as a first step towards building reconstruction, which in itself is a significant step in three-
dimensional (3D) reconstruction of LiDAR point clouds [9]. Our hypothesis is that the LGDs can be the central actors for
providing the roof line boundaries. We test this hypothesis by devising a set of techniques that use LGDs and its visualizations
for building roof reconstruction. Our goal is to define a tensor-based data analytic workflow for geometric processing of LiDAR
point clouds, in addition to its role in its semantic classification. Here, we aim to use the second-order tensor properties of LGDs
for 3D boundary detection of building roofs. The novelty here is that we use eigenvectors for line segment extraction, while
only eigenvalues of these tensors are widely used for LiDAR point cloud processing, specifically in semantic classification.

There is variability in the performance of LGDs owing to the influence of the local geometry and its variations. Hence,
we use visual analytics for decision making in different processes in the workflow that use LGDs for contour extraction
of roofs. Thus, our proposed work is semi-automated, with the requirement of a human-in-the-loop. In the area of visual
analytics, visualizations steer analytics in a data analytic workflow. We have previously used visualizations of features of the
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points, e.g. eigenvalue-based features of the LGDs, such as anisotropy and sphericity, for guiding object-based classification of
LiDAR point cloud [8]. Since the methods are semi-automated and may not be scalable for building extraction in large point
clouds [10], [11], [12], we see the value of our work in the design of interactive tools. Such tools will be useful for either quick
exploration of new datasets, or identifying training datasets for supervised learning techniques for contour extraction [13].

In earlier work, analytic processes with the point cloud, such as point segmentation and classification, were performed
together. The current data processing workflow of 3D LiDAR point clouds consists of both feature classification and extraction.
In literature, “feature” refers to different levels of granularity of object description. Features imply classification parameters [2],
the objects (e.g. buildings, foliage, etc.), or geometric entities (e.g. feature lines, edges, etc.) [14]. Weinmann et al. [2] have
run extensive experiments on the logistics of object-based classification of LiDAR point clouds. They have recommended the
combined use of random forest classifier, optimal size of local neighborhood, and selected feature set based on Correlation-
based Feature Selection method [15] for improving the outcomes of the object-based classification of airborne LiDAR point
clouds. This result, which is generalized across benchmarks and without any heuristics, emphasizes the growing popularity of
supervised learning based classification of LiDAR point clouds, owing to its inherent uncertainties. These uncertainties, due to
the variety in the nature and density of objects present in natural environments, make these point clouds different from the kinds
encountered in computer graphics [16]. Thus, we decouple the 3D reconstruction from classification, where the decoupling
allows us to pose our problem as a 3D reconstruction of labeled point clouds. In this work, we focus exclusively on points
labeled as buildings.

Overall, our goal is to propose techniques which use LGDs and visualization for enabling a user to interactively determine
and extract shapes of roofs. The visualizations enable decision making for steering computations for LiDAR point cloud
processing by the human-in-the-loop. Our proposed work is useful for exploratory data analysis, which is an alternative to
completely automated methods. Our first step in this approach is in generating wireframe models, as a starting point [13],
which we validate using a preliminary surface/plane fitting in Section V. Here, our contributions support a tensor-based data
analytic workflow for visual exploration of labeled airborne LiDAR point clouds and extraction of line segments of the building
roofs. Our novel methods are:
• The use of visualizations of eigenvalue features of LGDs and other geometric features, for extracting an intermediate data

structure, which in our case is a triangulated irregular network (TIN) of a relevant subset of the points,
• A weighted function of eigenvectors of LGDs and other geometric properties for propagating edges in TIN for line segment

extraction,
• A post-processing step based on roof topology graph for improving the outcomes of line extractions to give convex and

planar roof panels, which we demonstrate for a simple gable roof with two planar panels.
We demonstrate our proposed method on the benchmark dataset of the Vaihingen site, published by the International Society
for Photogrammetry and Remote Sensing (ISPRS)1.
Frequently used notations: Light Detection and Ranging (LiDAR), Local Geometric Descriptor (LGD), Triangulated Irregular
Network (TIN), Gradient Energy Tensor (GET).

II. RELATED WORK

There has been active research in the area of contour extraction for buildings from LiDAR point clouds. It is largely posed
as a point segmentation problem, where the buildings are identified and isolated using region growing algorithms. Our method
belongs to the class of edge-based segmentation methods [17], even though we do not perform an explicit point segmentation.
Edge-based methods are good for faster segmentation of points to coherent regions, however they are sensitive to noise. There
have been works similar to ours where eigenvectors are used for propagating the contours [16], [18], [19]. Several papers
on reconstruction models for entire buildings capture roof reconstruction as a geometric problem [20], [21], [22] where they
compute planar equations of point segments on the roof. Several papers also use Random Sample Consensus (RANSAC)-based
methods for model estimation of the buildings and its roofs [23], [24], [25].
Roof Shape Extraction: Haala and Kada [21] have reviewed several works on 3D building reconstruction, where they are
broadly classified into roof shape and building facade extraction methods. Our work falls in the former class, and specifically
in the category of polyhedral roof reconstruction based on segmentation, as opposed to methods using primitive shapes or
Digital Surface Model (DSM) simplification. In our approach, the segmentation is performed implicitly by the user, guided
by visualizations. Vosselman et al. [26] have used 3D Hough transform for 3D plane detection and reconstruction. Verma et
al. [27] have proposed building detection and modeling from aerial LiDAR data by using a topology graph to estimate simple
parametric shapes of the building roofs. We propose the use of topology graph in our post-processing step. Shan et al. [22]
have distinguished between planar and non-planar points using eigenvalue analysis of local neighborhood of points using the
normalized minor eigenvalue of covariance matrix. They have used k-means clustering in the feature space to separate point
clusters between roof segments, and further processing to separate the roof segments for reconstruction. The shortcoming of
this method is in identifying the number of clusters a priori for the clustering process. Sohn et al. [28] have used binary space
partitioning and height clustering which works well for extracting flat roofs with complex shapes, as well as for multi-plane
roofs, with post validation for the latter.

More recently, Lin et al. [11] have used multi-view images in addition to point clouds, to find two-dimensional (2D) line-
support regions and then construct their proposed line-segment half plane (LSHP) data structures from the line-support regions.

1ISPRS Benchmark Dataset: http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html

http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html
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The LSHP structures consists of 3D tangential rectangles. However, this approach requires multi-view images. Lin et al. [12]
have proposed line segment extraction from the point clouds using the geometric properties of smaller planar surfaces, called
facets, which are extracted using alpha-shapes from computational geometric concepts. In our method, we start with existing
LGDs, without having to compute additional geometric data structures. Xia and Wang [29] have proposed a fast algorithm for
edge extraction using eigenvalues of the gradient tensor of the height function for edge detection, and minimization of path
deviation angles for the extraction. We have encapsulated the gradient tensor of height function, which exploits the 2.5D nature
of LiDAR point clouds, in our LGD using gradient energy tensor. Similarly our proposed weighting function for identifying
points which belong to edges we use the path deviation as one of the components.

