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1 Introduction and Research Context

The purpose of the COGENT Projéds to look at issues in generic (wide-coverage and reusabléce generation.
Central to generic generation is the issue of nondetermiriie. multiple outputs for the same input, and how to con-
trol it. Nondeterminism arises from three main sources irahlanguage generatiéin(i) wide syntactic and lexical
coverage the wider the coverage of grammar and lexicon, the more wbidgs can be generated from the same
semantic representation; (iinderdetermined inputshe less specific the semantic or conceptual represemiatio
more word strings correspond to it; and (ilipconstrained mapping from inputs to realisatiotte fewer constraints
(e.g. rule application conditions, intermediate seletpoocesses, probabilities) there are, the more realisatian

be generated from an input. Wide coverage and (even extdysiinderdetermined semantics can both make an NLG
system more generic, because they help make a system méablp@and reusable. However, at present no compre-
hensive methodology fazontrolling the nondeterminispfior deciding between alternatives, exists. It is one of the
core aims of COGENT to develop such a methodology.

There are three basic strategies for reducing nondetesmir(i) increasing the specificity of the inputs, (ii) using
specialised (domain-specific) grammars and lexicons, éif@gnstraining the generation process more. Most ap-
proaches to surface generation that aim to be generic egheire highly specified inputs (in particular wide-cowgga
realisers such as FUF/SURGE and KPML) with no methods forméd choice among alternative realisatiarghey
permit less specific inputs and have a methodology for sefpaeimong alternative realisations, applied after the gen-
eration process is complete (in particular the relativelyent statistical generators, e.g. Nitrogen and its ssocgs
Some approaches to NLG use heuristics to prune the genesgtaze on the fly, e.g. [Varges and Mellish, 2001].

In all approaches, thdegree of specificity of the inputs is fixe@his is a problem because, on the one hand,
a high level of specificity may force the module creating thpuits to make default or random choices. On the
other hand, lowering the required level of specificity meiagseasing the number of alternative realisations that can
be generated from any input (e.g. in Nitrogen, typicallilitms of alternatives have to be considered, according to
[Langkilde, 2000]).

The basis for the approach to generic surface generationrevdexeloping in COGENT is to enable both (i)
flexibility in the degree of specificity of the inpugd (ii) control over the generation process, in the simpleseda
the form of selection among alternative realisations.

The key to control over the specificity of surface generatputs is to encode the inputs in a representation
formalism that is highly underspecifiable. The basic idesirigple: the deep generator creates underspecified semantic
representations (USRs)yand the first thing that the surface generator does is exibp@sé to the corresponding set of
fully specified semantic representations (SSRs). Lowetifipgy translates into higher underspecification. The enor
underspecified the USRs, the larger the set of realisatfatain be generated from them (given the same grammar
and lexicon).

An important consequence is that the deep generator caseloav specific it wants to be, and can avoid making
default or random choices altogether. The inputs can befgpatere information is available to make decisions,
and where there is not, decisions can be left to a later stetipeigeneration process, when either enough information
becomes available to make the remaining decisions (e ¢antext), or dedicated selection modules can make an
informed choice (e.g. based on domain likelihood). Thisuimtmakes the surface generator more easily reusable,
because a wider range of different types of deep generatimutes will be able to produce inputs from which it can
generate.

Figure 1 is a diagram of the architecture of the COGENT gditaraystem we are currently building as a research
platform. The system has three stages: expansion from spelefied to fully specified representations, surface
generation and selection.

We are using an existing surface realiser, LKB/Lingo depetbby Copestake et al. [Copestake et al., 1999], and
this choice has partly determined the architecture of tistesy, in that it has a two-stage surface generation process.

We are considering various selection mechanisms, inofustitistical language models and sets of stylistic filters.
Control over such mechanisms (by the user or applicatioir@mwent) will take the form of a set of parameters that
can be set for different domains, applications and gemeratbntexts. E.g. a language model would be trained on
domain corpora, while style filters can be configured and hteigjin different ways for different domains.

In future work, we will look in detail at control over the gea&on process and selection among alternative
realisations. In the current project phase, we are focgssincontrol over input specificity, and the purpose of this
report is to presenontext-Free Representational UnderspecificatiGRU).

CRU is a very general framework for defining underspecifiabpgesentation formalisms, encoded as expansion

1A joint EPSRC project at Brighton and Sussex Universitiesigést 2003-January 2007, EPSRC grants GR/S24480/01 (&mighnd
GR/S24497/01 (Sussex).

2Assuming a fixed mapping from semantic representationsalsations.

3Using the term “semantic representation” in a loose senseeaning representation that may be specific with respeektodl and syntactic
properties.
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Figure 1: Architecture of COGENT generation platform.

rule grammars. In the context of COGENT, the idea is that a @RuWnmar, defined on top of some given semantic

representation formalism (SRF), defineswarderspecifiablsemantic representation formalism (USRF). The CRU

grammar defines both (i) the different ways in which semamfizesentations (SRs) may be underspecified, and (ii)
the mapping from underspecified to fully specified SRs. Th&@Rammar encodes the underspecifiable meaning
representation language for the outputs created by deepateon module. If these outputs are underspecified, theen th

expansion rules of the CRU grammars are used to expand thalhptussible fully specified meaning representations

which are then realised syntactically and lexically.

Underspecification in meaning representation has a longrigjgoing back at least to the early 1970s. However,
research has focussed predominantly, if not exclusivelysing it to represent ambiguity between several possible
analyses of the same word string. With Context-free Reptaienal Underspecification (CRU), this report proposes
the first systematic use of underspecification for NLG.

This report describes CRU in detail and discusses its ntativand research contextin some depth. It is organised
as follows. Section 2 provides an overview of underspetifinaresearch and the three types of underspecification
technique that have predominantly been used. Section 8 #ddkut the tree-shaped generation spaces defined by
NLG systems, in which the nodes correspond to choice poihtsevdecisions between alternatives are made, and in
which individual generation processes are a set of patims fowt to leaf nodes. This discussion provides the basis
for outlining an approach to underspecification for NLG wéhehoice points are made representationally explicit in
the form of underspecified representations. The main pahi®feport is Section 4 which describes CRU in detall, in
terms of formal definitions and illustrating examples. &atb picks up some points from Section 4 and investigates
them in more detail. Directions for future research areudised in Section 6.

2 Underspecification in Semantic Representation

2.1 Overview of underspecification research

Research on developing underspecification techniques hasobably exclusively — focussed on NLU, in the con-
text of which it has been motivated in a number of differenysvesummaries are provided in [Kdnig and Reyle, 1999,
Pinkal, 1999, Bunt, 2003]): use of underspecified repregiemts can increase processing efficiency by making it pos-
sible to postpone disambiguation decisions, or to avoidigembiguation bottleneck altogether where disambiguati
is too fine-grained, irrelevant or simply impossible in therent context. Underspecification has been advocated as a
way to make processing robust, and so as a deep alternatigermplement) to flat heuristic and statistical language
understanding [Pinkal, 1999, p. 40]. The theoreticaldistc argument has been made that underspecified represen-
tations simply are the most appropriate representatiom®iofext-independent analyses of ambiguous word strings
[Bunt and Muskens, 1999, Ahn et al., 1994, Pulman, 2000, b. 21

Another motivation comes from psycholinguistics: it hasdrae fairly standard to assume that people do not
disambiguate exhaustively when processing ambiguousisesdt, and some evidence has been provided for this. E.qg.
[Traxler et al., 1998] note that people read the followind#uous sentence (1) faster than the syntactically idehtic
but unambiguous sentence (2):



(1) The son of the driver that had the mustache was pretty cool
(2) The car of the driver that had the mustache was pretty. cool

One possible explanation is that “the syntactic represiemtan the ambiguous case remains underspecified”
[Ferreira et al., 2002, p. 20].

The existing underspecification literature looks at pheaoanf ambiguity, vagueness and incompleteness in the
word string, where underspecified representations are tosedcode analyses of ambiguous, vague or incomplete
word strings. [Bunt, 2003, p. 42] has an overview of phencartbat have been accounted for by underspecification,
including lexical ambiguity, structural semantic ambiguiquantifier scope and distributivity, nominal compound-
ing), syntactic ambiguity, discourse-level ambiguityifedis, short answers, anaphora, cataphora), and inceenple
information (unknown words, partially recognised speech)

While theoretical-linguistic motivations are cited, thevihg force behind the development of underspecifica-
tion techniques has been practical and application-a&tenbnsiderations. Probably the two earliest examples of
underspecification are of quantifier scope in the LUNAR sysfé/oods et al., 1972, Woods, 1978], and of quan-
tifier scope and word senses in PHLIQA [Bronnenberg et a91.9 Many other systems have used underspecifi-
cation since, e.g. the TENDUM system [Bunt et al., 1984] hastastonstants for count/mass readings as well as
guantifier storage. The Core Language Engine used QLF wldbleves underspecification — e.g. of pronouns
and quantifier scope — uniformly by meta-variables and iesli@lshawi, 1990]. [Pulman, 2000, pp. 26-29] devel-
oped a syntactically and semantically improved version bFQJLF, a formalism somewhat related to CLE-QLF
(but using HPSG and Type Theory), was developed for the PLlyd&m [Geurts and Rentier, 1991, Kievit, 1994],
and also used in DenK, a generic multimodal user interfageviket al., 2001]. The dialogue systems SPICOS |
and Il [Niedermair, 1987, Niedermair, 1992] used quantsierage, while MRS [Copestake et al., 1999] and UDRT
[Reyle, 1993] were both used in Verbmobil to structurallylarspecify scope.

