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Visualization of Small World Networks Using
Similarity Matrices
Saima Parveen and Jaya Sreevalsan-Nair

Abstract

Visualization of small world networks is challenging owing to the large size of the data and its property of being “locally
dense but globally sparse.” Generally networks are represented using graph layouts and images of adjacency matrices, which have
shortcomings of occlusion and spatial complexity in its direct form. These shortcomings are usually alleviated using pixel displays,
hierarchical representations in the graph layout, and sampling and aggregation in the matrix representation. We propose techniques
to enable effective and efficient visualization of small world networks in the similarity space, as opposed to attribute space, using
similarity matrix representation. Using the VAT (Visual Assessment of cluster Tendency) algorithm as a seriation algorithm is
pivotal to our techniques. We propose the following novel ideas to enable efficient hierarchical graphical representation of large
networks: (a) parallelizing VAT on the GPUs, (b) performing multilevel clustering on the matrix form, and (c) visualizing a series
of similarity matrices, from the same data set, using parallel sets-like representation. We have shown the effectiveness of proposed
techniques using performance measurements of parallel implementation of VAT, results of multilevel clustering, and analyses made
in case studies.

I. INTRODUCTION

Consider a time series of coauthorship network. Graph layout of such a network can show the “hubs,” or nodes with high
centrality, e.g., which may indicate faculty members heading labs or research groups. Additionally, it will be insightful to find
significant events in the network, e.g., when two authors who worked together earlier have stopped publishing together or two
authors who did not work together are collaborating currently. However it will be difficult to infer temporal changes in the
network in a single view. Visualizing large networks tend to be a challenge which can be addressed by constructing meaningful
hierarchical structures. We propose using similarity-based clustering in the network to identify features such as temporal or
spatial events and to construct hierarchical levels of detail.

Similar to [20], we will be using the terms “graph”, “vertices”, and “edges” to refer to the topological structures with no
associated attributes, and “network”, “nodes”, and “links” to refer to structures related to a graph with attributes, respectively.
Elements of an adjacency matrix correspond to vertices, and those of a similarity matrix correspond to nodes.

Our work is based on the premise that similarity functions can be considered to be transformations on the adjacency matrix
and can be further used for clustering to manage large data. Several analyses performed on a network, e.g. using similarity
functions, centrality measures, etc. can be reduced to being a transformation on the adjacency matrix [26], [6], and hence it is
implicitly a transformation on the graph itself. These transformations can be linear or nonlinear. This serves as a motivation
for our work, as graphical representation of these transformations can help us gain more insights into the data and our work
can extend beyond our current scope of analysis using similarity functions, e.g., analysis based on centrality measures can be
made from matrix representations.

For this study, we have focused on small world networks in its undirected form characterized by a local structure where two
connected nodes can have several neighbors. Extensive studies on small world networks can be found in [47], [4]. Applying a
similarity function, which is symmetric, on an adjacency matrix yields a normalized symmetric matrix called similarity matrix.
Though our work can be extended to any network and any normalized symmetric matrix which is characteristic of the network,
the performance of our techniques will vary depending on the properties of the network and the transformation applied on the
adjacency matrix to obtain the concerned matrix.

We have found that in the information visualization community, matrix visualization has been routinely applied for adjacency
matrices for undirected graphs. Adjacency matrices are generally visualized as a binary shaded representation of a matrix,
indicating presence or absence of edges between vertices using white and black colors, respectively. Visualizing grayscale
matrix representations for similarity matrices has been done before, such as the shaded similarity matrices and variants of the
Visual Assessment of cluster Tendency (VAT) algorithm [3], where permuted or seriated similarity matrix representations are
used for finding clusters. Using VAT for seriation of the similarity matrix is pivotal to our work. VAT is considered equivalent
to a single linkage hierarchical algorithm, which is significant as we use the seriated similarity matrix to construct multiple
levels of detail in a hierarchical fashion, for which an underlying single linkage algorithm is apt. Since VAT has a quadratic
time complexity, it is inefficient for large scale data sets. Hence we propose a parallel implementation of VAT on the GPUs
using CUDA [40].
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Multilevel clustering has traditionally been done on the node-link diagrams using nearest neighbor consideration, which is
satisfied by VAT owing to its relation to single linkage algorithm. Multilevel clustering performed on the network has been
carried out in ways which are specific to research communities: (a) in information visualization community, multilevel clustering
of the graph is used for obtaining multiple levels of detail and for further processing pertaining to building focus+context
representations, and (b) in machine learning community, one level of clustering is done using similarity functions. We have
not found any work pertaining to multilevel clustering in a network combining the two approaches, i.e., obtaining multiple
levels of detail using similarity functions. Finding meaningful functions to persist clustering in multiple levels of detail is in
itself a challenging problem and is beyond the scope of our current work.