Hackel et al. [13] have performed contour detection in unstructured 3D point clouds using supervised learning. We attest
to their statement on the need for computing line-type features before finding surface patches, as being lower-level geometric
constructs/primitives, the former can guide point cloud segmentation, which gives the latter. In their two-step contour extraction
algorithm, they have first predicted the likelihood of a point being on a contour and in the second step, they have used points
with higher likelihood to be seed points from which an over-complete contour graph is derived. Then, finally, an optimal
subgraph is determined to be the contour. Our structural classification is similar to their first step in outcome, except their
method uses supervised learning. The second step is in connecting these points to extract lines. Similar to their work, we reuse
the parameters used for semantic labeling [30] and confine ourselves to purely position information of the points, which is
universally present in all LiDAR point cloud datasets. They have used local non-maxima suppression for candidate generation,
which is similar to our method, except that the candidates are confined to a local triangulation, in our case.
Computer Graphics and Geometry Processing: In computer graphics and geometry processing, extraction of sharp features
is an important problem [31], which is of relevance here, since gable roof lines are considered to be sharp features. Their
application on (structurally/geometrically) well-defined computer graphics models (e.g. fan-disk, smooth feature, etc.) differs
from unorganized point clouds of natural environment scans, since the former works on basic surface features, which is of
interest in graphics-based approaches [13]. Weber et al. [31] have proposed a two-step process, where in the first step, Gauss
map clustering is used to determine if a point is on a sharp feature or not, and in the second, moving least squares (MLS)
method is used for computing the surface reconstruction, considering the points already “tagged” as belonging to sharp features.
In our work, we use our LGDs for finding points that belong to the line-segments of the roof, and it is possible for us to
implement the MLS method for reconstructing the building. However, in this work, we explore the use of LGDs for “tagging”
the points in point cloud as points on building outline, which is equivalent to finding sharp feature points. With the use of
multi-scale difference of normals (DoNs) [32] at each point, we are implicitly using the key concept used in [31]. While they
have used global triangulation, we use a localized one.

Keller et al. have implemented a line feature extraction approach using eigenvalue-based features of local geometric
descriptors have been applied to LiDAR point clouds [16]. Here, we investigate feature line extraction algorithm using tensor
voting based LGDs. Our contribution is in proposing alternative approaches for extracting feature lines using LGDs. Different
from [16], we use a TIN of selected points. We then compare two approaches for extracting feature lines using local geometric
descriptors. We propagate a tensorline [33] on the TIN, based on specific criteria of 2D and 3D local shape and geometric
features used for object-based classification [2].

III. BACKGROUND

Here, we describe the LGD [34] based on tensor voting [3] and gradient energy tensor (GET) [35]. This descriptor identifies
sharp features better than simpler LGDs, such as, the covariance tensor2 or the one based on tensor voting. We explain the
use of this LGD in our methodology further, in Section IV. We use a multi-scale approach for computing these LGDs [3],
[16], which gives a probabilistic geometric classification of the point cloud. For our proposed point processing methods, we
require eigenvalue-based features and other structural features of the LGD. We choose to use this LGD for our experiments, as
opposed to the conventionally used covariance tensor, owing to its comparatively better performance in identification of points
on gable-roof line as stronger line-type features [3]. That said, our larger goal is to design interactive tools which can use any
LGD, represented as positive-semidefinite second-order tensors, as the central actors. Here, we show a proof-of-concept using
the LGD proposed in [34].

A. Tensor Voting-based Local Geometric Descriptor
Conventionally, the covariance tensor in a local neighborhood of a point is used as a LGD of the point in the LiDAR

community [4]. The LGD has been used for structural classification of the point cloud [16], which labels each point as to
belonging to line-, surface-, or (critical) point-type features. This is determined by the shape of the local neighborhood, which
is either cylindrical, disc-like, or spherical, respectively. This shape is determined by the eigenvalues of the LGD. In [3], a
tensor voting-based LGD, upon application of anisotropic diffusion [36], has shown to enhance the line-type features better.
This LGD identifies the points on roof boundary and gable-roof lines as line-type features. Tensor voting is initialized by
assigning an unoriented ball tensor at point x, given as:

V (x) = ∑
y∈N(x)

µy.

(
Id−

t(y)t(y)T

t(y)T t(y)

)
, (1)

2Since covariance matrix is a positive-semidefinite second order tensor, we refer it to as covariance tensor hereafter.
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where t(y) = (y− x), µy = exp
(
− ‖t(y)‖

2
2

σ2

)
; Id is identity matrix of size d, which is the dimensionality of the dataset, i.e., 3,

for point clouds. Anisotropic diffusion is then applied to the tensor, which slows down the diffusion process across a sharp
feature/edge and makes the diffusion along the feature faster [36]. Thus, the tensor voting-based LGD is given as:

T3DV T =
2

∑
i=0

exp
(
− λi

δ

)
∗ eieT

i , (2)

where eigenvalues λi, correspond to eigenvector ei of V (x), for i = 0,1,2, and diffusion parameter is δ , with default value of
0.16 [3], [36]. We follow the convention: λ0 ≥ λ1 ≥ λ2. We observe that the covariance tensor and the tensor voting-based
LGD are tensor products of tangent and normal vectors, respectively. Thus, these LGDs are positive-semidefinite symmetric
second-order tensors.

B. Gradient Energy Tensor
We observe that “structure tensor” is an overloaded (using the object oriented programming parlance) term across different

research communities. The covariance tensor is called structure tensor in LiDAR community [18], [37]. However, in the image
processing and computer vision communities, structure tensor refers to the second-moment matrix in images, derived from
gradients [38], [39]. While the LGDs discussed in Section III-A capture the first-order differences, higher order gradients
are not captured. Sreevalsan-Nair and Jindal [34] have demonstrated that the use of higher order gradients can improve the
structural classification. In image processing applications, the higher order gradients have been used, in the form of gradient
energy tensor (GET) [35]. The GET is a 2D second-order tensor that has been used as an improvement of the energy tensor
in finding points of interest (PoI) in the image [40].

In point clouds, modifying the structure tensor, TS, using GET has shown improvement in its performance in detecting
line-type as well as (critical) point-type features in airborne LiDAR point clouds [34]. GET, TGET ( f ) is computed using: (a)
the 2D gradient of the function, f , defining the image, given by ∇ f = ( d f

dx ,
d f
dy ) = ( fx, fy), (b) the gradient of the Laplacian of

f , given by T f = ∇(∇T ∇ f ), and (c) the Hessian of the function, given by H f = ∇∇T f .

TGET ( f ) = (H f )(H f )T −0.5
(
(∇ f )(T f )T +(T f )(∇ f )T ). (3)

The 3D LiDAR point cloud can be considered as the height map of the 2D data, i.e. the (longitude, latitude) data; and
hence is 2.5D. Thus, TGET (z), where z is the height function, has been used to find points of interest in the LiDAR point
cloud. The GET is a symmetric second-order tensor, similar to the LGDs. However, different from the LGDs, the GET is
not positive-semidefinite at all points. Nonetheless, it has been observed that the GET is positive-semidefinite at the PoIs, and
hence the cases where the tensor has negative eigenvalues, they can be truncated to zero [41]. Thus, we constraint the GET to
be a positive-semidefinite second-order tensor.

The integration of tensor voting and gradient-based methods has shown improvement in structural classification in [34]. It
has been observed that TGET identifies the (critical) point-type features better than T3DV T . Hence, TGET is used to re-label the
structural classification we obtain using the LGD, T3DV T . In general, in object-based classification, trees (dense foliage) have
been found to be misclassified as buildings [4]. TGET detects the foliage points as critical points, which we use for correcting
points identified as line-type features by T3DV T [34].
Structural Classification of 2D GET: Just as 3D LGDs, such as covariance tensor and T3DV T , give three structural classes, the
2D GET gives two, namely, line-type features and critical points, which are referred to as points of interest (PoI) in [35], [40] 3.
For TGET , we compute the following multi-scale saliency values, using eigenvalues computed at each scale, λ0(x,r)≥ λ1(x,r):

Ll,s,p(x) =
1
Nr
·

Nr

∑
i=1

cl,s,p(x,ri); (4)

where cl(x,r) =
λ0(x,r)−λ1(x,r)
λ0(x,r)+λ1(x,r)

;

cs(x,r) = 0; and

cp(x,r) =
2∗λ1(x,r)

λ0(x,r)+λ1(x,r)
.