2.2 Underspecification techniques

There are two basic categories of underspecification tgclest (i) structural underspecification: incompletelycspe
fying the way in which smaller expressions combine to formyda expressions; and (ii) ambiguous terms, where one
term ‘stands for’ a set of terms.

The one standard technique for all kinds of structural usyleeification is what has variously been calfedes,
handles andlabels(Section 2.2.1 below). Two different types of ambiguousi®have been usetheta-constants
the main mechanism for underspecifying atomic expresgigastion 2.2.2), antheta-variableswhich are mostly
used for cases where the variants themselves depend onxtc(®eetion 2.2.3). There is not a complete separation
between the ambiguity phenomena that have been accoumt@dticach of these mechanisms, but between them, it
has been claimed [Bunt, 2003, p. 42], they cover pretty millch@word-string level ambiguities in NL.

2.2.1 Structural underspecification: Holes, handles and lels

This mechanism has been used widely in underspecificats@areh where it first appears in exactly this form in Bos’s
‘Hole Semantics’ [Bos, 1995], although Cooper Storage [izwp1983] and UDRT [Reyle, 1993] anticipate much of
the mechanism. Various terms have been used to describeettieamism, but here | will usgointersandlabelsas
follows. Instead of a syntactically nested representatiorh as (1) below, (semantically) embedded expressions are
written in a syntactically flat representation such as (2)ese pointers and labels with the same index match.

(1) nodeo(leafi,nodes(leafs,leafs))
(2) labely:nodeg(pointery, pointers), labely:leaf1, labela:nodes (pointers, pointery), labels:leafs, labely:lea fy

Underspecification can then be achieved by replacing isdjadnich amounts to cutting connections between
pointers and labels), and constraining the ways in whicimteos and labels can be linked once more using some
constraint language (which amounts to subexpressiong feiembedded). In Hole Semantics, the connections are
achieved by variable instantiation (labels are constamd,pointers are variables ranging over labels), and in MRS
they are achieved by co-indexation.

A representation formalism capable of underspecifyingcttre can be seen as defining two languages and the
mapping betweeen them: the language of fully specified espyasL (where every pointer is connected with some
label), the language of underspecified expressiorand the mapping frorty to L. In principle, and given a suitably
expressive constraint language, any subsétcdn be represented by a single expressidh.iklowever, the tendency
has been to attempt to restrict in linguistically meanihgfays the set of subsets @fthat can be represented by a
single expression. In particular, for underspecificatibuantifier scope, researchers have developed methods for
restricting the subsets (sets of readings) that can besepied in the formalism to the plausible readings, examples
including Hobbs and Shieber’s algorithm [Hobbs and Shietf#é7] and MRS [Copestake et al., 1999].



Some formalisms end up being too restrictive, e.g. Bunt'stBENDUM system and MRS with QEQ-constraints
cannot do partial scope specification, as required e.g.ewlierd order partially disambiguates a sentence with quan-
tifiers (reducing the number of possible readings). MRS WH#Q-constraints as used in the Lingo parser runs into
particular problems with the interaction between quamtifiel adverbial scope. As an example consider the following
two sentences and two readings (in a highly simplified pseaghoantic representation):

la.some dogs only bark 2a. some(dogs,only(bark))
1b. only some dogs bark 2b. only(some(dogs,bark))
2c. some(only(dogs),bark)

(2c) is a valid reading for both (1a) and (1b), but (2a) isdalnly for (1a), and (2b) is valid only for (1b). However,
only the underspecified representation that permits j@stings (2a) and (2b) is possible in LKB-Lingo MRS, and is
the analysis assigned to both (1a) and (1b).

2.2.2 Meta-constants

Meta-constants are a simple generic mechanism that hasweéely used in underspecification, where a single atomic
term (the meta-constant) is mapped to a set of atomic tefmesoftject constants). Some form of lookup table holds
information about which meta-constants correspond to Wwblgject constants. One of the oldest examples is from
[Bronnenberg et al., 1979] who used meta-constants for lgmous and polysemous words: e.g. the meta-constant
AMERI CAN which was domain-specifically expanded to individual sermech as ‘manufactured in America’ and
‘located in America’.

Meta-constants have also been used to account for othes tfp@riation, e.g. quantifier distributivity.

2.2.3 Meta-variables

What the above two underspecification techniques have inraomis that they are used only for cases where the
complete (or perhaps, maximal) set of possible resolutn®adings can be stated independently of the context
(although selection of a subset of readings may be contgxéndent). There is, however, a whole range of ambiguity
phenomena where the set of possible readings, while pgssferrable by some general function from the context,
cannot be stated generally and independently of the contexamples include unresolved anaphoric and deictic
references. Such phenomena are what meta-variables inspedédication are intended for.

The term ‘meta-variable’ has come to refer to a “placeh@dievice” [Kempson, 2003, p. 304], which is, at a
later stage of analysis, linked by some mechanism to ongpirgtation as determined by a function over the context.
For example, in CLE-QLF, pronouns are represented by updeifiable terms that have (in addition to two generic
arguments) an argument of type ‘restriction’ which may #yex.g. gender, and an argument of type ‘meta-variable’
which is, in the resolved forms, instantiated to the contaby preferred referent [Pulman, 2000, p. 522].

2.3 Underspecification for NLU and NLG

The field of semantic underspecification has tended to canitsglf exclusively with phenomena of ambiguity in
the word string: word sense, syntactic and semantic sceference, etc. Such ambiguity arises during analysis of
the word string when there are decisions about the corredysia that cannot be made on the basis of the available
information. The idea in using underspecification is thelmeee a representation of the analysis that is as ambiguous as
the word string. For the construction of such represematim knowledge about the full set of variants, or altermativ
readings, is required. Furthermore, such representdtiavesa use even if they are not, or cannot, be mapped to their
corresponding variants at all.

In NLG too, underspecification is potentially useful forusitions where decisions cannot be made. However,
while in NLU decisions are between different meanings of shee word string, in NLG, decisions are between
different word strings expressing the same meaning. Fanple in NLU, it would be useful to have an expression
such aBANK( X) thatis underspecified between the lexical itdraskin the river bank sense, abdnkin the financial
institution sense, but in NLG, such an expression wouldteedily useless. This is because the NLG task is to map
from a given known meaning (if the meaning is known so is thesseofbank to a word string that expresses the
meaning. What NLG does have a use for are expressions thandegspecified between ‘different ways of saying the
same thing’, e.gautomobile car, motor, bangerfor the conceptAR, but it does not make sense in NLG to be able
to not distinguish between homonyms (such as the two serfisbank’), to underspecify, in other words, between
‘identical ways of saying different things’.

In both NLG and NLU, underspecified expressions provide a @fgyostponing or avoiding decisions. Ideally,
such expressions can be specific where information is #laita make decisions, and where there is not, decisions
can be left to a later stage in the generation or analysisssgevhen either enough information becomes available to
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make the remaining decisions (e.g. from context), or déeiitaelection modules can make an informed choice (e.g.
based on domain likelihood).

3 Underspecifiable Representation for NLG: Towards a Formakm

This section starts by taking a high-level look at the engemeration process (Section 3.1generation spaces
are described in terms of decision trees where the nodesspannd to choice points at which decisions between
alternatives are made, and where individual generatioogzses can be seen as a set of paths from root to leaf nodes.

The next section (3.2) discusses tlepresentational spacedefined by underspecifiable and other representa-
tion languages. A type of tree-shaped representation spatescribed where the leaf nodes are the fully specified
representations and the other nodes are underspecifiddglydmetween the leaf nodes they dominate. Such a repre-
sentational space can be used to explicitly model the aectste underlying the generation process.

Section 3.3 argues that this is precisely the way that upéeification should be used in NLG: modelling the
decision tree underlying the generation space as a whole s&htion finishes with the outline of a proposal to
implement an underspecifiable semantic representationadiism (USRF) for NLG as a generic framework with a
nongeneric component that have much the same respectgeasparser and grammar in NLU.

3.1 Generation space and intermediate representations

While there is a lot of disagreement in NLG about appropriéatditectures, interfaces and the representations that
are constructed, there is broad agreement that the NLG gsquaesses through three phases, roughly corresponding
to three levels of representation: (1) conceptual, (2) seimaand (3) syntactic and lexical (even [Reiter, 1994] and
RAGS [Cahill et al., 2001] agree in these general terms). My&ems do not necessarily have three separate mod-
ules corresponding to the three phases (in the sense thatttgavell-defined interfaces with associated repregentat
languages), but most have at least one distinct level obsgmtation that is intermediate between conceptual repre-
sentation and NL strings (a semantic level, in the broadejemsvill refer to the phase before the semantic interface
asdeep generatiofdetermining what to say), and that following it aisrface generatio(determining how to say it).

