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Abstract. The human visual system can reliably identify trends in datasets using
various channels of visualization. The success story of visualization in accom-
plishing core analytical tasks has made it a mainstay in various domains, includ-
ing the Geographic Information Science (GIS). The core analytical tasks are data
exploration, decision making, and predictive analysis. Geospatio-temporal data is
ubiquitous, and as the data grows in complexity and size; analytical tasks become
more complex too. In the times of geospatial big data, geovisual analytics has
begun to gain traction. In this paper, we give a brief overview of geovisualiza-
tions, discuss geovisual analytics through a case study, and list out some of the
persistent challenges in geovisual representation and analysis.

1 Introduction

There is a frequently used phrase, which says that “80% of all information contains
some geo-reference.” Hahmann and Burghardt [10] have reformulated this phrase us-
ing evidence to a “60% assertion.” Nonetheless, the geo-referenced data remains to be
relatively more ubiquitous than non-geo-referenced data. Consider the NISAR (NASA-
ISRO Synthetic Aperture Radar) mission [30], which the two space organizations are
going to jointly launch in 2021. The mission is expected to generate around 85 TB of
data daily [6]. The radar imaging satellite will be designed to use dual frequency for
remote sensing for studying natural processes and estimating earth observations (e.g.
biomass, surface deformation, soil moisture, etc.). The mission is estimated to gather
about 140 PB in its 3-year mission.

Overall, the message is loud and clear that geospatial big data is going to stay and
grow, more so. Hence, its analytics cannot be ignored. Li et al. [20] have discussed how
visualization provides a class of methodologies to gain human insight to geospatial big
data. Visualizations provide yet another channel for identifying outliers, building and
verifying hypotheses, and most importantly, “seeing” dominant trends and patterns. Vi-
sualization as a domain has contributed towards techniques for summarization and ex-
ploration of data, as well as “computational steering”. Computational steering [29, 28]
is the process of improving on computations by using intermediate data visualizations,
which effectively influence the workflow. While computational steering is used in com-
putational simulations, a more recent trend has been observed in the form of progressive
visual analytics.



1.1 What is Visual Analytics and How is it Different from Visualizations?

Keim et al. [17] have defined visual analytics as a combination of conventional data
mining and interactive visualizations in a data analytic workflow, for understanding, in-
ferences, and decision-making support for big data. In all interactive applications today,
visualizations have paved the way for visual analytics. This evolution has happened
because a stand-alone visualization or a group of visualizations carefully assembled
together is no longer sufficient for making sense of the big data. Visual analytics pro-
cesses, as shown in Figure 1, could be non-deterministic, as well, and form a feedback
loop which terminates only when “visualization requirements” are met.
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Fig. 1: The visual analytics workflow, as defined by [17], has been modified to include
(a) streaming data; and (b) data feed from data mining. Use of streaming data leads
to incremental visual analytics [31] and use of data in (b) leads to progressive visual
analytics [33, 4].

A more recent concept, “progressive visual analytics,” [33], entails the use of visu-
alization to study the “meaningful partial results” given out during the execution of data
analytic workflow. Fekete and Primet [8] have proposed progressive analytics to be a
synonym for “progressive computations for data analytics,” with consideration for low
latency. Including visualizations to support progressive analytics, Badam et al. [4] have
differentiated between progressive and incremental visual analytics – where the latter
caters to data streaming [31]. Their prototype for “progressive visual analytics” com-
bines both incremental as well as progressive visualization with algorithmic steering,
i.e. iterative control over execution of a computational process [28].



1.2 Geovisualizations and Geovisual Analytics

For visual analysis, specifically, in geospatial applications, MacEachren and Kraak have
introduced geovisualization [26] as an amalgamation of the areas of visualization, scien-
tific computing, and geographic information systems (GIS) to make sense of geospatio-
temporal data. MacEachren et al. [25] have defined the four functions of geovisual-
izations to be “explore, analyze, synthesize, and present.” They also have defined the
space of geovisualizations to be a cube with axes for task types, user types, and user
interaction level.