We observe that T3DV T performs the detection of line-type features better than the covariance tensor, and the detection of
(critical) point-type features worse than the covariance tensor [3]. Since TGET uses higher order derivatives, which captures a
more realistic nonlinear fitting model of the local neighborhood, we give higher confidence to the critical points identified by
TGET . Thus, at points identified as critical points by TGET , but not by T3DV T , we replace the LGD at those points using an
aggregated one, computed as a combination of T3DV T and TGET . This specifically enables the points in the foliage/vegetation
(object) class to be re-labeled as (critical) point-type features, which is correct as per their isotropic behavior.
Aggregating 3D Tensor Voting-based LGD with 2D GET: Here, we elaborate on the computation of an aggregated LGD at
each point by combining tensor voting and GET, which is not explained in [34]. We mark the points xm, which are classified

3The POI is different from our usage of “point-of-interest” in this work. Hereafter, we refer to the points we identify for local triangulation as “points-of-
interest” and the POIs identified by GET as critical points.
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as critical points by TGET , but are not classified the same by T3DV T , to be re-labeled, and update the LGD using an aggregated
LGD. For the aggregation, we use our observation of the correspondences between point classification given by the saliency
maps of T3DV T and TGET . We find two visual correspondences: (a) the line-type features identified by the GET correspond to
critical point-type features identified by T3DV T , and (b) the critical point-type feature of TGET correspond to line-type features
of T3DV T (Fig. 1).

Our proposed aggregation entails re-assigning the saliency map of T3DV T at the point to be re-labeled using the saliency map
of TGET . Thus, (Ll ,Ls,Lp)3DV T is given as (0,Lp,Ll)GET . Solving for eigenvalues of T3DV T , we get (λ0 = λ1)3DV T , since Ll = 0.
We then use the expression for (Ls/Lp)3DV T = (Lp/Ll)GET , which gives us the ratio, γ = (λ1/λ2)3DV T = 1+1.5∗ (Lp/Ll)GET .
We reuse the minor eigenvalue λ2 and all the eigenvectors of T3DV T , as only the saliency maps of TGET need to be integrated
and the minor eigenvalue will not make significant change to the tensor. Thus the updated LGD, T3DV T−GET , is given as:

T3DV T−GET (xm) = (5)

λ2 ∗

((
1+

(
3Lp

2Ll

)
GET

)
∗λ2 ∗ (e0eT

0 + e1eT
1 )+ e2eT

2

)
T3DV T−GET (xc) = T3DV T (xc) (6)

for a point to be re-labeled, xm, and a point that need not be re-labeled, xc; where {e0,e1,e2} are major, middle, and minor
eigenvectors of multi-scale aggregated T3DV T , respectively, at the point.
Post-processing: We find that the re-labeling using TGET does not conform to the spatial locality of the point-type features.
Hence, after re-labeling using TGET , we implement a simplified region-growing step to preserve the spatial locality of class
types. In the post-processing step, a point is re-labeled as a point-type feature if a majority of points in its local neighborhood
belongs to (critical) point-type features. Thus, using such a voting scheme, where a vote implies a neighboring point belongs to
(critical) point-type feature, T3DV T−GET of such a point is updated if the number of votes is higher than half the size of its local
neighborhood. If updated, the T3DV T−GET is replaced by the average of the T3DV T−GET of all the critical points in the local
neighborhood. The use of GET, re-labeling and region growing steps improve visual identification of foliage by T3DV T−GET ,
as shown in Fig. 1.

C. Multi-scale LGD
In certain cases, multi-scale LGDs are preferred over optimal or adaptive scales to capture shape distributions across scales [3].

We use the multi-scale aggregated tensor, as computed in [3], as the tensor representation has to be preserved downstream in
the contour extraction workflow for us. The multi-scale aggregated d-dimensional second-order tensor is given by:

TMS =
Nr

∑
r=1

1
d−1
∑

i=0
λi(r)

·
d−1

∑
i=0

λi(r)êi(r)êi(r)T (7)

where Nr scales, given that the eigenvalues and corresponding eigenvectors of the LGD at scale, r, are λi and ei for 0≤ i≤ d−1.
The computation of multi-scale saliency values, (cl ,cs,cp), which give the likelihoods of a point belonging to the line-,
surface, and (critical) point-type features, respectively, is explained in [3]. For eigenvalues of LGD at point x at scale r,
λ0(x,r)≥ λ1(x,r)≥ λ2(x,r), the saliency values are given as:

Ll,s,p(x) =
1
Nr
·

Nr

∑
i=1

cl,s,p(x,ri); (8)

where cl(x,r) =
λ0(x,r)−λ1(x,r)

λ0(x,r)+λ1(x,r)+λ2(x,r)
;

cs(x,r) =
2∗ (λ1(x,r)−λ2(x,r))

λ0(x,r)+λ1(x,r)+λ2(x,r)
; and

cp(x,r) =
3∗λ2(x,r)

λ0(x,r)+λ1(x,r)+λ2(x,r)
.

We use the multi-scale expression in Equation 7 for computing both the multi-scale aggregated LGD as well as multi-scale
aggregated GET, using the corresponding tensors. The multi-scale aggregated LGD computed using Equation 7 has saliency
values the same as those given in Equation 8, by design [3]. Hereafter, our annotations for the 3D anisotropically diffused
tensor voting based LGD, T3DV T , and the 2D GET, TGET , imply corresponding multi-scale versions of the tensor. T3DV T is
computed using Equations 2 and 7, and TGET using Equations 3 (for height function z) and 7. Points are labelled as per the
maximum saliency value, i.e. if for saliency value (Ll ,Ls,Lp), the maximum saliency value is contributed by Ll , then the point
is classified as line-type feature. Thus, we use a probabilistic point classification [3]4.

4Throughout the paper, images of saliency maps are color-coded as (R, G, B) corresponding to (Ll ,Ls,Lp). Dominance of a color channel indicates higher
probability of the corresponding saliency map.
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Area-3 (Vaihingen) Intensity Covariance
Tensor

T3DVT

TGET TGET (color-coded 
same as 3D Local 

Geometric Descriptors)

(Final) T3DVT-GET T3DVT-GET before 
post-processing

Covariance
Tensor

T T3DVT T3DVT-GET T3DVT-GET 
(before post-
processing)

(Final) 
GET

Fig. 1: In the ISPRS benchmark dataset, Area-3 of Vaihingen site (323,896 points), we show the colormaps of intensity
and saliency maps computed from different local geometric descriptors. The saliency maps show (red, green, blue) for (line,
surface, point) type features, respectively. The plot shows distribution of structural classes obtained from different descriptors.
The descriptor, T3DV T−GET , is a post-processed aggregation of tensor voting with anisotropic diffusion, T3DV T , and Gradient
Energy Tensor, TGET [34]. T3DV T−GET and T3DV T perform better than the conventionally used covariance tensor in detecting
the line-type features on gable roofs. T3DV T−GET differentiates foliage from building in the structural classification, in the form
of (critical) point-type features. T3DV T−GET and T3DV T identify 13,622 and 44,101 points, respectively, as critical points.
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D. Feature Space for Line-type Features
For each point in the point cloud, we define a feature space or feature vector, which is conventionally used for object-based

or semantic classification [7], [42]. Generally, the features include height (z), the eigenvalue features from the LGDs, and
Difference of Normals (DoN), ∆n [32]. We use the likelihood of a point belonging to a line-type feature, Ll , as computed
in the multi-scale saliency maps [3]. ∆nat a point gives a strong indication if a point lies on the intersection of two planar
segments, e.g. points on gable roofs. Thus, we use these three features, namely, z, Ll , and ∆n, for our proposed approach for
contour extraction. Computation of ∆n incorporates multi-scale approach, where minimum and maximum scales, rmin and rmax
are used. ∆n at point x, with unit vector of the surface normal estimate n̂(x,r) at x at scale r, is given as:

∆n(x) = 0.5(n̂(x,rmax)− n̂(x,rmin)) (9)

We use the normals of locally fitted planes in the neighborhoods to keep the computation independent of LGDs. We can
alternatively use the minor eigenvector of the LGD as normal, after orienting it correctly for all points, i.e., by using the
appropriate sign for the vector at each point [32].

We compute all features using the multi-scale approach, given in Equation 7. In the case of ∆n, we use the magnitude of
∆n, i.e. ‖∆n‖, as one of the parameters. In our proposed point processing methods, we use the saliency map, Ll , ‖∆n‖, and
height z (Fig. 2).