Figure 2 is an illustration of a generic three-phase gemmerapace (for NLG systems with two or three distinct
modules). Seen as a whole, the space consists of all pogsildlédual generation processes in a system, i.e. all the
different ways you can get from an input to an output. The ladfitircles are intermediate representations passed from
one module to the next, and the filled circles are choice paithivhich decisions between alternatives are made. Type
of decision and corresponding set of alternatives dependiestage of generation, e.g. at an early stage a decision
may be the selection of a particular dialogue act, later i bwhether to pronominalise or not. Internally, a module
will tend to maintain data structures that are updated &t ehoice point, depending on the decision made. There
will tend to be several ways of getting to the same (intermjirepresentation, so the representations and decisions
represented by the circles are not unique.



The idea is that any generation space can be equivalentiggepted as a decision tree. From the input to the
NL output a chain of decisions are made that determine thesphat are taken through the generation space, and
ultimately the output set of NL strings. In an actual NLG gyst decisions can be implicit or explicit, based on
properties of intermediate data structures or on generatiatext.

As an example consider the following intermediate, conealpievel representation from [Reiter and Dale, 1997,
p. +9]:

+- -+
| nmessage-id: nsg02

| relation: DEPARTURE

I +- ]
| | departing-entity: CALEDONI AN- EXPRESS

| arguments: | departure-location: ABERDEEN

| | departure-tine: 1000
I

+-

+ — — — +

+- -

Suppose in a given NLG system, the set of realisations thmelbeayenerated from this representation inclubies
Caledonian Express departs from Aberdeen at 10am, Thedigarts from Aberdeen at 10am, It leaves Aberdeen at
10am andlt leaves here in 5 minuteg\t some point between content representation and realisat large number
of decisions have to be made. Some of these are conventiatealt with by a referring expressions module, some
by a process of lexicalisation, some by the grammar. An edamfoan atomic decision (which would be a single
decision node in the graph in Figure 2) is that between thies/elepart from’ and ‘leave’. Depending on the system,
the decision may be implicit in the conceptual-level repreation, so that only word strings containing, say, ‘lsave
are accessible from it, or there may be a point in the gemergtiocess where the two alternatives are explicitly
considered and a decision is made based on some informati@mal to the representation. A third option is that
both paths are pursued and the decision is delegated to emakprocedure so that if and when made it will cut off
some paths.

If it is possible to pursue multiple paths, then the systemrendeterminism. The tree of paths shown in Figure 2
is a typical scenario in a generation system: in the coneg¢atiod semantic space, decisions tend to (explicitly or
implicitly) lead down a single path, but the grammar andéxtidon has some degree of nondeterminism. Nondeter-
minism is handled in a variety of ways, most commonly by soorenfof post-selection, which selects the finsta
random set of:, or in the more recent statistical NLG, the beskalisations.

Many NLG systems use a separate module at least for surfaegag®n, and if a surface generator is to be in any
way generic (reusable across different applications anaads), it is necessarily separate from the rest of the syste
Crucially, a separate surface generator means that in geggration process, representations have to reach the same
degree of specificity at the same stage. This is often not d gtea, e.g. in generation in machine translation: if a
piece of information required by the target language is movided locally by the source language, then instead of
forcing a local decision, it would make more sense to postgbe decision between the possible alternatives until
either it can be made on the basis of additional, nonlocarimétion, or dedicated selection modules can make an
informed choicé.

3.2 Underspecifiable representation spaces

Figure 3 shows an example of part of the generation spacegofé2 — the semantic representation level (in the
shaded box) and some of the decision tree above it — in moa#l. d€he word strings below the semantic represen-
tation nodes are meant to indicate approximate the meaihithge semantic representations. Lexicalisation might at
a later stage map “12am” taoon, noontime, middagmong others, and the grammar might permit atgl2am it
departsas well agt departs at 12am

Ordinarily in NLG, some semantic representation languagesed that encodes the nodes in the shaded box, but
no representation language is used for the nodes abovsitclifa language were used, its representations would have
to encode the same information that the position of a nodeeiécision tree encodes: they would have to be specific
with respect to the decisions already taken, and contadmrimdtion about all possible future decisions. Or, looked at
another way, they would have to denote precisely the sebtisegions that can be generated from that point, and thus
the entire subtree rooted at that point.

This is precisely what underspecified representation isiab&.g. when quantifier scope is underspecified in
NLU, the underspecified representation encodes the setssilge scopings. Similarly, an underspecifiable repre-
sentation formalism can be created that encodes decisien such as the one in Figure 3: the nodes and branches

4Example: when translating pronouns into a language whistingjiuishes gender in non-person nouns, the decision batthe target language
genders cannot always be made at the sentence level.
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Figure 3: Underspecifiable representation space.

then correspond to the underspecifiable representatiare spénile each individual node corresponds to an explicit
semantic representation that is underspecified betwedfuthespecified) representations corresponding to thedsa
it dominates.

With appropriately defined representations, decisionespad representational space can overlap or even be iden-
tical: it is in principle possible to explicitly represetiet generation space underlying any generation system as an
underspecifiable representation space.

3.3 Surface generator input language as modelling a geneiiah space decision tree

It was sketched in the preceding sections in general termsehtdSRF can be used to model part or even all of
the generation space. The way we want to use it in the COGEMNjEgiris somewhat more focussed than that: the
aim is to use such a USRF to create an underspecifiable arefdheflexible input language for a generic surface
generator. In terms of Figure 2, we want to create an undeifsggle representation space that encodes the semantic
representation level (shaded box) and part of the genarate above it, so that the deep generator can create any of
these underspecified or fully specified representationass pn to the surface generator.

Such a representation space can be seen as consistingefitbtiact components: (i) thebject languageR
of fully specified representations, (ii) some encoding &f different ways in which expressions ihcan be under-
specified, defining aneta-language) © of underspecified representations, and @ipansion mechanism(s)some
way of deriving the subset dt that corresponds to an arbitrary element\éft, i.e. some functiorf (m) = R',m €
MR R' CR.

Every expansion mechanism can be combined with a rangefefeit R. For everyR many differentd/ ® can
be defined. This makes it natural to base the design of the UBRfralism on a distinction between generic and
nongeneric components: to define a framework which has gesgransion mechanisms but but allows differént
to be defined and for ever, allows differentd/ Z to be ‘plugged in’.

The following section introduces a framework based on od#ftee grammars that allow® and M ¥ to be varied
freely, while keeping the expansion function fixed.

4 CRU: Representational Underspecification in a Context-Fee Framework

This section describes CRU (Context-free Representdtidmaerspecification), a context-free formalism for under-
specifying a wide range of different types of representatimguages, including languages for structured semantic



representation. The context-free setting has a range argages including that (i) any number of different un-
derspecification spaces can be defined simply by writing rete/ &f context-free expansion rules, and (ii) generic
underspecification techniques can be defined in terms of atatipnally inexpensive context-free parsing, generatio
and operations on derivations.

As outlined in the preceding section, the space of all ptessibcisions that a generation system can make in the
course of increasingly specifying the word string can be efled by a decision tree. The basic idea in using the CRU
formalism for NLG is to model all or part of this decision spagith what is essentially a context-free grammar, such
that the decision tree is encoded by an individual CRU gramamal decision nodes and the branches rooted at them
are encoded by nonterminals and sets of production ruléstiagt same nonterminal in the left-hand side.

This approach provides a way of writing down for individuglduistic points of variation the set of possible
variants in the form of a set of expansion rules, e.g. fordalvariation the set of paraphrases realising the same
concept. Because CRU is context-free, writing down sucht afseiles means specifying that the decision between
the alternatives, the process by which the expression & becomes fully specified, is independent from the
context. This means taking a very systematic view of thegieeispace underlying NLG or NLU: it must be defined
entirely in terms of a tree of decisions that depend only arnsitens already taken.

The formal description of CRU starts in Section 4.1 with tivee basic context-free definitions (4.1.1), followed by
the definitions of the basic CRU formalism (4.1.2), a simpteked example (4.1.3), and a summary of the advantages
of using a context-free formalism (4.1.5).

Section 4.2 describes how (non)terminals with argumeantsire are used in CRU, and explains how this enables
structured languages to be represented and underspecified.

It is argued that CRU is well suited for underspecificatios@mantic representations, and Section 4.3 gives one
possible set of notational conventions and argument tygredeffining a USRF for NLG in CRU. This is illustrated by
defining and discussing a simple example CRU-grammar fogrggimg train departure time expressions.

4.1 Basic CRU Formalism
4.1.1 Basic context-free definitions

The following are the three standard definitions for confeatt grammars, given here in their entirety because defi-
nitions and explanations in the remainder of this sectidhrefier to their details. The definitions are essentiallg th
same as in [Hopcroft and Uliman, 1979, p. 80-81].

Definition 1 Context-Free Grammacgg)

A context-free grammaiFg) is a 4-tuple(W, N, S, R), wherelV is a set of terminal symbolgy is a set
of nonterminal symbolsS € N is the start symbol, anf is a set of production rules, where each rule is
of the formn — a,n € N, o € (W U N)*. W andN are disjoint.