In 2007, Andrienko et al. [1] have introduced the term geovisual analytics, setting
the stage for its widespread usage as well as development. They have pushed forward
the research agenda for “geovisual analytics for spatial decision support systems” and
differentiated geovisual analytics from the regular visual analytics using three character-
istics, namely, complex spatio-temporal nature of the data involved, multiple stakehold-
ers, and tacit criteria and knowledge. They have illustrated the application of geovisual
analytics in the example of emergency response in a disaster-affected region. Specifi-
cally, to plan the evacuation of people from the region, the planner needs information of
the geography of the place, the road network, the hospital facilities en route, high-risk
personnel, etc. We see that the problem blows out to be a multi-criteria optimization
one. The decision making of the planner, in this case, may be alleviated by making in-
ferences from different “slices” of the data. Visual analytics can also be used to study
the dynamism in this example, say, we can progressively refine the solution using both
the incoming streaming data of the evacuation process as well as partial results from
other data mining process (Figure 1).

In this paper, we sample some of the popularly used geovisualizations in Sections 2
and 3, demonstrate geovisual analytics using a case study in Section 4, and finally ar-
ticulate the research challenges in geovisual analytics. Geo-referencing makes the use
of cartographic products an important element of the visualizations. Hence, we discuss
map-based visualizations in Section 2, and other related visualizations in Section 3. The
geovisualization techniques described in this paper are not exhaustive, however. For in-
stance, we have not covered the role of information visualization techniques as well as
user interactions in all of these visualizations. For details of these topics in the context
of geovisualization, they can be found in parts in [2, 3, 12]. In the current article, we
focus on discussing popularly used geovisualizations and move on to show how they
influence geovisual analytics in a specific case study.

2 Map-based Visualizations

Several of the standard geovisualizations use cartographic maps as contextual elements,
owing to the geo-referential property of the data. We discuss most popularly used tech-
niques using examples of visualizations of Singapore1, as shown in Figure 2:

– Choropleth map: Choropleth map is a cartographic map where (political or other
logical) partitions of regions are colored based on the color computed from the

1 The visualizations of Singapore are available at the portal http://www.viz.sg/
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Fig. 2: Map-based visualizations of Singapore from http://www.viz.sg/: (a) District-
wise heatmap of difference in vote share during the general elections in 2015; (b)
Location-wise heatmap of taxi availability during peak hour (8:45 pm) on December
15, 2017; (c) Hotspot heatmap of taxi availability on October 4, 2017, at 11:40 am;
(d) Node-link diagram showing route of bus service-5 in Singapore; (e) Isochrone map
showing reachability by public transport for 15-minute increments from Raffles Place
Singapore; and (f) Symbol map using blue circles to uniquely represent projects of
private home property being completed during 2016-17, where the size of the circle
indicates number of units.



value of an attribute, e.g. population density, in that partition. A value of an at-
tribute pertaining to a specific region is mapped to a color in a spectrum for a single
attribute. The mapping of the value to a color involves a “transfer” function. Con-
ventionally, this is a linear function, considering a trade-off between computations
and accuracy. An example is a black-to-blue spectrum, mapped from minimum to
maximum value of a function, the saturation of the blue component corresponds to
the normalized value of the function.

– Hotspots: The density of a specific value is mapped to an entire region, based on
the discrete values in the region. A kernel density estimation function is used to
compute the density at all points, and they are colored depending on the density
values. The hotspots are regions which show how the density decreases as one goes
away from the hotspot. The hotspot uses a standard color spectrum, where it is
usually rendered in red, which subsequently fades into orange, yellow, and green.

– Network visualization: Networks are ubiquitously represented in the form of two-
or three-dimensional geometric primitives (e.g., circles, spheres, triangles, etc.) for
nodes, and one-dimensional geometric primitives (e.g., lines and curves) for the
links between the nodes2. Thus, networks are popularly represented using node-
link diagrams. The variations of the visualizations come from the differences in
rendering of the nodes and links, and the graph layout of the network itself. In
geospatial data, transport networks (road, rail, airlines, etc.) are represented using
node-link diagrams. Map-based node-link diagrams constrain the location of the
nodes to be rendered at its latitude-longitude location, as per the cartographic maps.