IV. OUR PROPOSED METHOD

In this work, we focus on a workflow for extracting contours which are line segments on roofs. Our methods can be
potentially extended to other objects such as fences, powerlines, etc. This is a precursor to a complete 3D reconstruction,
which is our future work. Here, we use an intermediate spatial data structure, namely a TIN (same as a triangle mesh), on
which we localize and apply our proposed tensorline-based contour extraction. Unlike triangulating all points in the building
class, we use a local strategy for identifying a subset of points for generating the TIN. Tensorlines are contours extracted using
eigenvectors of second-order tensors [33]. The time complexity of Delaunay triangulation is O(n logn), for n vertices, which
are points in the point cloud. Owing to our requirement for an interactive visual application, we reduce the number of points,
n, used for the triangulation. We further use visualization of features, namely Ll and ∆n, to determine the reduced subset of
points, called points-of-interest, used for TIN generation.

Our proposed three-step method includes TIN generation, tensorline extraction, and post-processing of the tensorlines to
extract line segments in the roof. For tensorline extraction, we identify the seed points of the TIN, from which we propagate
the lines. Our proposed tensorline is a sequence of connected edges of the TIN, starting from a seed point. For identifying
subsequent edges for propagating the tensorline, we propose a novel weighted function for scoring potential candidates. Our
post-processing step includes identifying tensorlines belonging to each line segment in the roof, fitting a line to the line
segments, correcting the lines to confirm to the roof topology graph, and finally correcting the nodes on the roof topology
graph for conforming to planarity of the roof panels. Here, we demonstrate a proof of concept for a simple gabled roof with
two planes.

A. Local Triangulation
We observe that compared to the conventional covariance tensor, the LGD T3DV T−GET detects more line-type features,

by additionally strengthening the ones for gabled roofs. This is significant, as these line-type features are used for contour
extraction. In conventional contour extraction step, several of the line-type feature points get pruned, e.g. in the feature graph
generation in [16]. Thus, the higher point density in line-type features using T3DV T−GET ensures that points in line-type features
do not lose the sharp (or line-type) feature during pruning, thus ensuring enough number of points for propagating tensorlines.

Tensorlines [33] are streamlines which trace a family of eigenvectors of the LGDs, where family implies the ith eigenvector
at all points, for 0≤ i≤ d, for spatial dimensionality of d. In our case, we use tensorlines computed from major eigenvector
(i.e., for i = 0). Streamlines in vector fields are the loci of points where the velocity vector is tangential to the streamline at
the point. Unlike the unidirectional vectors in vector field, eigenvectors in tensor field are bidirectional. Hence, tensorlines
use the principle of minimum deviation when propagating in the direction of the eigenvector. In principle, the feature graph
in [16] is a set of connected tensorlines. Different from the feature graph, we propose to find tensorlines from a set of seed
points, which maximally covers the desired line-type features on the roof, without the constraint of the tensorlines themselves
being connected. However, in order to reduce the extraction of irrelevant tensorlines, we impose a constraint of the region in
which the tensorlines can be propagated. We propose this region to be a ribbon or band of line-type features, such that the
tensorline construction becomes equivalent to skeletonization of the ribbon. Thus, we perform a local triangulation so that the
localized triangle mesh (or TIN) is used as the ribbon. This triangle mesh is effectively used as a spatial data structure for
guiding the contour extraction. There are several roof reconstruction methods which use Delaunay triangulation to generate
TINs for segmentation and other processes [19], [43]. However, our method is novel in the use of local triangulation and its
construction, unlike the commonly used global triangulation5.

The points pertaining to an isolated building belong to several layers at different heights for the same grid location (i.e.
(x,y)). However, we are interested only in the uppermost skin for the roof structure. Additionally, it also implies that the 3D

5A global triangulation triangulates the entire point cloud, whereas a local one uses a smaller subset.
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Fig. 2: We generate a local triangular irregular network (TIN) using points-of-interest identified using interval ranges of Ll and
∆n parameters. For Area-3 of Vaihingen dataset (323,896 points), we show the ortho-map in A, and heatmaps of the saliency
map (Ll ,Ls,Lp) and difference of normals (∆n) in B and C, respectively. We identify subsets of points which have values of Ll
and ∆n in specific interval ranges. The union of these subsets give the set of the points-of-interest. The subsets for the focus
area in the region in yellow box in A are shown in D and E, and their union in F. The TIN for the whole of Area-3 and the
focus area are shown in G and H, respectively, where TIN is colored using the saliency map. shown in B. G shows 30,467
points-of-interest, yielding 3,891,276 triangles, out of the total 69,563 points in building class in Area-3.
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triangulation, global or local, is non-planar and is not guaranteed to be a manifold surface. Hence, the triangulation is unsuitable
for popularly used contour extraction methods in scientific visualization, namely the Marching Triangles, whose variant for
3D volumes is the Marching Cubes algorithm [44]. One could argue finding the upper skin by height clustering, i.e. finding
the highest plane points [28], which can be then triangulated. However, we have found that our visualizations of the feature
space help in identifying predominantly the points on the highest plane, which has been an unintended outcome and improves
the planarity of our triangulation.
Points-of-Interest: The local triangulation is implemented on a subset of the point cloud, called points-of-interest. These points
are identified by finding clusters based on a specific criteria, e.g. same object class [45] or same structural class, which is
applicable in our case too. These points-of-interest become vertices of the local TIN. The benefit of using local TIN is to
ensure sufficient sampling of points along the line-type features to enable contour extraction, which is indicated by the “width”
of the ribbon. Here, we select the building points which visually represent the gable line and the roof boundary, and their
corresponding local neighborhoods as points-of-interest for local triangulation. We use visualizations of the parameter space,
i.e. heatmaps/colormaps of Ll and ∆n, to interactively find the interval ranges of those parameters which capture the feature
lines. While Ll improves the likelihood of points on the gable line to be line-type features, we use ∆n to ensure the inclusion
of the line-type features on the found on the gable-roof line without including other non-boundary points of similar Ll .

In our experiments on Area-3 of the Vaihingen benchmark dataset, we use 30,467 points-of-interest of the total 69,563 points
in building class. This shows how we have narrowed down the points needed for further processing, to 43% of building points.
The set union operation of interval ranges of more than one feature is a novelty of our approach, which has not yet been
considered for LiDAR point processing. Our visualizations using heatmaps (shown in Fig. 2) play a key role in performing
these set operations on point cloud for identifying points-of-interest.
Localized Delaunay Triangulation: The motivation for the local triangulation for contour extraction is three-fold – firstly, to
reduce the dimensionality through the data analytic workflow, by extracting a piecewise planar data structure in 2.5D data, i.e. the
point cloud; secondly, to reduce the computational cost of forming a TIN for the all the points in the building class; and finally,
to extract local structures by exploiting spatial locality. Our method progressively propagates the Delaunay triangulation for
local neighborhood of each point-of-interest using advancing front techniques [46]. Our local TIN ideally should have complete
coverage of all edges, intended to be extracted as line-type features from the point cloud. The points-of-interest are the vertices
of these edges.

B. Tensorline-based Contour Extraction Methods
We extract tensorlines from the local TIN, where the tensorlines contain the points that belong to the line segments of the

roof. The idea is to effectively skeletonize the local TIN to give the sharp features in the buildings in the point cloud. Since
the LGDs of line-type features are cylindrical shaped [3], [16], tracing the major eigenvectors directionally gives us the points
that ideally lie on the line-type features.

We start with seed points and then propagate the tensorline to a neighboring vertex in TIN, at a time. Thus, the problem
of tracing tensorlines reduces to identifying the best edge candidate in a triangle in the TIN which will allow the tensorline
to propagate to the best potential neighboring vertex. This problem is resolved using a two-step approach, namely, identifying
seed points and using our novel weighting function to identify the best edge candidate containing the current vertex. Thus,
we use the TIN as a guideline for propagating the contour, while imposing a constraint that our computed tensorlines are
modified to contain only vertices of the TIN. The original tensorlines have used a fixed step distance to integrate the vector in
the propagating direction using Runge-Kutta methods or other integration methods, as is done with streamline computation in
vector fields [33]. Our modification of using vertices of TIN implies adaptive step distance for tensorline propagation. Also,
we ensure the use of LiDAR points on the edges for a majority part of our proposed workflow, until our post-processing step
of line fitting.