Definition 2 Derivation

Given acFGG = (W, N, S, R), a A directly derives a3y in grammarG, denotedv A~y = afy, if
1. A — pisaproduction of?, and
2. o andy are any strings il U N)*.

oy derivesay, in grammarG, denotedy; = ayy,, if
G

1. a1, ag, ..., apy, are strings inW U N)*, m > 1, and

2. 0] — 2, Q2 — A3, .., Q1 — Q.
G G G

Definition 3 Language of &£FG
Thelanguageof acFG G = (W, N, S, R), denotedL(G), is {w|w € W* andS = w}.
G

Note that under these definitionsZ. o, € (W U N)* is possible, because a nonterminal may directly or
indirectly derive itself. ‘

Apart from the above definition, the remainder of this repolitrefer to the standard CFG conceptsdwfrivation
tree (aka parse trees) aséntential form. A derivation tree is constructed from a derivation by dreginternal nodes
from the LHS from every rule application used in the derivatiand creating child nodes for every (non)terminal in
the corresponding RHS. Every derivation tree correspamda¢ or more derivations, but to only one left-most (right-
most) derivation, in which it is always the left-most (righibst) nonterminal that is expanded first.

A sentential form unde€ = (W, N, S, R) is any stringx € (W U N)* that can be derived frorfi.
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4.1.2 CRU terminology

CRU uses context-free technology and applies it in a waydifferrs from existing uses in some respects. For example,
in computer program compilation, CFGs are used to defineghefsyntactically correct programs. Here, the CFG
is used only to test for membership, and is written only wite &im of correctly definind.(G). In NLP, the most
common existing use of CFGs is as phrase structure gramf&3g), and here the notion of correct derivation tree
(parse tree) is crucial. PSGs are written with the aim ofexity defining two things: (i)L(G), the set of strings
licensed byG, and (ii) the sets of derivation trees ti@tassigns to the strings ib(G).

In neither of these uses of CFGs are grammars written withithef correctly defining the set of sentential forms,
but this is fundamental in CRU. In CRU, grammars are a stribsset of CFGs, and a CRU gramnlris taken to
define a second languadé(G), which consists of all and only the sentential forms un@ehat derive a string in
L(G), but are not themselves iG):

Definition 4 Basic CRU-grammar

The set of allbasic CRU-grammarsis the set of all CFG&7 = (W, N, S, R), such thatR does not
contain productions of the for|d — ¢, wheree is the empty string.

Definition 5 Underspecified language of a CRU-grammar

Theunderspecified languagef a CRU-grammac, denoted/(G), is the set of all sentential forms
under@, such thaty ::; B,a # 6,6 € L(G).

The elements o/ (G) are called theinderspecified expressionanderG.
The elements of (G) are called théully specified expressionsinderG.

Theunderspecifiesrelation, is defined between the element®/¢6) andL(G).

Definition 6 Underspecifies
Given a CRU-grammat; = (W, N, S, R), and two stringsy, 3 € (W U N)T, a underspecifiesg,
denotech = 3, if and only if

G

1. o andg are sentential forms undéf,
2. a # (3, and
3.0 ::; ~, for somey € L(G).

This says that fot % [ to be true must be derivable from the top symb and must be inL(G) or derive

a string inL(G). Note that in contrast to the derives relation, the undeifips relation is not reflexive, and requires
some fully specified expression to be derivable frém

For convenience, two further terms are defined. A CRU-granassigns to every fully specified string under
that is to say, every elemefitof L(G), a set of expressions that underspecify it:

Definition 7 Underspecification set
Given a CRU-gramma®, theunderspecification set or U-set of a stringg in L(G), denotedJ (), is
{a|a= ).

G

Conversely, every underspecified representatitias a set of consistent fully specified representationstwikia
subset ofL(G):

Definition 8 Expansion set

Given a CRU-grammag, the expansion set or E-set, of an underspecified expressionunderG,
denoted’(a),is {8 |« = 3, B € WT}.
G

Note that the above definitions do not care about the progessich derivations are constructed, or how many
ways there are of constructing the same derivation, sireedhly refer to strings.
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4.1.3 Simple example

This section presents a very simple example of a CRU granitaaet of fully specified strings, and a derivation tree
for one of the strings together with its corresponding usgecification set. The grammar encodes a small generation
space for the example from [Reiter and Dale, 1997, p. 65Miaatused in Section 3.2. For convenience, the example
had the following conceptual-level message represemtatio

+- -+
| message-id: msg02

| relation: DEPARTURE

I +- .
| | departing-entity: CALEDONI AN- EXPRESS

| arguments: | departure-location: ABERDEEN

| | departure-tine: 1000
I

+-

+— — — +

+- -

The following CRU-grammar defines a variety of realisatiand underspecified realisations for this content rep-
resentatior G = (W, N, S, R), with

w = {the, Cal edoni an, Express, train, it, |eaves, departs, Aberdeen, from
at, 10am 10, o'clock, in, the, norning},

N { DEPARTI NGEVENT, TRAIN, DEPART, LOCATION, TIME},

S = DEPARTI NG.EEVENT ,

and the following rule sekR:

CRU-grammar 1

DEPARTI NG_EVENT --> TRAI N DEPART
TRAIN --> the Cal edoni an Express
TRAIN --> the train

TRAIN --> it

DEPART --> | eaves LOCATION TI ME
DEPART --> departs LOCATION TI ME
DEPART --> departs from LOCATI ON TI ME
LOCATI ON --> Aberdeen

TIME --> at 10am

TIME --> at 10 o’ clock in the norning

W and N will be omitted in subsequent examples, because, givendheention of representing terminals in
lower, nonterminals in upper case, they can be derived fhamule set.
CRU-grammar 1 has a set of fully specified stridg$) that consists of the following 18 sentences.

t he Cal edoni an Express | eaves Aberdeen at 10am

t he Cal edoni an Express | eaves Aberdeen at 10 o’ clock in the norning
t he Cal edoni an Express departs Aberdeen at 10am

t he Cal edoni an Express departs Aberdeen at 10 o’ clock in the norning
t he Cal edoni an Express departs from Aberdeen at 10am

t he Cal edoni an Express departs from Aberdeen at 10 o’ clock in the norning
the train | eaves Aberdeen at 10am

the train | eaves Aberdeen at 10 o’ clock in the norning

the train departs Aberdeen at 10am

the train departs Aberdeen at 10 o’ clock in the norning

the train departs from Aberdeen at 10am

the train departs from Aberdeen at 10 o’clock in the norning

it | eaves Aberdeen at 10am

it |l eaves Aberdeen at 10 o' clock in the norning

it departs Aberdeen at 10am

it departs Aberdeen at 10 o’ clock in the norning

it departs from Aberdeen at 10am

it departs from Aberdeen at 10 o’clock in the norning

As an example of a derivation tree, the one for the sentiieaves Aberdeen at 10aimshown below. Note that
each string has its own set of derivation trees under a CFG.

5The notational convention adopted represents nontersiinalpper case, terminals in lower case.

12



DEPARTI NG_EVENT

/ \
TRAI N __DEPART__
| / | \
| | LOCATION TI ME
| / | I\

it leaves Aberdeen at 10am

As a visualisation, each horizontal ‘cut’ through this t(deat does not contain both parent nodes and their child
nodes) is an underspecified expressionifdeaves Aberdeen at 10anThe U-set (underspecification set) for this
sentence under CRU-grammar 1 is the following (where linalmers, e.g01: and expansion set sizes, e.g8) are
included for ease of reference only):

01: DEPARTI NG _EVENT (18)

02: TRAI N DEPART (18)

03: TRAIN | eaves LOCATION TI ME (6)
04: TRAIN | eaves LOCATI ON at 10am (3)
05: TRAIN | eaves Aberdeen Tl ME (6)
06: TRAIN | eaves Aberdeen at 10am (3)
07: it DEPART (6)

08: it | eaves LOCATION TIME (2)

09: it |eaves LOCATION at 10am (1)
10: it | eaves Aberdeen TIME (2)

CRU-grammar 1 thus allows 10 different ways of underspaujfit leaves Aberdeen at 10arkach picks out a
different subset of.(G), the language of fully specified representations genetatebe grammar. The start symbol
DEPARTI NG.EEVENT expands to all strings if(G), whereas e.g.t | eaves Aberdeen Tl ME has an expansion set
of only two strings:it leaves Aberdeen at 10aamdit leaves Aberdeen at 10 o’clock in the morning

Theunderspecifieeelation is defined (Definition 6) not only for pairs of one enspecified and one fully specified
string, but also for pairs of underspecified strings. Sangt1, for example, underspecifies all other strings in the
above U-set, whil®@2 underspecifie83, 04, 05, 06, 07, 08, 09 and10, and08 underspecifiee9 and10, etc.