– Isochrones: For transport networks, the visual representation of regions which can
be arrived from a given point at the same time, show the reachability, and thus
efficiency, of the network. One could thus mark the region reachable in, say δt
amount of time, from a starting point. This can grow out to regions reachable in
increments of δt time periods. Each of these regions are called an isochrone. Such
visualizations can alternatively be constructed using distance as a measure, instead
of time. Such visualizations are called iso-distance views.

– Symbol map or glyph/icon-based visualization: Symbols, glyphs or icons are dia-
grammatic representations of associated attribute/property of the (discrete) point at
which the glyph is placed. One of the most universally accepted glyph is an arrow
for representing a vector or direction. Similarly, in the case of geospatial data, a
specific attribute, say property taxes or population, can be represented as a circle,
as a glyph, whose radius indicates the relative value. The transfer function used in
choropleth map can be used for coloring the glyphs, thus encoding the values using
color.

– Three-dimensional visualization: Considering maps can be used as textures in com-
puter graphics applications, one could generate volumetric visualizations. A pop-
ular web-based earth observation visualization showing the global weather condi-
tions and ocean surface currents is at http://earth.nullschool.net, samples of which
are shown in Figure 3.
Even though a three-dimensional visualization requires extensive computations in
comparison to its two-dimensional counterparts, it provides more intuition and di-

2 Network data is represented using graph data structures. Nodes of a network correspond to
vertices of graph, and links between nodes correspond to edges in the graph. We distinguish
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Fig. 3: Interactive three-dimensional visualization of global weather conditions and
ocean surface currents at http://earth.nullschool.net which is updated every three hours
using forecasts computed on supercomputers. Note the artistic rendering in the visual-
ization of the map of the global wind directions and magnitude in (a) Asia, Europe, and
Africa; (b) the Americas; (c) a close-up of the Indian subcontinent; and (d) a close-up
of the Amazon basin in South America.

Fig. 4: Cartograms of population of the county map of California using (left)
non-contiguous, (middle) contiguous, or (right) Dorling types. Image courtesy:
http://www.ncgia.ucsb.edu/projects/Cartogram_Central/types.html



mensionality realism to geospatial data. Apart from the texture-based visualiza-
tions, this class also includes visualizations which show extrusions in the third di-
mension, from a plane with two-dimensional map texture, e.g. three-dimensional
modeling of buildings on a flat/planar map of a city.

3 Broadening the Scope of Geovisualizations

In this section, we discuss how geovisualizations can be constructed with abstract visual
representations without the aid of cartographic maps. We have discussed about geovi-
sualization exclusively for spatial data in Section 2. This can be extended to geospatio-
temporal data, which is the type of data readily available today. Hence, the visualization
of four-dimensional (4D) data is a relevant topic to discuss. Considering the prevalence
of geospatial data with multiple attributes, we discuss some of the multivariate visual
representations which are used in geovisualization.

3.1 Abstract Visual Representations

The visualizations discussed so far consider the maps in scale, which one can deviate
from, when using Cartograms. Cartograms are graphics which map attribute proper-
ties to area of entities with boundaries, e.g. counties or districts, states, countries, etc.
Though the Cartogram is generated from a cartographic map, it does not necessarily
honor geographic precision, as demonstrated by its different types, in Figure 4.

Despite the presence of geo-reference data or metadata, not all geovisualizations
are built with the reference of or in the context of a cartographic map, as shown by
examples of metro map and volume visualization of geological models in Figure 5.
Abstractions such as schematic diagrams of transport networks and metro maps [18],
serve purposes other than geo-references. In 1933, Harry Beck used “navigation through
the London Underground” as a motivation for the design of the London Underground
Map, popularly known as the Tube Map, today. Similarly, geological modeling and
its visualization do not require the context of cartographic maps for understanding the
geological processes. Visualizations of indoor of buildings or man-made habitations,
e.g. for movement data in the building, can use abstractions based on floor plans. The
floor plans may be considered to be maps, however, for most of the applications, they
are used without geo-references. As an example, Lanir et al. [19] have used tangram
diagrams to visualize the spatio-temporal behavior of museum visitors.