A series of similarity matrices can be generated from a data set in several ways, e.g., every time stamp in time series data,
application of different similarity functions on the same data, or different subspace clustering in multivariate data. Finding two
or more authors in the same cluster in a coauthorship network over a period of time may indicate that they are working very
closely to each other owing to their employment at the same workplace, or having the right set of complementary expertise in
pursuing research on the same topic or project. These authors not coauthoring a paper together after a while might indicate
that they no longer work together owing to change of employment or change in research interests, etc. Information about
such an event becomes very apparent from the clustering tendencies found in similarity matrix series. Tracking membership of
objects in clusters across a series of similarity matrices can help in finding trends and patterns, and also in understanding the
underlying varying properties of the data. The idea is that if we observe that two objects are present in the same clusters in
multiple instances in the series of similarity matrices, we can conclude that the objects are positively correlated with respect
to the underlying properties of the different instances. While there is existing research on visualizing similarity matrices for
small world networks, we have not found any visual analysis for a series of similarity matrices. This is unique to our work,
where we have adapted parallel sets representation to see clustering trends in a series of similarity matrices.

Summarizing, our contributions are as follows:
1) We propose a GPU-based parallel implementation of VAT (pVAT), which is an optimal parallel implementation of VAT

using CUDA based on Borůvka’s algorithm [44].
2) For data simplification we use the VAT images to perform multilevel clustering, i.e., create multiple levels of detail by

recursively clustering the nodes and merging the nodes in the clusters to form new nodes.
3) We propose parallel sets-like representation for tracking the cluster membership of objects in series of similarity matrices

generated from the same data, i.e., to view how constituency of the clusters changes across the series, and apply this
technique on visualizing small world networks.

II. RELATED WORK

Our design choices have been the result of choosing (a) matrix visualization over graph layouts for small world networks, and
(b) VAT algorithm for seriation of similarity matrices. Network visualization and analysis, and that pertaining to small world
networks are very active areas of research. Though it will be impossible to refer to the huge body of related literature in this
section, we have listed the relevant research ideas that have influenced our work. Though one level of clustering in similarity
matrix is routinely used in data mining applications, we did not find any related work on multilevel clustering performed on
a similarity matrix. Similarly we have not found any work on analysis of a series of similarity matrices of a multivariate data
set, including network data.

Small World Network Visualization:
Watts and Strogatz [47] have explained the characteristics of small world networks based on the small world phenomenon,

also known as six degrees of separation [13]. There are several multiscale, multilevel visualizations of graph layout of large-
scale small world networks [2], [1], [43], [9], which are scalable applications. These works largely exploit the property of
small world networks, i.e. globally sparse and locally dense layout [4], using graph layouts.

Ghoniem et al. [11], [12] have analyzed comparison of graph visualization techniques between node-link diagrams and matrix
based representations using controlled experiments. Though the experiments conducted in [11] primarily were for low-level
readability tasks and not specifically for social networks, the results are applicable to small world networks. Using experimental
results in [11], Ghoniem et al. have shown that node-link diagrams are suited for smaller graphs and graphs that were “almost
trees”, but performed very poorly for almost complete graphs and denser networks. The idea is that, given the property of small
world networks of being globally sparse and locally dense and that matrix visualization is less sensitive to density variations,
the matrix visualization will be better suited for small world networks for clarity.

Matrix Visualization of Networks:
Henry and Fekete [18] have proposed a network visualization system, MatrixExplorer, which uses two representations,

namely, node-link diagrams and images of adjacency matrices, and have designed the system using inputs from social
scientists.Henry and Fekete have used participatory design techniques to arrive at MatrixExplorer. Some relevant results in
the form of requirements obtained from the users, who were social science researchers, are: higher preference for matrix-
based representations over node-link diagrams as it was faster to display and easier to manipulate for larger data sets;
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cluster detection was essential for social networks analysis; and aggregating networks using clusters presented results well. To
address the shortcoming of the MatrixExplorer of having huge cognitive load during context switches, Henry and Fekete have
further proposed a hybrid representation, which integrates matrix and graph visualizations, called MatLink [19]. Energy-based
clustering of graphs with non-uniform degrees (LinLog) algorithm [39] has been used for the node-link representation in
MatLink.