Identification of Seed Points: The seed points should ideally be points on the roof boundary and gable lines. While our
local TIN contains the seed points as well as its neighboring points, we need to isolate the former. To fulfil the need, we
automatically identify them using local maxima and minima in the TIN, in the case of two-plane gable roof. Local maxima
in the TIN automatically isolate the points on the gable line, and the local minima give those on the roof boundary.

Weighted Function for Scoring Edges: Starting from a seed point, we use the major eigenvector, e0, of the LGD of the point
as the guiding direction to propagate the tensorline/contour to the next point. Unlike the streamline computation in tensorlines,
we impose a constraint that our tensorlines are generated exclusively from the vertices of TIN. This constraint requires the
use of a ranking or a scoring function to find the best potential neighboring vertex to the current point on the tensorline. We
use four significant criteria in identifying the best neighboring vertex for propagating the tensorline. We have two additive
contributions in the scoring function, and its corresponding weights. We use length and angle criteria for contributions and its
weights, respectively. One of the two length-angle criteria pairs correspond to eigenvalue decomposition of the LGD, and the
other to the edges in the TIN.

We use the major eigenvalue of the LGD of the neighboring vertex and length of the edge connecting the current and the
neighboring vertices as the two additive contributions. We use normalized values, where the normalization factor uses the
corresponding maximum values in the local neighborhood. The idea here is that an LGD with a higher major eigenvalue and
a longer edge are ideal candidates for tensorline propagation.

Given two edges with similar values in either component, we use appropriate weights to decide which edge is to be selected
between the two. The first criterion ensures that the tensorline is tangential to the major eigenvector e0 of the LGD at any
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point, and the second one, that the deviation from the path at any given point should be in the forward direction. The latter
ensures that the tensorline does not reverse direction at any point or introduces cycles. The angle of deviation from the path is
not considered for the seed point, since it is the starting point on the tensorline. Given the bidirectional nature of eigenvectors,
the minimum angle of deviation enables choice in the direction of tensorline propagation. Thus, the score of an edge between
current vertex v1 and neighboring vertex v2 is a weighted sum:

Se(v1,v2) = λ0(T3DV T−GET (v2))/

argmaxv∈N(v1)λ0(T3DV T−GET (v))
Sd(v1,v2) = ‖v2− v1‖2/argmaxv∈N(v1)‖v− v1‖2

we = 0.5∗ (ê0(T3DV T−GET (v1))+

ê0(T3DV T−GET (v2))) · (v2− v1)/‖v2− v1‖2

wd = (v1− v0) · (v2− v1)/(‖v1− v0‖2 ∗‖v2− v1‖2)

S(v1,v2) = we ∗Se(v1,v2)+wd ∗Sd(v1,v2)

(10)

Here, edge connecting v0 and v1 is the previous edge in the tensorline. For finding the potential neighboring vertex of the seed
point, wd is set as 0, in the absence of a previous edge. Our algorithm can be flexibly made a multi-pass one by iteratively
converting all points in tensorlines in previous passes as seed points. The multi-pass approach allows us to fill in missing links
in preceding iterations. Fig. 3 shows the stages in tensorline computation, starting from the local TIN.
Discussion of Our Tensorline-based Approach: Our method is similar to the feature graph extraction proposed in [16]. The
motivation behind computing the feature graph and, in a similar vein, tensorlines is for identifying a larger subset of points,
in addition to the seed points, which have a higher likelihood of lying on the line features (i.e. boundary lines and gable line)
of the roof. Probabilistic methods for structural classification do not guarantee that all points identified as line-type features
lie on the line features.

Keller et al. have found points in a local neighborhood of specific size whose major eigenvector has least deviation to that
of the seed points, and thus propagates the lines. Our method is similar to this methodology, however, the selection of seed
points and the search for neighborhood points are different in the two methods. Their selection of seed points is fixed, i.e. they
are the line-type features as well as critical points in the point cloud; whereas ours is from the local minima and maxima of
the local TIN.

While Keller et al. have used an octree to search for neighborhood points for propagating the feature graph, we use the local
TIN to find neighborhood of intermediate point to propagate the tensorline from triangle to triangle. Similar to our method,
in [18], tensorlines are used for edge extraction in building. However, different from our method, Gross et al. have used a set of
points as trigger points to propagate the major eigenvector of the covariance tensor, after which points collinear to the trigger
points in the direction of the eigenvector are used for constructing edges. Our method alleviates the burden of appropriate
selection of seed points and appropriate step-size, which is present in the tensorline computation algorithm [33].
Tensor-based Data Analytic Workflow: In [3], [34] we have shown how the LGDs used for LiDAR point processing can
be represented as second-order tensor fields. In this work, we show how the tensor representation can be included in a data
analytic workflow. The workflow is consolidated in Fig. 4, where we show that the tensor-based data analytic workflow is
supported by intermediate data elements and their analysis.

C. Post-processing Tensorlines
Our tensorlines are noisy and do not define the line segments of the roofs neatly. Hence we perform a four-step post

processing on the tensorlines.
1) We first segment the set of tensorlines so that each subset of tensorlines correspond to a line segment in the roof. For this,

we interactively perform a lasso operation in the graphical user interface (GUI), to identify the tensorlines belonging to
the segment.

2) We use a linear least squares line fitting algorithm in order to find a single line segment to find cleaner lines. This is
done to minimize the root mean square error of fitting a single line segment for each subset of tensorlines, as shown in
Fig. 5-A.

3) However, this does not give us the expected roof topology graph, as shown in Fig. 5. Every roof type has a corresponding
roof topology graph, as shown in Fig. 5-B for a simple gable roof with two planes, which guides its geometric
reconstruction. Hence, in the third step, we identify the positions for each node in the topology using an optimization
method.

4) In the final step, we use coplanarity criteria on roof planes described in the roof topology graph to get the final contour.
In our work, we demonstrate the implementation of the post-processing step on the tensorlines for a simple gable roof with
two planes. It must be noted that all steps until the extraction of tensorlines are the same for all roof types.

The lasso operation requires the human-in-the-loop, and hence can be a source of Type-II error (or false negatives), further
discussed in Section V. While we can automate this method using density-based clustering [47] for outlier removal, our current
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Area-2 (266,675 points, 
69,097 building-labeled points)

Area-3 (323,896 points, 
69,563 building-labeled points)

6,138,685 triangles 3,891,276 triangles

6,577 seed points 3,319 seed points

37,241 tensorlines 13,792 tensorlines

Fig. 3: The sequential outcomes of different stages in our tensorline computation. In Area-2 (left column) and Area-3 (right
column) of the Vaihingen dataset, we compute the local triangulation (TIN) based on specific criteria derived from local
geometric descriptors, shown in the top row, where the local TIN is colored using the saliency map. This is followed by
automated computation of seed points (magenta points) from the TIN (gray surface), shown in the middle row. We then
compute tensorlines (black lines) from the local geometric descriptors, for building points (colored green to blue based on
height map), as shown in the bottom row). The TIN is generated from a set of points-of-interest which is a union set of points
with Ll ∈ [0.15,0.5] and ∆n ∈ [0.3,0.9], in the case of Area-2, and a union set of Ll ∈ [0.25,0.55] and ∆n ∈ [0.3,0.9], for that
of Area-3. Thus, we progressively reduce the number of points in the point cloud at each step of our workflow. Here, seed
points account for only 9.5% and 4.7% of the building class points, in Area-2 and Area-3, respectively. The red inset for a
building in Area-2 shows noisy tensorlines.
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Fig. 4: Our tensor-based data analytic workflow for LiDAR point processing for contour extraction. The ellipses and rectangles
show the data elements and processes, respectively. The workflow, in itself, is shown in the middle, and on the left is the
group of intermediate data elements and supporting analytic processes. To the right of the workflow is the set of visual analytic
processes we propose, for improving the outcomes of the workflow by providing feedback using visualizations. The visual
analytic processes allows the human-in-the-loop to make decisions for improving outcomes of the workflow.

implementation is useful for interactive exclusion of outliers in the tensorlines. Analysis of appropriate density-based clustering
algorithm for this application is currently out of the scope of this work.