3.2 Geospatio-temporal Data Visualizations

While geospatial datasets pertain to two- or three-dimensional space, these datasets
predominantly include temporal variations as well, making them geospatio-temporal
datasets. Temporal aspects of the data are more effectively captured using animation in
comparison to other techniques for visualization of four-dimensional (4D) datasets.

between the usage of “vertices” and “edges” for the data structure, and “nodes” and “links”
for the network data itself.



Fig. 5: Geovisualizations without the reference of cartographic maps. (Top) Lon-
don Underground Map, or the Tube Map, is a schematic diagram which enables
navigation through the London Underground system. (Bottom) Geological visual-
izations involve studying geometries or surface/volume topology involved in geol-
ogy, such as folds, faults, etc. (Image courtesy: https://tfl.gov.uk/maps/track/tube and
http://app.visiblegeology.com/)



Adrienko et al. [2] have catalogued different methods used for exploratory analysis
of spatio-temporal data. Their study maps different types of datasets and visualization
tasks to corresponding types of geovisualizations and user interactions, for effective
data analytics. For example, map animation is useful for time stepping for all types of
data. However, specifically for existential changes (related to actual events) and loca-
tion changes, space-time cube is used. A space-time cube is a 3D projection of the 4D
data, where one spatial dimension, usually height, is not included. Space-time cubes
are useful for tasks which do not require studying height changes; whereas, animation
is the method to use for observing height changes, as it uses all of the 4D data.

With regard to map animation, Harrower and Fabrikant [12] have sensitized the
need for application of appropriate design principles for dynamic (i.e. time-varying) vi-
sualizations. They have asserted the need for research in not just cartography, but also in
animation and human cognitive science to make effective map animations. Map anima-
tions can be applied to all visualizations described so far. For example, understanding
the mirror neuron system in neuroscience research helps in understanding the effective-
ness of dynamic visualizations [35], as the mirror neuron system plays a key role in
observational learning in motor tasks. A good example of map animation is the use of
timelapse to demonstrate the changes on the Earth during 1984-2016, using the Google
Earth Engine 3.

Bach et al. [3] have proposed the use of a generalized space-time cube data struc-
ture, which is the conceptual representation of time with respect to space. The visual-
izations are generated using different types of operations on the cube, which are ef-
fectively dimensionality reduction processes for converting three-dimensional cubes
to readable two-dimensional visual representations. While the cube is applicable to
geospatio-temporal data, its use can be extended to other datasets such as videos, net-
works, etc. The operations include space shifting, time flattening, time juxtaposing,
etc., which may be a singleton or multiple operations. The humble origins of the term
space-time cube comes from the definition of the term, “time geography” by Torsten
Hägerstrand in 1970 [9], which is the “a time-space concept” for developing a kind of
socio-economic web model.

3.3 Multivariate Geovisualization

Most GIS (geographic information science) datasets acquired today contain more than
one variables. e.g. for study of land-use, one considers three categories of variables,
namely, elevation, edaphic factors, and climatic factors, which altogether are nine vari-
ables [11]. The edaphic factors include plant-available water capacity, soil organic mat-
ter, etc.; and the climatic factors include mean precipitation, degree-day heat sum, etc.
during growing season. Another example of such multivariate geospatio-temporal data
is a household survey dataset for assessing public health programmes. Survey data has
as many variables as the number of questions in the survey questionnaire [32].

The geovisualizations discussed so far, in their basic forms, represent one attribute,
e.g., Cartograms are representations of a single attribute in the datasets. These repre-
sentations become limiting for datasets with multiple attributes. To resolve this, one

3 https://earthengine.google.com/timelapse/



can additionally overlay cartographic maps or cartograms with glyphs having certain
characteristics. Thus, one can visualize more variables using a composition of the afore-
mentioned techniques.