Elmqvist et al. [9] have proposed an interactive visualization tool called Zoomable Adjacency Matrix Explorer (ZAME),
for exploring large scale graphs. ZAME, which is based on representation of the adjacency matrix, can explore data at several
levels of detail. In ZAME, aggregation of nodes is performed based on “symbolic data analysis” and aggregates are arranged
into a pyramid hierarchy. Henry et al. have proposed NodeTrix [20] which uses the focus+context technique, where matrix
visualization is used for subnetworks while graph layout is used for overview, thus confirming to the locally dense and globally
sparse property. ZAME and NodeTrix use nested views [24] without using clustering; whereas our proposed representations
use clustering and can be used to obtain juxtaposed views.

While these techniques explore data in the attribute space, our work focuses on exploring the same data in the similarity
space. Using relationship-based approach by working in a suitable similarity space, as opposed to the high-dimensional attribute
space, has been shown to be more effective for several data mining applications [42]. Additionally, similarity space can be
considered to be a superset of attribute space, as identity function on adjacency matrix can be a similarity function.

Seriation Algorithms:
Seriation algorithms are ubiquitous in terms of their applications – Liiv [31] has given an overview of seriation methods,

which includes the historical evolution of the technique, various algorithms used for it, and various applications, spanning
across several fields, such as, “archaeology and anthropology; cartography, graphics, and information visualization; sociology
and sociometry; psychology and psychometry; ecology; biology and bioinformatics; cellular manufacturing; and operations
research.” Mueller et al. [35], [36] have performed a thorough analysis of vertex reordering algorithms, which is relevant
to representation of clusters in matrix visualization. In [35], Mueller et al. have used pixel-level display to scale up the
visualization for larger data sets. In [36], Mueller et al. have referred to visual representation of adjacency matrix as visual
similarity matrices (VSM) and specified common structural features of the VSM along with their graph-based interpretations.
The linked views of the matrix visualization and node-link diagram show that the specific “features” in the VSM correspond
to a relational pattern between the vertices in the graph. One such feature is the blocking pattern along diagonal lines, which
carry information of clustering tendencies, as showcased in VAT. Though VAT focuses on blocking patterns along the diagonal
of the matrix, Mueller et al. have analysed diagonal entities on and off the main diagonals.

VAT:
Bezdek and Hathway [3] have proposed a seriation algorithm along with a visual representation to assess the layout of

clusters in the matrix, known as VAT (Visual Assessment of cluster Tendency). VAT uses a grayscale image of a permuted
matrix to show blocks along the main diagonal, which are representative of clusters. There have been several improvisations
done to VAT owing to its complexity being O(n2). Successors of VAT relevant to our work are reVAT (revised VAT) [21],
bigVAT [22] and sVAT (scalable VAT) [16]. reVAT uses profile graphs to replace the dissimilarity image thus reducing the
number of computation. bigVAT and sVAT are scalable variants of VAT based on sampling representative entities to reduce the
size of the data. We alternatively propose parallel implementation of VAT (pVAT) where a parallel implementation of Borůvka’s
algorithm is used for finding minimum spanning trees in the graph [44]. We propose pVAT because sampling algorithms, such
as bigVAT and sVAT, rely on good choices of representative data and could lead to inadvertent loss of important data.

Though results of VAT depend on the starting node for the construction of minimum spanning tree, the similarity function
used and the inherent clustering in the data, VAT does not involve computation of agglomerative hierarchical data structures,
which becomes computationally intensive for large data sets. VAT itself can be considered to be related to single-linkage
algorithm [17] as opposed to the average-linkage algorithms used in shaded similarity matrices [45], [46], [48]. Multilevel
clustering has traditionally been done on the node-link diagrams using nearest neighbor consideration, which is satisfied by
VAT in our proposed algorithm for multilevel clustering owing to relation of VAT to single-linkage algorithm.

Similarity Matrix Visualizations:
Two-dimensional visualization of similarity matrices has been done before, e.g., by Eisen et al. [8]. Wishart has discussed

about shaded distance matrices [48] where similarity matrices are reordered by constructing a dendrogram and reordering
the dendrogram to minimize the sum of weighted similarities. Wang et al. have used (a) nearest neighbor clustering and
ordering using decision tree to visualize a shaded similarity matrix in [46], and (b) a combination of conceptual clustering
in machine learning, and cluster visualization in statistics and graphics whose complementary properties help in interpreting
clusters better, in [45]. Strehl and Ghosh [41], [42] have proposed Clusion which constructs and reorders a similarity matrix
using relationship-based approach for clustering, which is an algorithm called Opposum. Erdelyi and Abonyi [10] have worked
on node similarity based visualization which is very similar to ours in the use of VAT for similarity matrix representation.
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However they have proposed a new similarity function and implemented dimensionality reduction to obtain a similarity matrix
in a lower-dimensional embedding, on which subsequently VAT is used.