As shown in Fig. 5-A, we observe that each node in the roof topology graph does not have a unique location, and can
have at least two options for its position coordinates based on the end points of the line segments which intersect/meet at
the node. These multiple options occur because we have independently computed the line segments without considering their
intersections. For instance, for the roof boundary, the two options for each node are from the end points of the line segments
obtained using two sets of tensorlines. For the gable roof, the two options are the line fitted from tensorlines as well as
intersection points of the line segments in the roof boundary. Additionally, we include a third option of using the average of
the points in the first two options of position coordinates at each node of the topology graph. We iteratively check for the
three options for the nodes in the topology graph, fixing the roof boundary initially, and subsequently fixing the gable line. We
optimize our solution by minimizing the angle distortion of final line segments fitting the topology graph and its corresponding
line segments, by using the linear least squares fitting algorithm. The angle distortion is computed as the dot product of the
unit vectors of the computed line segment and its corresponding corrected line segment. Now, the line fitting step gives us
closed boundaries for the roof planes, but, not necessarily planar surfaces.

Once we fix the roof points in correspondence with its roof topology graph, we enforce coplanarity of points describing a
roof plane or panel in the topology graph. For instance, for sets of points (1,2,6,5) or (1,2,4,3) in Fig. 5-C, we keep the gable
line and an additional node per plane as fixed. We then identify nodes which are not coplanar with the fixed points in each
roof plane, and project them perpendicularly to the roof plane. For example, in Fig. 5-C, we consider points (1,2,3,5) as fixed
points. This is a simplistic approach which we use as a proof-of-concept. Further analysis needs to be done on a rigorous
approach to enforce coplanarity. Additionally, this approach is usable for a simple two-plane gable roof, in our case, as we are
correcting only two nodes per roof, which in itself gives relatively low deviations, as studied in Section V. It is not guaranteed
that this approach will work for complex roof topologies, as identification of fixed points is nontrivial.
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Fig. 5: Our line-extraction module for building roofs consists of three steps, namely, (i) performing a linear least square on
tensorlines clustering along the edges, shown in A, (ii) using the roof topology graph to determine the closed boundary of the
roof, as shown in B, and (iii) determining planar roof panels by projecting non-planar points to the approximated roof plane.
In B, we show the roof topology graph for a simple gabled roof, for which we maintain the order of line-segments (marked
with T,B,R,L for top, bottom, right, and left, respectively). This ordering is maintained for giving consistent clockwise walks in
the two roof planes/panels, irrespective of its orientation. For our experiments in Area-2 and Area-3 of the Vaihingen dataset,
we have selected five and seven buildings, respectively, for reconstruction, as shown in D.
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D. Summary
Our tensorline-based workflow for line segment extraction in building roofs from airborne LiDAR point clouds can be

summed up as the following algorithm:
1) Find multi-scale LGD at each point T3DV T−GET . Using the LGD, compute the parameter feature vector, namely, saliency

maps (Ll ,Ls,Lp), and DoN ‖∆n‖, at each point.
2) Find the points-of-interest Sl , using relevant classes and interval ranges of feature parameters identified by heatmaps.
3) Compute the TIN of Sl using Delaunay triangulation.
4) Find seed points for tensorline extraction, e.g. local minima and maxima of the TIN.
5) For each edge added to in each tensorline, check potential front propagating edge by ranking the scoring function

(Equation 10) for all neighboring vertices of the current vertex in each tensorline.
6) Segment or isolate tensorlines belonging to each line segment of the roof, i.e. edge in the roof topology graph, using a

lasso operation.
7) For each segment of tensorlines, perform a least squares line fitting algorithm to find the best oriented segment.
8) Correct the computed line segment by assigning position coordinates to the nodes in the roof topology graph based on

the possible options for each node.
9) Identify fixed nodes in the roof topology graph for defining roof planes, and project the non-fixed nodes to ensure

planarity in the reconstructed roof planes.

V. EXPERIMENTS

We have performed our experiments on two datasets, namely Area-2 and Area-3 of Vaihingen dataset. The regions have
been described as the “High Riser” and the “Residential Area”. The choice of Area-3 is especially apt owing to the large
number of buildings with gable roofs. For multi-scale computations using normalized coordinates, we have used rmin and rmax
as 0.008 and 0.012, with five scales, where the radii of local neighborhood are normalized in the bounding box of the dataset.
For T3DV T and its variants, including T3DV T−GET , we have used diffusion parameter δ = 0.16 [3]. The focus of our current
work has been on the geometry extraction for building roofs amongst other objects, as they give the signature for an urban or
residential region and are conventionally used for 3D reconstruction. Our choice of buildings with simple gable roofs is shown
in Fig. 5-D.

A. Results and Discussions
The results of our contour extraction method using LGDs and our visual analytic approach are as shown in Fig. 6. Our

optimization method has given minimum distortion when taking the third option for all the nodes of the roof topology graph,
i.e. the average of the two options for position coordinates obtained from least squares line fitting algorithm. We have also
compared our baseline algorithm for feature graph extraction proposed in [16] (using covariance tensor) with the best results of
Marching Triangles algorithm and tensorline-based methods, as shown in Fig. 7. Overall, our workflow shows better coverage
of the feature lines of the roofs, i.e. both boundaries and gable lines. The improvement in the coverage is due to the use of
points-of-interest which has larger coverage of both line-type features and other relevant points which satisfy specific criteria.
Our method is unlike the feature graph extraction proposed in [16] which limits its selection of nodes to the line-type features.

Quality of the Tensorlines and its Equivalence to the Feature Graph: The extraction of feature graph in [16] is intended
to remove extraneous lines. However, our visualizations demonstrate that their coverage of sharp features by the feature graph
is limited, for both building boundaries and gable lines. Since the boundaries are not extracted completely in the feature graph,
even flat roof boundaries cannot be extracted directly. Our method, however, oversamples the contours for both boundaries as
well as gable roof lines. We argue that denser set of contours is preferable to the sparser one, as the line fitting step will give
better results with more samples.

Errors Accumulated during Post-processing Step: As expected, the contours extracted in different steps of our post-
processing method deviate from the subsets of the original point cloud, which form the original tensorlines. As plotted in Fig. 8,
we have computed the deviation caused by the post-processing step using the root mean square errors (RMSE) between: (a)
line segments computed using linear least squares line fitting and tensorlines, and (b) the final line segments and tensorlines.
The final line segments are the outcome of the corrections for both closed boundaries of line segments, and coplanarity in
the roof planes. Our experiments show that the RMSEs are negligible (the maximum error is ∼ 5.6%, i.e. ∼ 14m, per line
segment in the roof topology graph). However, we observe through our visualizations that the shape of the roof has distorted
slightly in few buildings. These distortions reflect in our ground truth analyses in Table I. One of our future exercises would
be to correct line segments using other related properties such as symmetry of the structure, etc..

Ground Truth Analysis: The Vaihingen dataset has been published for ISPRS benchmark challenge for reconstruction from
airborne LiDAR point clouds 6. We have compared our results with the ground truth images from three different sources: (GT-
a) the roof boundaries from the challenge organizers (Institut für Photogrammetrie und GeoInformation, Leibniz Universität
Hannover), (GT-b) semantic (object-based) labeling ground truth for one of the datasets, Area-3, as published by the challenge
organizers, and (GT-c) Openstreetmap [48] data, downloaded for the region encompassing both Area-2 and Area-3. The ground
truth analysis has been done by using overlay of our results on ground truth images, as shown in Fig. 10 – Sets A and B are

6ISPRS benchmark challenge for detection and reconstruction: http://www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html

http://www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html
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Fig. 6: Extracting line segments from tensorlines of building roofs is done in three sequential steps: (i) linear least square
fit, (ii) roof topology graph based correction, and (iii) projection of points for coplanarity. Results from (i), (ii), and (iii) are
shown in red, blue, and magenta line segments, respectively, for buildings marked in Fig. 5-D. Correcting the line segments
based on roof topology graph using averages of options has given the best results. Visually, our final output, i.e. magenta line
segments, aligns the best to roofs observed in the raw point clouds.

outcomes for Area-2 and Area-3, respectively, using (GT-a); Set C is that for Area-3 using (GT-b), and Set D is that for both
Area-2 and Area-3 using (GT-c).