The size ofU(G), the underspecified language of the above grammar is mugérlgranZ(G), containing al-
together 59 strings. The set of all complete derivatiéné. o, € L(G) is larger still: there are 144 different
derivations, meaning 144 different orders in which dedisioan be taken. Or, in terms of the tree representation used
in Figures 2 and 3, there are 144 different ways of gettinmftioe root node to a leaf. The following is part of the tree
representation (with the tree on its side and the root ondpéetft) of the generation space encoded by Grammar 1
(the complete tree is included in this report as AppendidBily specified strings (leaf nodes) are precededdy:":

DEPARTI NG_EVENT
-- TRAI N DEPART
-- the Cal edoni an Express DEPART
-- the Cal edoni an Express | eaves LOCATI ON Tl ME
-- the Cal edoni an Express | eaves Aberdeen Tl ME
<<< the Cal edoni an Express | eaves Aberdeen at 10am
<<< the Cal edoni an Express | eaves Aberdeen at 10 o’clock in the norning
-- the Cal edoni an Express | eaves LOCATI ON at 10am
<<< the Cal edoni an Express | eaves Aberdeen at 10am
-- the Cal edoni an Express | eaves LOCATION at 10 o’clock in the norning
<<< the Cal edoni an Express | eaves Aberdeen at 10 o’ cl ock in the norning
-- the Cal edoni an Express departs LOCATI ON TI ME
-- the Cal edoni an Express departs Aberdeen TI ME
<<< the Cal edoni an Express departs Aberdeen at 10am
<<< the Cal edoni an Express departs Aberdeen at 10 o’ clock in the norning
-- the Cal edoni an Express departs LOCATI ON at 10am
<<< the Cal edoni an Express departs Aberdeen at 10am
-- the Cal edoni an Express departs LOCATION at 10 o’ clock in the norning
<<< the Cal edoni an Express departs Aberdeen at 10 o' clock in the norning

4.1.4 CRU-grammars are not generators

It may be worth emphasising at this point that a CRU-grammaot a generator, but simply defines a representational
space. In NLG, a CRU-grammar is intended to be interfacel witleep generator which makes all the decisions
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about content that it is able to make. The job of CRU is simplgxtpand the representations that are output by the
deep generator to all permissible expansions that haveetpesd of specificity requried by the surface realiser, and
that are in this sense fully specified. The deep generatoes@dcisions between alternatives, CRU does not. Where
the deep generator needs to have knowledge to base itsaesoisi, CRU can be dumb.

4.1.5 Advantages of going context-free

There are a number of considerable advantages resultingthe context-freeness of the CRU-formalism:

e CRU is computationally less expensive than existing apgresto underspecification.

e There is not just one underspecified expression for each $pkcified expression (e.g. in MRS with QEQ-
constraints, there is only one underspecified MRS expnedsioevery fully specified MRS expression) —
there can be arbitrarily many underspecified expressiansdich fully specified one.

e A CRU-grammar defines thenderspecifieselation not only for pairs of one underspecified and oneyfull
specified string, but also between the underspecified sttimgmselves, imposing a hierarchical ordering of
increasing specificity.

e Itis straightforward to introduce probabilities attacttedhe rules, e.g. in order to generate thenost likely
expansions instead of all; this is useful because it alloarsan-specific preferences to be modelled, and it
provides a basis for making decisions if that basis is otferabsent.

e It opens the possibility of automatically constructing ptimising underspecification formalisms directly by a
machine learning technique for CFGs, e.g. [Belz, 2002].

4.2 CRU with structured relations

The simple representations that were used in Example 1 anmenpuseful as semantic representations because they
are completely unstructured. This section describes aneikin to CRU that makes it possible to have the basic
argument structure that is conventionally part and parEskemantic representation formalisms. Furthermore, the
examples of underspecification in previous sections wéef #he meta-constant variety (see Section 2.2.2). Below,
different types of structural underspecification are coersd.

4.2.1 Formal extension to basic CRU

In addition to the atomic symbols of basic CRU, (non)terrsitan now have one or more arguments. These CRU
(non)terminals are simple terms defined as follows.
Definition 9 Term

Given an alphabet of relation namés an alphabet of variable namés a setC' of constants, and a
function o that takes elements df into subsets of”, if f € F'is ann-ary relation withn. > 0, and
b1, ..., b, are variables and constantsinu C, thenf (by, ..., b,,) is aterm.

Derivation with terms that may have variables for argumeetgiires the following standard definition of term
substitution and unification.
Definition 10 Substitution and unification for CRU-grammars with atonriguements

A substitution ¢ is a set{v; < ¢i,...,um — ¢}, Where they; are distinct variables and the are
constants.

If ¢ is a term, thend is the term obtained by replacing every occurrenceiaft with ¢, forallv < ¢ € 6.
LetT = {t1,...,t, } be afinite set of terms. A substitutiéris called aunifying substitution or simply
aunifier for T if t10 = ... = t,,0.

The basic CFG definitions in Section 4.1.1 need to be adapifthition 1 is unchanged except that every terminal
and nonterminal is now a CRU-term as defined above:

Definition 11 CRU-grammar

A CRU-grammar is a 4-tuplé¥, N, S, R), wherelV is a set of CRU-terms called terminals, is a set
of CRU-terms called nonterminalS,c N is the start term, ang is a set of production rules, where each
rule is of the formn — o, n € N, € (W U N)*. W andN are disjoint.
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The definition of derivation is adapted as follows. One gtigan now be derived from another if a matching rule
can be found in the grammar and there is a unifying subgiitr the variables in the strings and the rule:

Definition 12 Derivation for CRU-grammars with atomic arguments

Given a CRU-gramma® = (W, N, S, R), an alphabef’ of relation names, an alphabiétof variables,
a setC of constants, a function(v) = C?,v € V,C? C C, and a substitutiofl = {v; <« c1,...,v5 «—
cst, s > 0,0, € Ve € o(v;),
a Bi(b},b3,...,b7) ~ directly derives v Bo(b3, b3, ...,05) Bs(b3, b3,...,b3) ... B,(by,b2,...,b%) 7,
b/ € (V UC)in grammarG and under substitutiof, denoted
a Bi(bi, b3, ..., 07) v = a Bo(by, b3, ...,b5) Bs(bl,b3,...,b3) ... By (b}, b2,...,b") 7,
if

1. a and~y are any strings il U N)*, _

2. Bi(ai,a?,...,a") — By(a},a3,...,ah) Bs(al,a3,...,al) ... By(al,a2,...,a%), al € (VUCQ)is

a production ofR, and . ‘
3. foralli,1 <i <mn,@is aunifier for{ B;(b}, b7, ...,b}), Bi(a},aZ, ...,al)}.

79V 7 gyt Mg
o derivesay, in grammaiG and under substitutiof, denotedy; = vy, if
G,0

1. a1, ag, ..., ay, are strings inW U N)*, m > 1, and
2. 01 — g, Qg — A3, ..., Qp_1 — Q.
G,0 G,0 G,0

Since all the other definitions in the section on basic CRUevgfined in terms of the definition of derivation,
they do not need to be redefined.

Note that the CRU definitions in this section subsume thech@BU definitions presented earlier, basic CRU-
grammars being a special case of CRU-grammars.

4.2.2 Representation of structured relations

Consider a simple example of a structured semantic repgamlike exists(x, train(x), departs(x) Jt is clear that
atomic arguments like can directly be encoded under the extension described ifagihesection, but what about
arguments likarain(x), i.e. arguments that are themselves structured, vitahtrepresentation of scopal structure?

Itis not possible in a context-free framework to have nanteals generally embeddable within nonterminals, and
| wanted to avoid the greater cost of using full (nonatoneeirt unification. The alternative is to write syntactically
recursive structures as syntactically flat representatibat retain their recursive structural meaning (they gre s
tactic variants of each other), as has become common in sEmapresentation, especially in the underspecification
literature, e.g. in MRS and UDRT (see also Section 2.2.1).

CRU with atomic arguments allows this to be encoded direétly expression likeexists(x, train(x), departs(x))
can be encoded as the three CRU temmisst s( HO, X, H1, H2) , trai n( H1, X), anddepart s( H2, X) , where the
first argument is always interpreted as the label of theimelatnd any other arguments can be pointers to embedded
relations — if they match the label of another relation, tleddition is interpreted as embedded in the first.

There is one complication: In context-free parsing, theeoad constituents matters. That is, a parse only succeeds
if the grammar explicitly allows the order that the congiits are presented in.

In syntactically flat representation of recursive struetilne order of constituents is not meaningful. The expressio
a2(Ha) al(Ha) b(Hb) ASSAND(HO, Hb, Hc, Ha) c(Hc) should mean the same no matter what order the five
components are presented in. As implied above, this matt@gswhen parsing expressions, but because a CRU
expression has to be derivable from the start symbol, ilévaat for generating both E-Sets and U-Sets.

The solution | am adopting is to impose a default ordering omnstituents that are part of a flat representation
of recursive structure (‘structural constituents’ for giothe order of structural constituents must correspand t
depth-first left-to-right traversal of the tree structuepresented by the constituents. E.g. the example above has t
be writtenASS_AND( HO, Hb, Hc, Ha) b(Hb) c(Hc) al(Ha) a2(Ha) to observe this default order. Constituents
other than structural constituents, and sets of structanastituents that attach to the same pointer, must obseeve t
order stipulated by the grammar.

This makes it possible to have order-independence fortsttalconstituents (e.g. ordering them before parsing an
expression), while allowing the CRU-grammar writer to fir thrder of other constituents.

This section is only a description of how representationtfctured relations in CRU can be done in principle.
More formalised notational conventions for semantic reengation with CRU are described in Section 4.3.1 below.