These representations use an explicit clustering method which is subsequently used for reordering similarity matrices. Our
work focuses on embedding the clustering with the reordering as is done in the VAT algorithm [3].

Parallel Sets:
Inselberg et al. [23] have proposed parallel coordinates for visualizing high dimensional data in a plane. Parallel coordinates

representation has been effectively used for several high-dimensional data sets. Inspired by parallel coordinates, Kosara et
al. [25] have proposed parallel sets for visualizing and exploring categorical data. While parallel coordinates is for representing
points in multi-dimensional or multi-attribute space, parallel sets can be considered for discretely viewing categories. In our
work, clusters can be related to categories and hence when visualizing a series of similarity matrices, we propose using a
parallel sets-like approach to get an overview of the series.

III. BASICS

Similarity matrices and the VAT algorithm, which is a seriation algorithm, are pivotal to our proposed work. We describe
the definitions and properties of similarity functions, seriation algorithms, and the VAT algorithm in this section.

A. Similarity Functions

For an ordered set of elements, applying a similarity function on pairwise choice of elements gives an idea of similarities and
dissimilarities inherently present in the data. Similarity matrices are two-way one-mode representation of similarity function
values between any two elements in the set. “Two-way one-mode” implies that a single set of elements is represented in two
different orders, e.g., row and column orders in a matrix [31]. Subsequent clustering on a similarity matrix gives further insight
to the data and can be used for reducing the complexity of the data. Similarity matrices are normalized and symmetric.

In graphs, clustering can be done in a similar fashion using similarity matrix whose elements are the vertices of the graph.
In most cases the similarity matrix is a function of the adjacency matrix, since both the matrices are two-way one-mode
representations of the vertices and functions for certain forms of similarity, such as structural similarity, can transform an
adjacency matrix to a similarity matrix [26]. We have used the following standard similarity functions for our experiments:
identity, jaccard, dice, inverse log weighted, and cosine similarity. Identity function implies that the similarity matrix is the
same as the adjacency matrix.

B. Seriation Algorithms

An algorithm for optimal ordering of entities in a two-way one-mode representation as a square matrix, e.g. the adjacency
matrix and similarity matrix, is a permutation algorithm, also known as a seriation algorithm. Ordering a set of N vertices in
a graph can be done in N ! different ways. Graph theory states that ordering of vertices to optimize a cost function is called
minimum linear arrangement (MINLA/MinLA), which is a known NP-hard problem. Hence, one uses heuristic algorithms to
solve ordering of vertices to achieve domain-specific optimization criteria. An ideal ordering algorithm should be linear or
better, in terms of runtime complexity. The choice of the starting vertex is critical to most ordering algorithms. We assume node
0 as starting vertex and have used the following permutation algorithms for our experiments: VAT, reVAT, Breadth first search
(BFS), Depth first search (DFS), Reverse Cuthill-Mckee (RCM) [5], Kings [34], and Modified minimum degree (MMD) [32].

Figure 1 shows the effect of applying the permutation algorithms on the subnetwork of the condensed matter coauthorship
network in 1999 [37]. For sake of clarity in showing cluster tendencies, we have chosen a subnetwork of 372 nodes from the
coauthorship network which has 16725 nodes. We observe that VAT helps in identifying well-defined clusters, better than the
other algorithms. As shown in Figure 1, the blue highlight shows a natural cluster in VAT, which the other seriation algorithms
fail to identify clearly.

C. VAT

VAT [3] uses Prim’s algorithm for finding the minimum spanning tree (MST) of a weighted graph to permute the order of
elements in the similarity matrix. VAT shows clear clusters as black blocks along the diagonal when the matrix is represented
using a grayscale image. However VAT works only on symmetric matrices and also, fails for cases where (a) there are no
natural clusters in the data, and (b) the cluster types can not be identified using single linkage.

Why VAT ?:
VAT has several advantages which are apt for our application on small world networks. VAT neatly arranges clusters along

the main diagonal, which helps in visual assessment as well as isolating the clusters. VAT is considered to be a single-linkage
algorithm owing to its dependence on a minimum spanning tree. This aligns with the multilevel clustering where we implicitly
build a hierarchical structure.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Permutation or seriation algorithms showing clustering tendencies in a similarity matrix generated using cosine similarity function for a subnetwork
of 372 nodes in the condensed matter collaboration network in 1999 [37]: (a) shows the unseriated similarity matrix, and (b)-(g) show the similarity matrix
seriated using VAT, reVAT, BFS, DFS, RCM, Kings, and MMD algorithms, respectively. The blue highlight shows a natural cluster, which is identified by
VAT but not the other seriation algorithms.