Hargrove et al. [11] have shown how different color channels namely red, green,
and blue, can correspond to three different variables and this multivariate heat map is
used on map visualization. However, providing the spatial context for the visual rep-
resentation of multiple attributes becomes a challenge at times. One of the strategies
to circumvent this issue is the use of composite visualizations. Composite visualiza-
tions contain more than one visualizations which are to be used simultaneously. The
taxonomy of composite visualizations [15] is based on the differences in the composi-
tion operator. The juxtaposed view is the most popular type of composite visualization,
which is a juxtaposition of several visualizations. For multivariate geovisualizations,
several single attribute map visualizations can be juxtaposed, an example of which is
shown in [11], as well. Another type of composite visualization is superimposed views.
Geospace [23] is an example of overlaying different GIS layers, where each layer corre-
sponds to an attribute or variable, and transparency is used to composite different layers,
which is done to ensure that data in any layer is not inadvertently occluded.

Yet another example of composite visualizations is juxtaposing map-based visual-
izations with spatial-context-free multivariate visualizations, such that only the map-
based views preserve the spatial context. Popularly used multivariate visualizations are
scatterplot matrices, parallel coordinates plot, and matrix visualization (Figure 6).

Fig. 6: Multivariate visualizations which can be juxtaposed with maps: (Left)
scatterplot matrices, (middle) parallel coordinate plots, and (right) corrgram.
These visualizations are for the multivariate automobile dataset, for demonstra-
tion purposes. Image courtesy:https://queue.acm.org/detail.cfm?id=1805128 [13] and
http://www.infovis.info/index.php?words=exploratory

– Scatterplot matrices lay out the scatter plots of pairwise variables in a matrix for-
mat. Each row of the matrix corresponds to a variable. The columns of the matrix
correspond to the same set of variables, as the rows. The ordering of the variables
in the rows and columns is the same. An element of the matrix is a scatterplot
corresponding to the variables in the corresponding row and column of the matrix.



A variant of the scatterplot matrix relevant for geovisualization is the one with
embedded maps, called “multiform bivariate matrix with space fill and map” [25].
The idea here is to fill the upper triangular part of the matrix with maps, and lower
triangular one with scatterplots. The upper triangular part gives the spatial context
and the lower triangular shows overall correlation between variables taken pairwise.

– Parallel coordinates plots (PCP) are used for identifying trends in overall data, as
well as correlation between any two variables. Each of the parallel axes in the PCP
corresponds to a single attribute or variable. A “polyline” in a PCP corresponds to
a row in a table or log, and is an alternate representation to a point in the Cartesian
coordinate plot. PCP is effective only if the axes can be swapped so that we can
bring two axes together for correlation analysis.

– Table or matrix visualization is a visual representation of the tabular or matrix
format of the data where the variables and the entities (e.g. locations in geospatial
data) are rows and columns, or vice versa. In the visualization, each matrix element
is colored using a transfer function for the value represented in the element, thus
giving a heatmap.
The matrix can be constructed in two different ways – two-way two-mode represen-
tation, and two-way one-mode representation. Two-mode representation is where
the rows and columns represent different sets of objects. The one-mode represen-
tation implies that the same set of objects are used in both rows and columns, and
their ordering is the same in both row and column. An example of the one-mode
representation is the corrgram which is used for studying the correlation between
two variables, given in the row and column. The corrgram additionally uses glyphs
and color to indicate value and sign of the correlation. One-mode representation
also includes association matrix (between variables) and similarity matrix (between
objects). Matrix visualization is effective only if it allows the user to perform se-
riation or reordering of variables [21], which is a permutation of the ordering of
variables. Seriation maintains the restriction that the ordering followed in rows as
well as columns is the same permutation.

These visualizations are made effective with specific user interactions. Brushing and
linking are relevant user interactions for parallel coordinates plot and scatterplot matri-
ces. Brushing is equivalent to using a lasso to subselect a few set of points, and linking
implies updating different visualizations based on highlighting the “brushed” subse-
lection. A rendering technique called edge bundling reduces the clutter of overlapping
edges in the parallel coordinate plot.

There are other ways of encoding visualization channels (such as color, texture, ge-
ometry, etc.) with variables. Artistic rendering can also be used for multivariate visual-
ization, e.g. in [34], where the painterly rendering styles, e.g. brush stroke length, brush
thickness, etc. can be used to encode different variables, such that the final rendering
shows the spatial trends in co-occurrences of different variables.