Unlike other automated contour extraction techniques [23], [29], the metrics based on number of detected edges are not
applicable to our work as our methodology involves user interaction on the GUI to pick edges from the visualization. Hence,
we have used the metrics based on pixel coverage of our extracted roof boundaries and the planes fitted in the boundaries. We
have recorded the quantitative analysis based on confusion matrices for the ground truth analyses in Table I. We observe the
following from Fig. 10 and Table I:
• In general, we find that our results have higher accuracy compared to other roof extraction methods. This observation is

as expected, since our method is not automated and is based on the decisions made by the human-in-the-loop guided by
appropriate visualizations.

• The ground truth analyses of sets A and B perform weaker than that of C and D. This could be attributed to the thicker
roof boundaries without the filling of roof panels, which leads to ambiguity in coverage. In a similar vein, the recall in
sets A and B are comparatively lesser than those of sets C and D, owing to higher ratio of false negatives to true positives.
We attribute this observation due to the roof boundaries being marked, in the ground truth in sets A and B, to be wider
than a single pixel.

• Since we have performed the roof reconstruction for buildings with the topology of two-plane gable roof only, the true
negatives in each of the ground truth analyses are relatively high, which skews the results involving true negatives, such
as, specificity, and false positive rate. Even though computation of Matthews correlation coefficient (MCC) depends on
the value of true negatives, it provides balanced measure for classes with large variations in size. Hence, we comment
further on MCC as well as other metrics which do not depend on true negatives, namely, recall, precision and F1-score.

• We observe that our extracted roof boundaries do not sufficiently cover the ground truth data in all the sets. This could
be attributed to the user being conservative in interactively choosing points within the roof boundaries as opposed to on
or outside of the boundaries. This behavior is characterized by the relatively higher percentage of false negatives. This
could also be attributed to the step of enforcing coplanarity in the roof planes. These observations lead us to conclude
that while our proposed method shows high precision, it has lower sensitivity or high miss rate.

• The precision is relatively low in set D, which is due to high ratio of false positives to true positives. This could be
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Feature Graph Extraction Marching Triangles 
(contour value of Ll =0.4)

Tensorline-based

Fig. 7: Comparison of feature graph extraction [16] and similar methods using Marching Triangles for contour function
constructed with the help of visualization, and tensorline-based method. Our results for our focus area in Area-3 of Vaihingen
(bottom) as well as the entire Area-3 (top) show that our visual analytic method outperforms the feature graph extraction
method in extracting building edges and gable roofs using cleaner lines.

attributed to discrepancies seen between building footprints in Openstreetmap and reference data [49]. The F1-score of
Set A is relatively low, owing to the comparatively low value of recall.

• The value of MCC is within [0.84,0.90] for all sets, except for set A, for which it is 0.79841. The values of MCC being
closer to +1, than −1, imply that there is high correlation between observed and predicted values. The lower value of
MCC in set A can be attributed to higher number of true negatives.

Run-time Performance Analysis: We have implemented our algorithm on workstation with a 1.9 GHz AMD quad core
processor, A8-4500M, with 4 MB L2-cache; 6 GB 1600 MHz DDR3 memory, and video graphics with AMD Radeon HD
7640G and 7670M Dual GPU (1 GB DDR3 dedicated). Our process-wise and cumulative run-time performance analysis are
shown in Fig. 9. Our algorithm works with the entire point cloud until the generation of the TIN, after which we use the TIN
or the localized triangle mesh exclusively for further processing. Hence, our algorithm takes cumulative preprocessing time of
285.093 seconds for Area-2, and 384.332 seconds for Area-3. The use of TIN for further processing makes our algorithm for
roof reconstruction real-time, by design, so that we get interactive speeds for GUI operations. Our timing measurements are
computed as an average of five runs. We have observed negligible variances in each of the tasks.

We observe that computing TGET is most compute-intensive process, owing to the computation of higher order derivatives
(going up to third order derivatives). Comparatively, triangulation using Delaunay algorithm is lesser time consuming in our
implementation, owing to the use of optimized implementation of the algorithm in CGAL [50].

As can be seen from our analysis, the preprocessing time is a function of the size of the LiDAR point cloud. Additionally,
we attribute the high preprocessing time for Area-2 and Area-3 to our serial implementation. That said, our algorithm is
embarrassingly parallel, since the computations in our workflow are either for each point in the point cloud, or for each triangle
in the TIN. Thus, we can reduce the time taken for the steps until the TIN generation using parallel implementation. There is
existing work on parallel implementation of octree building and computation of covariance matrices using Graphical Processing
Units (GPUs) has been demonstrated in [51]. To the best of our knowledge, other similar work on building reconstruction do



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 17

B BR G BL TL T TR
0

0.02

0.04

0.06

0.08

0.1

0.12

Area-2: RMSE of Computed Line Segments of Roof Topology Graph
with respect to Tensorlines

B1_LLS
B2_LLS
B3_LLS
B4_LLS
B5_LLS
B1_LLS+CoPlanarity
B2_LLS+Coplanarity
B3_LLS+Coplanarity
B4_LLS+Coplanarity
B5_LLS+Coplanarity

Line Segments of Roof Topology Graph of Simple Gabled Roof

R
M

S
E

B BR G BL TL T TR
0

0.02

0.04

0.06

0.08

0.1

0.12

Area-3: RMSE of Computed Line Segments of Roof Topology Graph
with respect to Tensorlines

B1_LLS
B2_LLS
B3_LLS
B4_LLS
B5_LLS
B6_LLS
B7_LLS
B1_LLS+CoPlanarity
B2_LLS+Coplanarity
B3_LLS+Coplanarity
B4_LLS+Coplanarity
B5_LLS+Coplanarity
B6_LLS+Coplanarity
B7_LLS+Coplanarity

Line Segments of Roof Topology Graph of Simple Gabled Roof

R
M

S
E

Fig. 8: The dotted lines show the root mean square error (RMSE) between corrected line segments using roof topology graph
with respect to the tensorlines, and solid lines show the RMSE between the line segments corrected further for coplanarity
with respect to the tensorlines. The RMSE is measured in distances in the bounding box of Area-2 and Area-3 datasets, after
being normalized between -1 and 1. We observe that the maximum RMSEs or deviations from the tensorlines are 0.113 and
0.104 for Area-2 and Area-3, respectively. The respective RMSE percentages, which are 5.6% and 5.2%, are low given areal
measurements of Area-2 and Area-3 are (225×256m) and (193m×277m), respectively.
(The legend keys include the following notations: B1,...,B7 are the buildings identified for our proof-of-concept (given in Fig. 5),
LLS is for linear least square fitting of tensorlines belonging to each line segment of the roof topology graph (Fig. 5), and
CoPlanarity is for correction based on coplanarity of points in each roof panel.)
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not usually provide run-time performance analysis. This can be attributed to the goal in those works being accurate one-time
results for building and/or roof extraction, as opposed to real-time interactive exploration of and geometry extraction from the
point clouds.

Comparison with Recent Methods: We have compared our results against the challenge results 7 We observe that our
method has higher completeness (recall) and lesser correctness (precision) compared to the results given in the challenge.
We could attribute this to the quality of selections made by the user in different steps in our proposed algorithm. Since we
interactively retrieve the boundaries of the roof after tracing the tensorlines, the quality of our reconstruction depends on the
quality of the local geometric descriptor, the choice of the TIN, as well as the tensorlines computed from the TIN.