IV. PARALLEL IMPLEMENTATION OF VAT

Since VAT has a runtime complexity of O(N2) for N nodes, it is not scalable for large data sets. Though bigVAT [22] and
sVAT [16] are scalable, they are sampling algorithms which rely on good choices of representative data. Inappropriate choices
of samples in these algorithms can result in wrong results. Hence we propose the parallel implementation of VAT (pVAT).

The serial (original) implementation of VAT uses Prim’s algorithm for constructing the MST for finding the permuted order
of elements in the similarity matrix. For the parallel implementation, we propose using Borůvka’s algorithm for finding the
MST as implemented by Vineet et al. [44] on the GPU. Borůvka’s approach is generally favored in parallel implementation
owing to its iterative nature. The runtime complexity of Borůvka’s algorithm is O(E log V ) for a graph with V nodes and E
edges, while that of Prim’s algorithm is O(V 2), which implies that implementation of pVAT depends on both E and V , while
that of original VAT depends only on V .

In VAT, we exclusively order the vertices without constructing the actual MST or evaluating the feasibility of constructing
one. In a disconnected graph, a MST cannot be constructed but we can still get an ordering and construct the ordered image in
VAT, which is an advantage. Both Prim’s and Borůvka’s algorithms give us combinatorial possibilities of MSTs. Our proposed
algorithm for pVAT is as given in Algorithm 1.

A. Locating Clusters

The original implementation of VAT does not automatically differentiate the clusters. However for our algorithms for
multilevel clustering as well as for parallel sets-like representation we require specific clusters. We use a brute-force approach as
follows: in the reordered dissimilarity matrix D∗ obtained using VAT, we walk along the diagonal rowwise, check columnwise
the intensities of the neighboring elements to the diagonal element in the next row in D∗, and use a heuristically-derived
threshold to identify start and end of clusters along the diagonal. The runtime complexity of the algorithm is O(N2) for
N ×N dissimilarity matrix.

V. MULTILEVEL CLUSTERING

In our work, we use multilevel clustering using an agglomerative hierarchical approach for achieving multiple levels of
detail. It works in a bottom-up manner, initialized by all data objects as leaf nodes. For implementing multilevel clustering,
we merge all the nodes in a cluster into a single node, when moving from a finer to a coarser level of detail, and iteratively
apply clustering algorithm on the new set of nodes. The multilevel clustering algorithm terminates when none of the nodes
can be further merged, i.e, there are no more clusters. For N nodes (x1, x2, . . . , xN ), if we get k clusters (c1, c2, . . . , ck) after
applying similarity function and seriation algorithm, where k < N , then the k clusters become the nodes for the subsequent
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Algorithm 1: pVAT: Parallel implementation of VAT
Input : D – N ×N dissimilarity matrix
Output: Reordered Dissimilarity D∗

compute weighted graph G(V,E) with N vertices in V and edges in E, obtained from using D as the adjacency matrix.
P = {}
S = V
for each vertex u in V do

for each vertex v in V , such that v 6= u do
find the minimum weighted edge from u to v

while no more vertices u ∈ S can be merged do
merge vertices (u ∈ U ⊆ S) to form connected components, called supervertices (svU ), using minimum weighted
edges
treat supervertices as new vertices, S = S ∪ {svU} − U

for each vertex u in S do
get the recursive ordering O(u) of the subgraph in u
P ← P ∪O(u)

obtain the ordered dissimilarity matrix D∗ using the ordering array P as: D∗
pq = DP (p),P (q) for 1 ≤ p, q ≤ N .

level of detail. In general, multilevel clustering is possible only if k < N strictly, as k = N would imply that every cluster is
a singleton, which implicitly indicates that there are no inherent clusters in the data set.

When moving to a coarser level of detail, the merged nodes replace the constituent nodes. For sake of simplicity, we
will assume a merged node to contain one or more nodes. Thus all the nodes in the subsequent coarser level of detail are
merged nodes. When moving to a coarser level of detail, the adjacency matrix changes, and the similarity matrix needs to be
recomputed. An appropriate formulation for the attributes of a merged node has to be derived from an appropriate aggregation
of the attributes of the constituent nodes from the finer level, which is beyond the scope of this work. Hence in our current
work, a simple similarity function of finding the maximum weighted edge between the clusters has been used. It is equivalent
to the identity similarity function, i.e., the adjacency and similarity matrices are the same. This function reduces a n×n matrix
to a k × k matrix, where n nodes have reduced to k clusters across one level of detail.