Notational convention for writing expressions with recursve structure: When writing a fully specified ex-
pression with recursive structure generated by a CRU graminbwill tend to use the syntactically recursive form
because it is much more readable. This will be highlightediby of italics, in contrast to the literal expressions
generated by CRU grammars which are in typewriter font.
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4.2.3 Underspecification of structured relations

Logical relations provide good examples of relations wistnectural underspecification is useful, enabling e.g skt
logically equivalent expressions to be represented bygesinnderspecified expression. For example, commutativit
of logicalandcan be accounted for directly by underspecifying the orflgs dwo arguments. Consider the following
CRU-grammar fragment (again, nonterminals upper, terlsioaer case):

AND( HO, H1, H2) --> and(HO, H1, H2)
AND( HO, H1, H2) --> and(HO, H2, H1)

These rules allow expressions lIRAND(blue(x),large(x)jo be written which is underspecified between exactly
the two fully specified expressioasd(blue(x),large(x))andand(large(x),blue(x))

Note that this commutative definition is entirely generalke argument swapping works regardless of the degree
of nesting and regardless of what the arguments are (paligren infinite set of different possible ones). This is not
something that would be ordinarily possible in a contegefsetting, and is only made possible by the fact that the
arguments are the equivalent of pointer variables that eanrbhe connected to any relation or subexpression.

Equivalences can also be defined for other kinds of logicaivedence ASS_AND = associativity oand):

| MPLI CATI ON( H, Ha, Hb) --> inplies(H, Ha, Ho)
| MPLI CATI ON( H, Ha, Hb) --> OR(H, H1, Hb) not (HL, Ha)

DEMORGANL( H, Ha, Hb) --> OR(H, Ha, Hb)
DEMORGANL( H, Ha, Hb) --> not (H, HL) AND(HL, H2, H3) not ( H2, Ha) not ( H3, Hb)

DEMORGAN2( H, Ha, Hb) --> AND( H, Ha, Ho)
DEMORGAN2( H, Ha, Hb) --> not (H, HL) OR(HL, H2, H3) not (H2, Ha) not ( H3, Hb)

ASS_AND( H, Ha, Hb, Hc) --> AND(H, H1, Ha) AND( HL, Hb, Hc)
ASS_AND( H, Ha, Hb, Hc) --> AND(H, H1, Hb) AND( HL, Ha, Hc)
ASS_AND( H, Ha, Hb, Hc) --> AND(H, H1, Hc) AND( HL, Ha, Hb)

OR(H, HL, H2) --> or (H, HL, H2)
OR(H, H1, H2) --> or (H, H2, H1)

This is akin to defining a normal form representation and aocated mapping from expressions in the normal
form to some other class of expressignsnly here the mapping is given a separate, explicit reptasen. The
pointer arguments take care of any embedded logic expressio

Using both the associative and commutative rules for [dgindabove, expressions can be written that completely
underspecify the order and bracketting of #ireted constituents. Given the abo&S_AND and AND rules, e.g.
ASSAND(blue(x),large(x),round(x))nderspecifies between all of the following:

and(and(large(x),round(x)),blue(x))
and(blue(x),and(large(x),round(x)))
and(and(round(x),large(x)),blue(x))
and(blue(x),and(round(x),large(x)))
and(and(blue(x),round(x)),large(x))
and(large(x),and(blue(x),round(x)))
and(and(round(x),blue(x)),large(x))
and(large(x),and(round(x),blue(x)))
and(and(blue(x),large(x)),round(x))
and(round(x),and(blue(x),large(x)))
and(and(large(x),blue(x)),round(x))
and(round(x),and(large(x),blue(x)))

Note that rules can be written in CRU that pick auty subset of orderings and bracketings.

The above definition of the associati@adrules allows complete structural underspecification, haoarse it is
possible to allow only a subset of embeddings, e.g. justgmbtaget all the orderings of the adjectives (and no more).
The changed rule set, and the set of expansiona&8AND(blue(x),large(x),round(xgre as follows:

ASS_AND(H, Ha, Hb, Hc) --> and(H, H1, Ha) AND(HL, Hb, Hc)
ASS_AND( H, Ha, Hb, Hc) --> and(H, H1, Hb) AND( HL, Ha, Hc)
ASS_AND( H, Ha, Hb, Hc) --> and(H, H1, Hc) AND( HL, Ha, Hb)

6E.g. defining a conversion procedure from any CFG to Greilacmal form.
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and(and(large(x),round(x)),blue(x))
and(and(round(x),large(x)),blue(x))
and(and(blue(x),round(x)),large(x))
and(and(round(x),blue(x)),large(x))
and(and(blue(x),large(x)),round(x))
and(and(large(x),blue(x)),round(x))

4.3 Using CRU for underspecification of MRS-like semantic rpresentations

CRU is intended as an entirely general framework for repriagé®nal underspecification, and while pseudo-semantic
examples were used in previous sections, the descriptiotéan general up to this point. From here on, the focus
is going to be on using CRU for underspecification of semampresentations for NLG. This section sets down
some conventions for writing nested semantic relationsRiUCSection 4.3.1), and gives a simple example of a CRU
grammar generating semantic representations for traiartlee times (Section 4.3.2). These conventions are ietnd
for semantic representation formalisms that are based merglsed quantifier logic, like MRS.

4.3.1 Conventions for representing semantic relations in RU

As previously mentioned, a syntactically flat represeatatif embedded semantic relations is achieved in CRU in
a standard way that has become fairly standard over recans ye with the use of labels and pointer arguments,
atomic arguments that ‘point to’ the embedded constituerg.exists(y, cake(y), forall(x, child(x), eat(e,x,yipwrit-

ten asexi st s(HO, Y, H1, H2) cake(H1,Y) forall (H2, X, H3, H4) child(H3, X) eat(H4, E, X Y). The argu-
ments starting witti are there only to represent the structure of the expresstomfirst argument is always interpreted
as the label of a relation, and any other H-type argumentpa@rger arguments. For this to work systematically and
unambiguously, and at the same time result in human-readabpressions, a number of conventions need to be ob-
served. These, along with some further conventions foradeitity of CRU-grammars are described in this section

Basic notational conventions: In relation names, upper-case letters are used for nomatspiower-case for termi-
nals. In arguments, initial upper-case letters are useddfiaables, lower-case for values.

Argument types:
1. Labels and pointers (type H): variables Hy, Hy, Ho, ... ranging over the valuéds, , ho, ...
2. Object variables (type X)X, X, ... ranging over, xo, ...
3. Eventvariables (type EF1, F», ... ranging ovek, e, ...
4. Constant variable types: any string, e\me, ranging over finite set of strings, e hhn, mary.

(Non)terminals: Every nonterminal and terminal in a CRU-grammar for sencaefpresentation is of the following
form:

Relation(Label, Argy, ..., Argn, Hy, ..., Hy),n,m < 0

Here, Relation is a string representing the name of the relation, the figgiraentLabel is obligatory and repre-
sents the label of the relatiody g4, ..., Arg, are arguments of type X, E or any constant type, Aakkl, H, ..., H,,
are arguments of typH.

H-type arguments: While CRU allows the same syntactically flat representatibrecursive structures as some
other underspecification formalisms, it does not achiewdetspecification by tree constraints (using unconnected
labels and pointers in combination with sets of constramecordance with which pairs of labels and pointers may
be connected). In fully specified CRU-expressions, all leke&cept the topmost label must be connected to exactly
one pointer, and all pointers must be connected to at leasiate|.

Asis the case in MRS, each argument position is allowed tebecated with any number of embedded structures,
that is, each pointer arguments may be identical to any nuofiabel arguments. E.g.:

EXI STS(HO, Y, H4, H3) greedy(H1, X) child(HL, X)
FORALL( H3, X, H1, H5) big(H4,Y) cake(H4,Y) eat(H5, E X )

“Note, however, that these are just one possible set of ctiamen and that such conventions will depend on the semasficesentation
formalism that is being used.

17



In this expression two nonterminals attach to eathandH4. In syntactically recursive representation, CRU
expressions with one-to-many pointer-label connectisats of constituents that are connected to the same pointer
argument are enclosed in square brackets to highlightalis £.g. the syntactically recursive representation ef th
above CRU expression BXISTS(y,[big(y),cake(y)],FORALL(x,[greedy(x),cly,eat(e,x,y))

The reason for allowing this is again greater generalityiiimg CRU-grammar rules: it allows rules to be written
that affect a set of relations as one, regardless of theirtenrand type. E.g. in the above expression, it allows all
relations in the restriction or the body of a quantifier to éferred to as a set.