Reducing the complexity of multivariate data involves use of data mining algo-
rithms. Jin et al. [16] have used multivariate clustering using self organizing maps
(SOMs). Colors assigned based on clusters in SOM are used for choropleth map visual-
ization. Inspired by the same methodology of multivariate clustering, Zhang et al. [36]
compare clustering results using choropleth maps, parallel coordinates plot, rose plots,



and scatter plots for principal component analysis (PCA). While these works are listed
as geovisualizations, the use of data mining (SOMs, PCA, etc.) makes them geovisual
analytics applications.

4 Geovisual Analytics: A Case Study

In this section, we discuss a case study of a set of applications of geovisual analytics
for similar datasets. Geovisual analytics is governed by the nature of the dataset, its
complexity, its analytical goals, and its stakeholders. Hence, we briefly explain these
aspects of the two tools covered in the case study for analysis of transport networks.

4.1 Taxi Trajectories (Transport Networks)

We consider two visual analytics systems used for taxi trajectories, namely, VAIT [22]
and TrajGraph [14]. VAIT is designed to be a scalable tool for statistical analysis, and
TrajGraph for graph-based analysis. VAIT is targeted to improve the profits and pro-
ductivity of the taxi services. TrajGraph is used for studying traffic congestion using
taxi trajectory data.

VAIT is a visual analytics tool designed to analyze metropolitan transportation dataset
for making sense of the data, and planning for efficient utilization. The data is acquired
from vehicle Global Positioning Systems (GPS’s), and sensors deployed on the road
banks. The test data in [22] is from 15,000 taxis running for two months in a city in
China with population of 10 million. The data preprocessing step involves a novel cali-
bration technique to account for missing or corrupt data owing to high vehicle mobility
and variance in environment. Owing to the volume of the data, queries are made effi-
cient by performing them on road segments, and then embedding taxi GPS data on the
concerned road segments. To visualize trajectory of large number of taxis, the tool has
been designed to use queries to reduce the data clutter, and improve caching to make
visualizations responsive as well as make the system scalable. VAIT has been designed
to solve 12 differentpredefined queries, e.g. finding at a given time, (Q1) the location or
trajectory of given taxi at given time, (Q2) top n speeding taxis at a given time, (Q3) top
n taxis by revenue, (Q4) origins and destinations of trips, (Q5) top n taxis by number of
transactions or rides, etc.

After the execution of a novel weight-based calibration method, the visual display
of movement data is captured using a novel visualization aided mining approach, called
visual fingerprinting (VF). The visualizations are either trajectory or heatmap visualiza-
tions. In trajectory-style VF, the trajectory is rendered using B-splines, where the length
of the trajectory gives the trip distance, and its color gives the number of visits to the
destination location using average speed of each trip from source to destination. In the
heatmap-style VF, one uses the index matrix constructed with number of taxi samples
on the roads, average speed of these taxis, or the rank of number of passengers getting
on/off at the location. The larger values imply “hotter” the map. A circle is used for
encoding daily or monthly distribution of the taxis on the road.



The visual analytics process entails fingerprinting the entire dataset for an overview.
The cartographic map is used for display of statistical information, which gives leads
on interesting locations to explore further. The overview also includes the traffic flow
visualization. Subsequent to the overview, the users can drill down to specific road
segments or locations and do further analysis. The spatial analysis is done using the
heatmap, where the spatial distributions of the features are computed. This is then used
for studying temporal trends. For temporal analysis, the visual fingerprints are associ-
ated with temporal information, e.g. time taken, average speed, frequency of passing
taxis, etc. The temporal analysis is done for 24-hour time period over a week or a
month. The hourly distribution is colored, and temporal and spatial changes are ob-
served by comparing different fingerprints. VAIT system relies on the querying and
filtering process after the global overview, for facilitating scalability. VAIT is one of
the pioneering visual analytical system which is scalable and which embeds traffic flow
results on spatio-temporal movement data.