When using VAT as the seriation algorithm, any one of the possible minimum spanning trees is used which makes the results
of our multilevel clustering combinatorial. The number of clusters for a particular combination of data set, similarity function
and seriation algorithm may vary for all transitions to the coarser levels except the last one. We have observed that the last
transition always gives the same result, as the multilevel clustering terminates when no further merges can occur, i.e., the last
level of detail occurs when the data set cannot be further simplified.

Multilevel clustering accentuates the need for node-cluster labelling as the new aggregated nodes should be meaningful in
the context of the data set. Our work, however, is currently limited to tracking the membership of a node in a hierarchical data
structure generated by multilevel clustering. The rationale behind this decision is that the membership of nodes in clusters, on
its own right, implicitly reveals analytical information.

VI. VISUALIZATION OF SIMILARITY MATRIX SERIES

Similarity matrix series refers to multiple similarity matrices obtained for a set of data objects, either in the form of time
series, or by application of various similarity functions or permutation functions, or by generating different subspace clusterings.
Membership of objects in clusters in each of these similarity matrices is a salient aspect of the series as well as of the entire
data set. Tracking the cluster-membership of objects will enable us in identifying trends and patterns in the data, thus showing
the evolution of the data object across the series. We propose a parallel sets-like representation for tracking cluster-membership
of objects across similarity matrices. We believe representing small world networks using this technique can give us further
insights.

Kosara et al. have proposed parallel sets representation [25] of categorical data. Parallel sets has the following features: (a)
it shares the parallel coordinate layout, treating all dimensions to be independent of each other, and (b) instead of using a line
connecting values of coordinates to represent a data point, boxes are used to display categories and parallelograms or bands
between the axes to show the relations between categories.

In our representation, the axes indicate the “instances” in the series, e.g. time-stamps in time series, one of the similarity
functions in the series obtained by applying various functions, etc. The axes show the permuted order of objects in the seriated
similarity matrix of the corresponding instance. We use segments in the axes to indicate clusters and lines between axes to
link locations of an object in the permuted order in the different instances, similar to boxes and parallelograms in the parallel
sets representation. Hence we refer to our technique as “parallel sets-like.” For a series of similarity matrices, each similarity
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matrix can be considered to be in its own independent space, which justifies using linearly independent axes to represent them.
As shown in Figure 2, each of the parallel axes corresponds to a N×N similarity matrix in the series and displays the ordered
set of N data objects or nodes. Each node in the matrix has a label which can be tracked. Segments in the axes are assigned
colors to indicate start and end of clusters. We use a two-color scheme where the colors are assigned alternately along each
of the parallel axes to indicate start and end of clusters.

Generating such series of similarity matrices for a small world network and representing the series using our proposed
method can aid in data mining.
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Fig. 2. Schematic of parallel sets-like representation of similarity matrices series. The parallel axes indicate the different instances (0, 1, . . . , n), which
correspond to the similarity matrices in the series. The similarity matrices represented here have been permuted using a seriation algorithm, e.g. VAT, and
clusters have been identified in each matrix. For each instance a, the axis is segmented using a two-color scheme to show start and end of clusters; cab
indicates the bth cluster in the seriated similarity matrix a. The lines representing objects start from an initial order in the left of the axes and connect points
on the axes corresponding to the object in the permuted order on the specific axis, as shown by the blue and black lines indicating objects i and j, respectively.

VII. EXPERIMENTS & RESULTS

In this section, we have described the experiments we conducted to show the effectiveness of our techniques and have shown
the results for the same. We have performed case studies to show the insights we drew from using our techniques.

pVAT:
For evaluating pVAT, we have used the following data sets: coauthorship network [33], snapshots of peer-to-peer file sharing

network [27], [28], who-votes-on-whom network data [30], and cocitation network [29]. Implementation of pVAT algorithm
requires CUDA [40] and CUDPP [15] libraries. We have also used the igraph library [7] for graph layouts and implementing
similarity functions. We have performed the experiments using Nvidia GeForce GTX 480 and 4GB RAM.

Performance measurements comparing pVAT to the serial implementation of VAT on different data sets, after applying jaccard
similarity function, are as given in Table I, which shows as expected that the former is more efficient than the latter. It is to be
noted that serial implementation of VAT involves the Prim’s algorithm whereas pVAT is based on Borůvka’s algorithm. Hence,
we see a difference in the trends in our experiments and the speedups from the implementation in Vineet et al. [44], where
serial and parallel implementations of Borůvka’s algorithm are compared. Since the algorithms used for serial and parallel
implementations are different, it will be incorrect to give speedups, as would be the case in a classical parallel computing
scenario. Owing to the difference in dependency of the algorithms in the serial and parallel implementations on V and E, for
a graph of V vertices and E edges, we observe the following from Table I:

1) MST construction for a graph of 7K vertices and 103K edges will be faster than 8K vertices and 26K edges for the
serial version, as there is no dependency of the runtime complexity on the number of edges.