4.3.2 Example CRU grammar defining a small generation space

Using the conventions described in previous sections, a @Rabhmar can be written that generates structured seman-
tic representationgléf , udef refers to the (in)definite distinction):

CRU-grammar 2

DEPART_CAL_EXPRESS --> EXI STS(HO, X, H1, H2)
TRAI N_CAL_EXPRESS( H1, X)
DEPART(H2) LOC TI ME_CAL_EXPRESS( H2)
EXI STS(H, X, Ha, Hb) --> def (H, X, Ha, Hb)
EXI STS(H, X, Ha, Hb) --> udef (H, X, Ha, Hb)
TRAI N_CAL_EXPRESS(H, X) --> Cal edoni an_Express(H, X)
TRAI N_CAL_EXPRESS(H, X) --> train(H, X)
TRAIN_CAL_EXPRESS(H, X) --> it(H, X
DEPART(H) --> | eaves(H)
LOC_TI ME_CAL_EXPRESS(H) --> LOC_TI ME_CAL_EXPRESS N( H)
LOC TI ME_CAL_EXPRESS(H) --> LOC TI ME_CAL_EXPRESS S(H)
AND( H, Ha, Hb) --> and(H, Ha, Hb)
AND( H, Ha, Hb) --> and(H, Ho, Ha)
LOC Tl ME_CAL_EXPRESS N(H) --> London(H) at(H) AND(H, H1, H2) 5(H1) AMH1) 1(H2) PM H2)
LOC Tl ME_CAL_EXPRESS_S(H) --> Aberdeen(H) at(H AND(H H1, H2) 10(Hl) AMHL) 6(H2) PM H2)

AMH) --> an(H)
AMH) --> o0’'clock(H in(H) the(H norning(H
PMH --> pn(H)

PMH) --> o' clock(H) in(H the(H evening(H

This grammar generates 96 strings, the first 20 of which avesstbelow (converted into syntactically recursive
format):

def(x2, caledonianExpress(X2), [leaves, london, at, and([five,am],[one,pm])])

def(x2, caledonianExpress(x2), [leaves, london, at, and([five,am],[one,oclock,ie,Evening])])

def(x2, caledonianExpress(x?), [leaves, london, at, and([five,oclock,in,the,mordjfane,pm])])

def(x2, caledonianExpress(X2), [leaves, london, at, and([five,oclock,in,the,morjjfane,oclock,in,the,evening])])
def(x2, caledonianExpress(xX2), [leaves, london, at, and([one,pm],[five,am])])

def(x2, caledonianExpress(x?), [leaves, london, at, and([one,oclock,in,the,eveh[fige,am])])

def(x2, caledonianExpress(x?), [leaves, london, at, and([one,pm],[five,oclock,ie,imorning])])

def(x2, caledonianExpress(x2), [leaves, london, at, and(Jone,oclock,in,the,evehjfige,oclock,in,the,morning])])
def(x2, caledonianExpress(X2), [leaves, aberdeen, at, and([ten,am],[six,pm])])

def(x2, caledonianExpress(X2), [leaves, aberdeen, at, and([ten,am],[six,oclochlir,evening])])

def(x2, caledonianExpress(x2), [leaves, aberdeen, at, and([ten,oclock,in,the,maghisix,pm])])

def(x2, caledonianExpress(X2), [leaves, aberdeen, at, and([ten,oclock,in,the,mugh{six,oclock,in,the,evening])])
def(x2, caledonianExpress(X2), [leaves, aberdeen, at, and([six,pm],[ten,am])])

def(x2, caledonianExpress(xX2), [leaves, aberdeen, at, and([six,oclock,in,the,enghiten,am])])

def(x2, caledonianExpress(x2), [leaves, aberdeen, at, and([six,pm],[ten,oclocktia,morning])])

def(x2, caledonianExpress(x2), [leaves, aberdeen, at, and([six,oclock,in,the,enghjten,oclock,in,the,morning])])
def(x2, train(x.2), [leaves, london, at, and([five,am],[one,pm])])

The (single) derivation tree fatef(x, CaledoniatExpress(x),leaves Aberdeen at and(10am, 6pmoRs like this
(some of the nonterminal/terminal names are abbreviatespi@ce reasons):
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DEPART _CAL_EXPRESS

EXI STS(HO, X, H1, H2) TR CAL_EX(H1, X) DEPART(H2) LOC TI ME_CAL_EXPRESS( H2)

I I
LOC_TI ME_CAL_EXPRESS_S( H2)

I I
def (HO, X, H1, H2) Cal Ex(HL, X) |eaves(H2) Ab(H2) at(H2) and(H2, H3, H4) 10(H3) an(H3) 6(H4) pn(H4)

def(x, CaledoniatrExpress(x),leaves Aberdeen at and(10am, 6ad)an underspecification set that contains 80
strings (i.e. the string can be underspecified in 80 diffeveays), including the following 6 (for the full listing see
Appendix A):

DEPART CAL_EXPRESS

EXI STS(HO, X, H1, H2) TR _CAL_EX(HL, X) DEPART(H2) LOC TI ME_CAL_EXPRESS( H2)

EXI STS(HO, X, H1, H2) TR CAL_EX(H1, X) |eaves(H2) Ab(H2) at(H3) AND(H2, H3, H4)
10(H3) anm(H3) 6(H4) PM H4)

EXI STS(HO, X, H1, H2) Cal _Ex(HL, X) DEPART(H2) Ab(H2) at(H3) and(H2, H3, H4)
10 an(H3) 6(H4) PM H4)

EXI STS(HO, X, H1, H2) Cal _Ex(HL, X) | eaves(H2) Ab(H2) at(H3) and(H2, H3, H4)
10(H3) AMH3) 6(H4) pn(H4)

def (HO, X, H1, H2) TR CAL_EX(HL, X) | eaves(H2) Ab(H2) at(H3) AND(H2, H3, H4)
10(H3) AMH3) 6(H4) pn(H4)

4.4 Generating E-sets

The basic idea in using CRU for NL generation is that a CRUygmnar defines a representational space of underspeci-
fiable surface generator inputs, which enables the deepaenenstead of having to generate only fully specified
representations (the shaded box in Figure 2), to genergtaraderspecified representation licensed by the grammar
(the nodes above the shaded box in Figure 2). The subseqeeetagion process proceeds either from the single
fully specified representation that was created by the deaprgtor, or from the set of fully specified representations
corresponding to the singlendespecified expression created by the deep generator.

The context-free setting allows the langudgdé;) generated by a CRU-gramm@r= (W, N, S, R), and therefore
any E-Setl (o), « € U(G) to be infinite. That is as it should be for an underspecificetivmalism. A natural lan-
guage licenses an infinite number of word strings, so as spdeification increases, at some point, the underspecified
forms must expand to an infinite number of fully specifiedgsi. For the sake of descriptive adequacy, therefore, it
must be possible for E-Self«) to be infinite.

However, in an NLG systent,(«) will eventually have to be generated, so it makes no sendéote anderspec-
ified representations for which L(«) is infinite. In a practical context, it is not useful to allowderspecification to
the extent where there are an infinite number of ways of lieglthe representation.

There are two ways of dealing with this, one that is invistbl¢he grammar writer and one that is not. The former
is based on the fact that if there is an infinitéx), then R must license derivations of the form::;> BA~. So, one
solution is to include a check at compile time that identiidshonterminalsA for which A ::; BA~, and then to
disallow such nonterminals from being used in underspekipresentations created by the NLG system.

The second possibility is to introduce a formal distincti@mtween nonterminals that can be used in underspecified
expressions (NTs) and nonterminals that cannot (RNTs) idéeeis then that the former would correspond to decision
nodes in the bottom part of the generation tree (Figure 2j)ievihe latter would correspond to those in the top. For
example, a top-most rule set could be added to CRU-grammiaatllitences any number of conjunctions of train
departure statements:

TOP --> DEPARTI NG_EVENT
TOP --> DEPARTI NG EVENT and TOP

This would require the CRU-grammar definitions to be chartgadake the set of RNTs explicit. Both solutions
mentioned here have promise and will be looked at in moréldeta
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the train leaves Aberdeen at 10anf>
the train leaves Aberdeen at 10anf>
it leaves Aberdeen at 10dm O
it leaves Aberdeen at 10gm O
it departs Aberdeen at 10gm O
it departs Aberdeen at 10gm O
the train leaves Aberdeen at 10anf>
it leaves Aberdeen at 10dm O
it leaves Aberdeen at 10gm O
the train leaves Aberdeen at 1QanO—1—
it leaves Aberdeen at 10am O——*
it leaves Aberdeen at 10dm O— &
the train leaves Aberdeen at 1danO——<=
it leaves Aberdeen at 10gm O—
it leaves Aberdeen at 10dm O— &
it departs Aberdeen at 10gm O
it departs Aberdeen at 10gm O
it departs Aberdeen at 10gm O—
it departs Aberdeen at 10am O— <
it departs Aberdeen at 10gm O—
it departs Aberdeen at 10am O—

the train leaves Aberdeen at 10anf>
the train leaves Aberdeen at 10anfOo—

the train leaves Aberdeen at 1QaniO—
the train departs Aberdeen at 10anO—+—
the train departs Aberdeen at 10anO—
the train departs Aberdeen at 1Qanio—
the train departs Aberdeen at 1QaniOo—

the train departs Aberdeen at 1Qanf>
the train departs Aberdeen at 1Qany
the train departs Aberdeen at 1Qanf>
the train departs Aberdeen at 1Qany

Figure 4: Underspecifiable representation space defineddygtammar 3 .

5 Discussion and Comments

This section picks up a few points from previous sectionscti8e 5.1 returns to the initial claim that generation
spaces can be modelled by decision trees, that the nodeshimleuision trees can be made representationally explicit
in the form of underspecified representations, and thasthase of underspecified representations can be defined by
a CRU-grammar. To demonstrate how CRU achieves this, it sfeodiagram of the generation space encoded by a
simple CRU-grammar.

Section 5.2 considers whether meta-variables should amé&ancorporated into CRU. Section 5.3 informally
compares CRU with tree constraint formalisms.

5.1 CRU and the generation space

As discussed previously, CRU permits the decision treegerimg of which generation spaces can be construed to
be made representationally explicit in the form of undec#mation spaces. Figure 4 shows a representation of the
generation space defined by the following grammar (which savglified version of CRU-grammar &) The tree
diagram is analogous to that in Figure 3.