TrajGraph is a visual analytics method which is integrated with graph modeling, for
studying urban mobility using taxi trajectory data. A graph is used as a data structure to
store and organize information of the taxi trajectory over city streets. Then a graph par-
titioning algorithm is run to split to regional-level subgraphs, as opposed to street-level
subgraph. The visualizations include node-link diagram of the graph without map infor-
mation, a map-based visualization (for symbols and trajectories), and a temporal data
visualization. These three visualizations are composite using juxtaposed views, and are
linked. There is a score of importance for different regions, which is computed using
Pagerank and betweenness centralities of the graph. The graph partitioning provides dif-
ferent scales of the data, where the multi scale visualization includes city-wide graph,
then region-level, and then street-level. The centralities are compared across time, e.g. a
location with high Pagerank but low betweenness indicates a frequently visited location
but a weak connection to reaching other location. A segment with high betweenness
may be perceived to be a fast bypass route, and its betweenness dropping during rush
hours indicates it is less preferred during the rush hours. Similar to temporal analy-
sis, the graph modeling allows spatial analysis using the local regional analysis. One
can identify high traffic regions as locations with high Pagerank and high betweenness
centralities.

An urban transportation expert would use TrajGraph for troubleshooting traffic con-
gestion. TrajGraph, a web-based prototype, opens the city-wide graph in the node-link
graph view, and then shows betweenness centrality using color, for the 24-hour period.
For road segments with high betweenness centrality, one can drill down further to see
graph view and the map view. Given the map view, one can also drill down areas neigh-
boring to problem areas. One can compare temporal variations in betweenness across
different locations or regions, to understand their significance better. One can study
variations leading to the rush hour traffic. One can identify urban traffic bottleneck, and
study its pattern over a time period of time to confirm problem areas. One can then
improve on the traffic congestion by resolving traffic flows during critical time-periods
in these problem spots.



4.2 Broadening the Scope of Geovisual Analytics

As can be seen from Section 4.1, the design, implementation, and usage of the visual
analytics solution depend heavily on the applications. At this juncture, we can add sev-
eral research directions to the area of geovisual analytics. These research directions are
significant in opening up research challenges and opportunities in pushing the area of
geovisual analytics forward. We discuss two such research directions in this paper.

In the case study, we have discussed how introducing a data structure, such as
graphs, or introducing a data preprocessing step, such as filtering, improves the vi-
sual analysis. Here, we discuss how we can integrate different domain-specific analyses
which can improve on the visual analytics solution. The first research direction is on
studying such amalgamations. We discuss further on one such amalgamation, namely,
between spatial and social network analyses to give rise to geo-social network analysis.
The second research direction is on user interfaces for geovisual analytics. An exam-
ple of such a user interface is one with natural user interactions, that exploit the spatial
context of the geospatio-temporal data. That would imply that one can use modes of
human-computer interactions other than on a conventional personal computer, namely
an immersive virtual reality.

Geo-social visual analytics has been studied by Luo and MacEachren [24], who have
found that in social network analysis, spatial data is treated as background informa-
tion and in geographical analysis, network analysis is oversimplified. Hence, they have
argued for integrating knowledge from both analysis for datasets which have both geo-
graphic as well as social network data, e.g. location based social networks. They have
called this integrated analytical approach as geo-social visual analytics. In their work,
they have proposed the theoretical framework where the contexts can be brought to-
gether, and they have reviewed the state-of-the-art in the three core tasks for geo-social
visual analytics, namely, exploration, decision making, and predictive analysis, to find
gaps. They have used this gap analysis to identify potential challenges and research di-
rections. Here, we discuss the authors’ views on the conceptual framework and the core
tasks of data exploration and decision making.

– The First Law of Geography says, “Everything is related to everything else, but
near things are more related than distant things,” and the social network analysis
dogma says, “Actors with similar relations may have similar attributes/behavior.”
The authors have discussed how the First Law of Geography and the social network
analysis dogma must be both combined to define geo-social relationships. At a con-
ceptual level, these relationships are considered to be the intersection set of three
different kinds of embeddedness. The different kinds of embeddedness are namely
societal, network, and territorial. Thus, the conceptual framework for geo-social
relationships states that “Nearness can be considered a matter of geographical and
social network distance, relationship, and interaction.’

– The core task of data exploration must consider the relative strength between the
two aspects of the data. One of the aspects qualify geo-social relationships as being
“among geographical areas” and the other, as being “among individuals at discrete
locations.” While the visualizations generated are similar for both sets, for the latter,



it requires additional computational processes for exploring the “spatial-social hu-
man interactions focus on developing quantitative representations of human move-
ments.”