2) MST construction for a graph of 7K vertices and 103K edges will be slower than a graph of 10K vertices and 52K
edges for the parallel version, as there is a linear dependency on number of edges but only a logarithmic dependency
on the number of vertices.

Multilevel clustering:
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Data set #Nodes #Links Serial VAT pVAT
(msec) (msec)

Coauthorship network [33] 475 1250 1x103 2.42
Peer-to-peer file sharing network [27] 6301 20777 1.8x106 4.55
Who-votes-on-whom network [30] 7115 103689 2.4x106 5.21
Peer-to-peer file sharing network [28] 8114 26013 3.8x106 4.07
Cocitation network [29] 9877 51971 6.6x106 3.92

TABLE I
PERFORMANCE MEASUREMENTS OF SERIAL AND PARALLEL IMPLEMENTATIONS OF VAT FOR VARIOUS NETWORK DATA SETS, AFTER APPLYING THE

JACCARD SIMILARITY FUNCTION.

Data set #Nodes #Nodes in Level Transitions #Levels
Karate club[49] 22 22 →10→ 5→4 3
Taro exchange[14] 34 34 →7→2 2
Coauthorship[38] 1589 1589 → 615 →238 →122 →113 5
Wikipedia voting[30] 7115 7115 →3216 →1983 →927 → 725 → 635 6

TABLE II
SIMPLIFICATION OF NETWORK DATA SETS USING MULTILEVEL CLUSTERING BASED ON VAT ALGORITHM FOR SERIATION AND CLUSTER

IDENTIFICATION AFTER ITERATIVELY APPLYING IDENTITY FUNCTION ON THE ADJACENCY MATRIX.

For implementing multilevel clustering, we have used the following data sets: coauthorship network [38], who-votes-on-
whom network data [30], taro exchange network [14], and karate club network [49]. We have used the identity function on
the adjacency matrix as the similarity function and VAT as the seriation algorithm. At every transition in the level of detail,
we have performed the following steps: (a) compute the new similarity matrix, (b) merge nodes in cluster to form new nodes,
and (c) apply VAT on the new similarity matrix. Table II summarizes the number of nodes in transitions between levels of
detail when implementing multilevel clustering.

Case Study 1: Time-series of condensed matter collaboration network [37]:
In order to isolate stories of relevance in large networks, we have chosen the condensed matter collaboration networks [37]

in 1999, 2003, and 2005, and created time series of similarity matrices. We have analyzed a subnetwork in condensed matter
collaboration network in 1999, 2003, and 2005, which was seeded from subnetworks involving 27 authors who were common
in the three data sets. We have isolated 1036 authors in total from all three instances, and applied our analysis based on parallel
sets-like representation, as shown in Figure 3, where pink, blue, and red lines track authors in clusters found in 1999, 2003,
and 2005, respectively.

The cluster found in 1999 shown in pink in Figure 3 comprises of the following authors: LaSota, Krakauer, Yu, and Cohen.
Krakauer advised LaSota and Yu for their Ph.D. and postdoctoral research respectively circa 1999. Krakauer worked on NRL
(Naval Research Lab)-funded project and Cohen worked at NRL, circa 1999. These strong proximities led to several coauthored
papers amongst these four authors. In 2003, LaSota, Krakauer, and Yu continue to be in a cluster, and Cohen falls off, indicating
that the connection through NRL has faded. In 2005, LaSota, Yu, and Cohen are not coauthoring with Krakauer any more,
however they still form a cluster, owing to the fact that though they continue to be in the academia in the area of physics, they
are no longer active in research. The insights we derived based on coauthorship can be made directly from the graph layout,
however, our techniques have additionally enabled us to gain similarity-based insights on the temporal behavioral patterns of
the subjects.

The cluster in 2003 highlighted in blue consists of the following authors: Kes, Zeldov, Rappaport, Myasoedov, Feldman,
Beek, Avraham, Khaykovich, Shritkman, Tamegai, and Li; who are associated with Zeldov’s superconductivity lab in various
capacities since 2000. Since the lab is fairly young, the associations are strong in 2003 as well as in 2005, but are scattered
in 1999. The strong associations in 2003 could also have derived directly from the network owing to a paper coauthored by
all of them in 2002; however the associations in 2005 is not obvious from the network directly.