For qualitative analysis using visualization, we have compared our results with the benchmark challenge results of [52],
[53], [54]. In Fig. 11, we demonstrate a qualitative analysis of overlays of roof planes for both Area-2 and Area-3 of the
Vaihingen site, with the comparative results of MEL-HE [52], MON2 [53] and MON5 [54]. We observe that for Area-2, the
surface coverage of roof planes extracted from our methodology is not sufficient. The insufficiency is observed in our ground
truth analysis of Set A in both Fig. 10 and Table I.

Similar to MON2 [53] and MEL-HE [52], our current implementation suffers the limitation of extraction of roofs planes
of surface area less than 10m2. However, different from their methods, our limitation stems from the performance of the
LGD which requires sufficient samples from a local neighborhood for providing accurate parameters, such as saliency maps
(Ll ,Ls,Lp). We alleviate this issue by using multiple scales. We also plan to explore the use of adaptive local neighborhood
sizes in alleviating issues such as these, which are discrepancies owing to a fixed local neighborhood size.

MON5 [54] is an improvement over MON2. The methodology in MON5 uses a LGD, namely the covariance tensor, and
improves upon the building reconstruction by detecting sharp features using statistical analysis. We propose to include statistical
analysis in either improving the descriptor or in detecting sharp features more accurately. Currently, our methodology depends
predominantly on gradient analysis of local neighborhoods. User interactivity guided by statistical analysis can improve the
sensitivity of our methodology.

The core difference of our method lies in the facility for graphical exploratory data analysis using visualizations, in comparison
to the methods evaluated at the benchmark challenge which are for automated detection of building and geometric extraction
of roofs. Thus, overall, we provide the flexibility to the user to perform multiple runs of evaluation on the point clouds before
running a single or a combination of automated methods. Our methodology can, thus, be considered to be a precursor to the
automated methods or supervised learning techniques.

B. Discussion on Visual Analytics
In this paper, we have proposed the use of visual analytics in determining the interval ranges of parameter values to be

chosen for extracting the local TIN. The human-in-the-loop, who is guided by the visualizations, is significant in making
decisions on interval ranges of values of features, namely Ll and ∆n, for determining coverage of roof boundaries and gable
roof for all the buildings in the dataset (Fig. 2). The use of visualizations involves trial and error in the entire process. At the
same time, it poses an opportunity to show the effectiveness of interactive tools for in-depth data explorations.

Our prototype tool has the ability to perform lasso operations which captures points that fall within the user-defined region.
Currently, we use the lasso operation on identifying tensorlines belonging to the edges of the roof topology graph. This
operation has a similar scope of automation using machine learning techniques, such as density clustering, which can identify
elliptical shaped clusters, as are expected in the case of line segments in roofs.

Our visual analytic approach has the potential for further customization of similar data analytic processes on LiDAR point
clouds. Our work is a first-cut attempt in the scope of this potential. The difference between the usage and non-usage of visual
analytics is observable in our results in Fig. 6 where our methods outperform the feature graph extraction method.

VI. CONCLUSIONS

In this paper, we have proposed a contour extraction method driven by the local geometric descriptor (LGD) for airborne
LiDAR point clouds in urban and residential regions. Our methodology is semi-automated as it is guided by visualization
which limits the usage of our proposed building roof extraction to a smaller scale. However, our work can be used in the form
of a graphical user interface (GUI) editor, for building extraction or for generating training data for supervised methods for
roof reconstruction. We have used a LGD, T3DV T−GET , which uses tensor voting and gradient energy tensor, and is represented
as a positive semi-definite second-order tensor. We have used T3DV T−GET as it strengthens the line-type features on the gable
roofs as well as on roof boundary. We use both eigenvectors and eigenvalues for generating tensorlines, which are analogous
to streamlines in vector fields. We have extracted the tensorlines using a local triangulated irregular network (or triangular
mesh) as our underlying data structure. Through LGDs, we have explored the feature space used for semantic classification
(object-based classification) for geometric extraction. Conventionally the LGDs are not used beyond semantic classification.
Our motivation for this work has been to provide a proof-of-concept for generalized data analytic workflows for LiDAR point
clouds, such as the one based on second-order tensors, as well as re-using the computations used in semantic classification.
Given that the supervised learning outcomes for semantic classification have been improving, we consider our work to be the
next organic step in the data analytic workflow of the LiDAR point clouds, where we perform 3D reconstruction of labeled point

7Benchmark challenge results are available at http://www2.isprs.org/commissions/comm3/wg4/results/a2_recon.html for Area-2 and at http://www2.isprs.
org/commissions/comm3/wg4/results/a3_recon.html for Area-3.

http://www2.isprs.org/commissions/comm3/wg4/results/a2_recon.html
http://www2.isprs.org/commissions/comm3/wg4/results/a3_recon.html
http://www2.isprs.org/commissions/comm3/wg4/results/a3_recon.html
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Fig. 9: Run-time performance analysis of serial implementation of our algorithm until the generation of the localized triangular
mesh or TIN.
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Fig. 10: Overlay of our extracted roof planes, fitted within our feature line extraction with different ground truth data. Sets A
and B are ground truth obtained from data source [55] for Area-2 and 3, respectively. Set C is the ground truth for semantic
labeling in Area-3, available from ISPRS benchmark challenge website, and Set D is the Openstreetmap [48] data obtained for
Vaihingen site containing both Area-2 and 3. The left column shows the ground truth; the middle column shows the ground
truth with the buildings marked in green (in Sets A and B) or red (in sets C and D); and the right column shows the ground
truth with an overlay of our roof extraction results, shown in transparent magenta polygons and blue feature lines.

Set A B C D
(Area-2) (Area-3) (Area-3) (Area-2 and

Area-3)
True Positive 40583 51453 10472 13514
False Positive 5236 4173 1428 3172
False Negative 14217 12980 819 735
True Negative 804550 574317 230085 778751

Error rate 0.02250 0.02668 0.00925 0.00491
Accuracy 0.97750 0.97332 0.99075 0.99509

Recall 0.74057 0.79855 0.92746 0.94842
Precision 0.88572 0.92498 0.88000 0.80990

Specificity 0.99353 0.99279 0.99383 0.99594
FPR 0.00647 0.00721 0.00617 0.00406
MCC 0.79841 0.84527 0.89859 0.87404

F1-score 0.80667 0.85713 0.90311 0.87370

TABLE I: Quantitative ground-truth analysis using confusion matrix obtained from ground truth data in Sets A-D (Fig. 10).
Confusion matrix gives the observed true positive (TP), false positive (FP), false negative (FN), and true negative (TN); and the computed metrics, namely, error rate (ERR),
accuracy (ACC), true positive rate (TPR)/recall (REC), positive predictive rate (PPR)/precision (PREC), true negative rate (TNR)/specificity (SPEC), true negative rate (TNR),

false positive rate (FPR), Matthews correlation coefficient (MCC) and F1-score.
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Fig. 11: For Area-2 (left box) and Area-3 (right box) of Vaihingen dataset, we have compared the ISPRS benchmark challenge
submissions by MEL-HE [52], MON2 [53], and MON5 [54] by overlaying our results on their respective image results. The
benchmark challenge submissions are shown in full in the left column in each of the boxes, with insets showing a zoomed-in
version additionally with an overlay of our results, in the right column. The benchmark results, as published, show (true
positive, false negative, false positive) pixels, with respect to the ground truth, in (yellow, blue, red). For the overlay of our
results, we show our extracted feature lines on the roof in magenta, and planes fitted within the feature lines, as translucent
cyan surfaces. Visually our results for the selected simple gable roofs are comparable with those of the benchmark results.

clouds. As the first step towards 3D reconstruction, we extract line segments on gabled roofs. We have devised solutions for
problems of identification of seed points, extraction of tensorlines, and correcting line segments, fitting with the starting point
of our methodology from a local TIN. Overall, our method is a novel approach to visual analytics-guided contour extraction
in buildings in airborne LiDAR point clouds, which can be tested for other types of LiDAR data, which is beyond the scope
of our current work.
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