– For the core task of decision making, spatial data analyses exploit spatial local-
ity to study trends, and relate them to explanatory covariates such as demographic
data. Network analysis grows in a bottom-up fashion, whereas geographical analy-
sis tends to be top-down. Integrating both can be done using linked methods where
individually the visualization techniques cater to specific needs of both the analy-
ses.

Some of the future research directions are towards: (a) developing theory, methods,
and tools, integrating the two separate aspects of the data; (b) understanding the dynam-
ics of geo-social relationships and processes; (c) integrating ideas in cognitive sciences
supporting geo-social visual analytics; and (d) developing new geo-visual analytical
methods for the three core tasks.

Virtual Reality for Geovisual Analytics has been studied by Moran [27], who have
proposed that one could separate the preprocessing step of data modeling and analytics
from the visualization processes. The visualization process can then be implemented
in a virtual reality platform so that the user gets better situational awareness and can
use natural user interactions for further analysis. While the visual representations are
approximately the same in immersive as well as non-immersive visualizations, we find
that the user interactions for analytical tasks are improved in immersive geovisual an-
alytics. The five tasks in the visualization workflow include navigation or exploration;
identification and selection; querying and filtering; clustering; and details-on-demand.
Navigation is achieved through fly-through cameras with change of perspectives, where
the user can virtually navigate through the life size virtual model of the space. Depend-
ing on the approach of the user to objects in the scene, zooming can also be used.
Identification exploits the differences in rendering different geometric primitives for
the visual representation of the data, e.g. shape and color can be used for “picking” fea-
tures of interest. Filtering and querying can be provided using a virtual keyboard, and
menu options in the Graphical User Interface (GUI). Clustering and pattern matching
can be done by virtually overlaying or stacking different layers pertaining to the data,
e.g. height of the data with population. Details-on-demand can be implemented using
the levels of organizing data, and drilling down deeper as per requirement. In an immer-
sive virtual reality, the user can a directed 3D arrow to enable direct interaction with the
scene and enabling movement as required.

The visual analytics solution in [27] relies on the current state-of-the-art in both
geovisual analytics as well as virtual reality technologies. Much work is yet to be done
here where it becomes the most preferred interface for the users for geovisual analyt-
ics. The separation of model from the user interactions may not be possible always.
Hence, new strategies must be discovered for incorporating immersive characteristics
throughout the data analytic workflow.



5 Road Ahead: Research Challenges

Geovisual analytics is the most recent successor in the evolution of visualization of geo-
graphic data, which had humble beginnings in cartography. Geovisualizations and geo-
visual analytics have matured in terms of methodologies and implementations across
different types, complexities, and sizes of datasets, with geo-referencing. However, de-
spite around 2 to 5 decades4 of work in geovisualizations, there remain multiple per-
sistent challenges [7] in the area, which stem from gaps in: (a) better understanding of
scope of domain, how it interacts with other domains; (b) a systematic understanding
of human factors, e.g. cognitive, social, geographical, etc.; and (c) a set of guidelines
which can templatize the visualizations to data types, so that the practitioner is guided
in designing appropriate and helpful visualizations corresponding to the tasks. The rea-
son for the persistence in these challenges is due to the interdisciplinary nature of the
area of geovisualizations. As is the challenging with visualization in itself, evaluation
or assessment of geovisualizations need work in future. These challenges have been
documented by Keim et al. [17] too.

Ballatore et al. [5] have proposed the method for information search using spatial
approaches. They argue for cross-fertilization of ideas between cognitive psychology,
computer science and GIS to enable the use of spatial approaches. This cross-pollination
is exactly the need of the hour for geovisualizations too [7]. Additionally, at the con-
ceptual level, we find geovisualizations to be synonymous to spatial approaches for
information search, by virtue of the inherent spatial nature of data.

In summary, we have provided a brief introduction to geovisualizaton, and how it
is increasingly being resolved using geovisual analytics. We have discussed a sampling
of the research challenge we often see in the area. The new advent in technology and
more accessibility to datasets show promise in more innovations in this field.
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