The cluster in 2005 highlighted in red consists of the following authors: Wang, Junod, Bouquet, Toulemonde, Weber, Eisterer,
Sheikin, Plackowski, and Revaz. They are in the same cluster in 2003, indicating that all the authors are associated through
Junod by coauthorship from 2003. This inference made with the help of the parallel sets-like representation has been validated
by the actual data.

Since the clusters are formed based on the cosine similarity function, we find that given a “hub”, such as Zeldov and Junod,
all their coauthors tend to cluster together even in the years the coauthors themselves do not publish together. This is because
cosine similarity measure is based on the common neighbors and the hubs continue to act as common neighbors.

Case Study 2: Analysis of a Collaboration Network [33]:
We have applied both parallel sets-like representation and multilevel clustering on a collaboration network of social network

analysts [33]. We have generated a series of similarity matrices by applying the following similarity functions: jaccard, dice,
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Fig. 3. Parallel sets-like representation of a subnetwork of 1036 authors taken from the condensed matter collaboration network in 1999, 2003, and 2005, to
generate time series of similarity matrices. We have analyzed the clusters isolated in 1999, 2003, and 2005, highlighted by pink, blue, and red, respectively.

cosine similarity, and inverse log-weighted. Parallel sets-like representation of this series, as shown in Figure 4 has shown us
the influence of the various similarity functions on the data set. The red highlight shows a cluster that persists through all the
similarity functions. On further investigation, we find that the cluster comprises of the following authors: Darrow, Muth, Vera,
Marrow, Rothenberg, Daniels, Mann, Liebow, Myers, Branch, Mueller, and Potterat; who have co-authored with a researcher,
Klovdahl, who is not in the cluster. Since the four similarity functions are based on common neighbors, the authors’ association
with Klovdahl causes the cluster to occur on application of each of the similarity functions.

On applying multilevel clustering on iterative application of identity similarity function and VAT, 475 nodes reduced to 217,
203, and 201, in subsequent levels of detail, as shown in Figure 5.

VIII. CONCLUSIONS

There have been several improvements to VAT since its inception to handle scalability. However since its scalable variants,
namely bigVAT [22] and sVAT [16], are sampling algorithms, we have proposed a parallel implementation of VAT, pVAT,
using CUDA and Borůvka’s algorithm. pVAT enables preserving all data. As expected, performance of pVAT is more efficient
compared to the serial implementation VAT which makes our tool scalable when using VAT as a seriation algorithm. The
original VAT algorithm is not intended for network data, hence, no analysis of the algorithm has been done for various kinds
of networks. Given the “globally sparse, locally dense” nature of small world networks, and runtime complexity of Borůvka’s
algorithm being O(E log V ), for a graph of V vertices and E edges, we can conclude that VAT based on Borůvka’s algorithm
is scalable for our specific application of small world networks.

We have proposed using multilevel clustering on the similarity matrix as a way of reducing large data sets. We have found that
irrespective of the variations in the results obtained from VAT, the network attains the same coarsest level of detail. Multilevel
clustering, upon applying appropriate aggregation function, will enable meaningful grouping of data to achieve various levels
of detail.

We have proposed using a parallel sets-like representation to visually explore multidimensional data which can be posed
as a series of similarity matrices. This representation enables us to track the membership of data objects in clusters, that are
identified across different similarity matrices, which correspond for different time stamps, dimensions or attributes, characteristic
function, such as similarity function or seriation algorithm. Parallel sets-like representation has helped us to find significant
events in time series data and interesting behavior in series derived from applying various similarity functions.

Since our work heavily depends on VAT, it comes with its limitations as well. Our future work will involve adapting our
methods to address the following shortcomings: (a) representation of dense graphs as well as networks without any inherent
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Fig. 4. Parallel sets-like representation of a series of similarity matrices generated from applying various similarity functions and VAT in the collaboration
network of social network analysts [33]. The red highlight shows the cluster that persisted through the different similarity function.

clusters, and (b) theoretical or empirical evaluation of our assessment of the clustering capability of the similarity functions.
For highly dense networks with large number of nodes where node-link diagram suffers from occlusion, matrix visualization
is apt. However highly dense graphs will inherently have fewer number of clusters which will cause multilevel clustering to
fail. Hence we will have to adapt our methods to work effectively on dense networks, e.g. VAT may have to be substituted by
a suitable permutation algorithm for such graphs. Though matrix representation is limited by a spatial complexity of O(N2)
and is not scalable with data size, it can be resolved using pixel-level displays. Our current work does not rigorously check
if VAT gives the correct number of clusters as can be obtained when applying a similarity function on the data. In order to
allow for such an evaluation, we will have to formulate appropriate metrics based on our method.
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