CRU-grammar 3

DEPARTI NG_EVENT --> TRAI N DEPART
TRAIN --> the train

TRAIN --> it

DEPART --> | eaves LOCATI ON TI ME
DEPART --> departs LOCATION TI ME
LOCATI ON --> Aberdeen

TIME --> at 10am

mooOoOwmw>
~NouAwWNBR

8To keep the representational space of the grammar smaltbrtobe representable as a diagram on a printed page, it Hedawery simple
grammar generating a language of unstructured strings.
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Each decision node in the tree corresponds to a set of ruidgekpand the same nonterminal in the grammar
(indexed A—E above), while each branch corresponds to desinote (numbered 1-7). The grammar generates four
different fully specified strings, and 24 different undezsified strings. However, it licenses 32 different generati
processes (32 different complete CFG derivationsy egt, a,a € L(@) ), as it allows the order in which decisions
are taken (nonterminals expanded) to be fairly free. Notpletely free of course: decision A has to be taken before
any others, and C has to be taken before D and E.

The idea underlying CRU is that each nonterminal togethéhn Wté set of expansion rules encodes a minimal
dimension of variation. The LHS can be considered a namé#&variation (decision to be taken) and the RHSs are
the corresponding variants. From the point of view of ungdec#ication: the expression on the LHS is underspecified
between all its RHSs.

The generation space must therefore be defined in terms e¢ @tidecisions that depend only on other decisions
already taken. If two or more decisions are entirely intpedalent they should be encoded as a single decision node,
or rather, as a subtree (of the decision tree) rooted at ihde.nIf there are large sets of entirely interdependent
decisions then the CRU grammar becomes inelegant and wyxtbbugh not impossible).

5.2 CRU and meta-variables

There are a whole range of ambiguity phenomena (from the pbiriew of NLU) where the set of possible readings,
while possibly inferrable by some general function from toatext, cannot be stated generally and independently
of the context. Examples are unresolved anaphoric andideeferences. Meta-variables (see Section 2.2.3) are
an important mechanism for NLU because such ambiguity dam@ccounted for by meta-constants or structural
underspecification. In NLG, the usefulness of meta-vaesis less obvious, because the set of variants is (usually)
known. An exception is interlingua-based MT, where gen@nahay have to be from an incomplete source language
analysis.

It would be straightforward to represent meta-variablesribelves in CRU, e.g. by introducing a new argument
type for them. However, in order to expand underspecifieshéoto fully specified forms, what is also needed is the
function that maps meta-variables (and context represent into sets of variants. The issue of how exactly to do
this in conjunction with CRU has not so far been looked att &stinlikely to be of concern for the kind of generation
the COGENT project is planning to look at.

5.3 Structural underspecification in CRU and in tree constrant formalisms

The main underspecification formalisms capable of stratturderspecification all use some tree constraint language
e.g. Hole Semantics, MRS, the Constraint Language for Lan8iductures (CLLS), and Context Unification (CU).
The fundamental idea is to view expressions as trees, amgktpartially specified tree descriptions to represent sets
of expressions.

Partial tree descriptions can usually be construed asl2gupB, C' > whereB is a set of ‘tree building blocks’
andC a set of constraints on how the building blocks may be putttageo form trees. The langua@eof building
blocks specifies what constitutes a building block, in soasees simply a node (CLLS, MRS), in others, trees (CU).
The constraint languag€ is usually some small set of binary constraint relationg.(@ominance or identity) over
elements oB. Building blocks are usually labelled, and constraintsrdtglding blocks are represented as constraint
relations between labels.

If a treeT" can be constructed from the elementsibin such way that all relations i6 are true, thef” is said
to satisfy< B, C >. The problem of determining whether soffieexists that satisfies B, C' > is thesatisfiability
problemof tree constraint languages. The problem of determinirgsét of allT" that satisfy< B,C > is the
enumeration problerof tree constraint languages.

[Koller et al., 1998] showed that the satisfiability problefithe language of dominance and labelling constraints
(with nodes as building-blocks) is NP-complete. And thatridy a subproblem of the general satisfiability problem
of tree constraint languages, which in turn is only a sublemolof the enumeration problem.

Koller et al. have, however,identified a fragment of the galteee constraint formalism for which a polynomial so-
lution exists for the satisfiability problem, and for whiasgtions can be listed in polynomial time [Koller et al., Z00
They have also demonstrated that this fragment can be usedke enumeration of solutions efficient for subsets of
Hole Semantics expressions [Koller et al., 2003] and MRSesqions [Fuchs et al., 2004], but have not shown to
what extent the expressive power of the two formalisms camdiatained.

Itis not straightforward to compare tree constraint foiisraks with the way CRU achieves structural underspecifi-
cation. Underspecification formalisms that use tree caimgs provide a very powerful, but very expensive formalism
in which any tree underspecification can be achieved. Tlifeictaecan be seen as defining the set of all possible scop-
ings and on top of that defining constraints on the basis ofkwbértain elements of the set can be eliminated. This
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means in the worst case all members of the complete set hdnge donsidered explicitly before the subset of those
that violate the constraints can be determined.

In contrast, CRU forces you to write down explicitly for eacdse what the possible scopings are, so there is a
direct mapping from underspecified representation to asjide scopings, and no impossible scopings ever have to be
considered. This, together with the upper limit on strugtunderspecification, results in much lower computational
cost.

The price is that while the CRU formalism is general enougallimwv any kind of structural underspecification,

a particular CRU grammar must (implicitly) define a depth wbedding for underspecifiable embedded structures.
Furthermore, CRU is less representationally efficient thea constraint languages.

The above is only an superficial comparison of the differeaysvin which CRU and tree constraint languages
achieve structural underspecification, and a more in-dieptstigation will follow, in particular, to what extentete-
constraint languages have representational power negdasalL underspecification that CRU does not have.

6 Summary and current work

This report introduced Context-free Representationalddspkcification, a general framework for defining under-
specifiable representation formalisms. It described how €&n be used to make the decision space underlying the
natural language generation process representationadlicié, and this constitutes the first approach to systémnat
use of underspecification for NLG. It also described plamsifing CRU in the COGENT Project, where we intend to
use it to make the interface to surface generation flexibleérsense that it allows interface representations of arang
of different degrees of specificity. A flexible interface neakthe surface generator more readily reusable because a
greater number of deep generation modules will be capalgerérating suitable inputs.

In terms of representational underspecification, CRU hasrakinnovative properties: it (i) allows an arbitrary
number of degrees of underspecification, (ii) specifies mhibical ordering of underspecified and fully specified rep
resentations in terms of their degree of underspecificatioffers the possibility to assign probability digtritions
to mappings from underspecified to fully specified repres@orns (PCFGs), and (iv) is computationally more efficient
than the main existing underspecification formalisms.

A prototype implementation of CRU and several small-scaRJ@rammars for generating patient information
leaflets and weather forecast summaries are currently bedaged. A software package implementing the technology
described in this report will be released in the future.

Appendix A: Example of a U-Set (CRU-grammar 2)

The full underspecification set for the stridgf(x, CaledoniarExpress(x),leaves Aberdeen at and(10am,6pmgder
CRU-grammar 2 (Section 4.2):

DEPART_CAL_EXPRESS

HO: EXI STS(X, HL, H2) HL: TR_CAL_EXPRESS(X) H2: DEPART H2: LOC_TI ME_CAL_EXPRESS

HO: EXI STS(X, HL, H2) HL: TR_CAL_EXPRESS(X) H2: DEPART H2: LOC_TI ME_CAL_EXPRESS_S

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: AM H4: 6 H4: pm

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3:am H4: 6 H4: PM

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS( X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3: 10 H3:am H4: 6 H4: pm

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS( X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: pm

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS( X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: PM

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS( X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: pm

HO: EXI STS(X, HL, H2) HL: TR_CAL_EXPRESS(X) H2:|eaves H2: LOC_TI ME_CAL_EXPRESS

HO: EXI STS(X, HL, H2) HL: TR_CAL_EXPRESS(X) H2:|eaves H2:LOC_TI ME_CAL_EXPRESS_S

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: AM H4: 6 H4: pm

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3:am H4: 6 H4: PM

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3:am H4: 6 H4: pm

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: pm

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: PM

HO: EXI STS( X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: pm

HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2: DEPART H2: LOC_TI ME_CAL_EXPRESS

HO: EXI STS( X, H1, H2) Hl: Cal edoni an_Express(X) H2: DEPART H2: LOC_TI ME_CAL_EXPRESS_S

HO: EXI STS( X, HL, H2) Hl: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: AM H4: 6 H4: PM
HO: EXI STS( X, HL, H2) Hl: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: AM H4: 6 H4: pm
HO: EXI STS( X, H1, H2) Hl: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3:am H4: 6 H4: PM
HO: EXI STS( X, HL, H2) Hl: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3:am H4: 6 H4: pm
HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: PM
HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: pm
HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: PM
HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: pm
HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2: DEPART H2: LOC Tl ME_CAL_EXPRESS

HO: def (X, H1, H2) HL: TR_CAL_EXPRESS(X) H2: DEPART H2: LOC TI ME_CAL_EXPRESS S

HO: def (X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2: AND( H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3: 10 H3: AM H4: 6 H4: pm

HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3: 10 H3:am H4: 6 H4: PM

HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3: 10 H3:am H4: 6 H4: pm

HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: def (X, H1, H2) H1: TR _CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: pm

HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: PM

HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: pm

HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2:|eaves H2: LOC_TI ME_CAL_EXPRESS

HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2:1eaves H2: LOC_TI ME_CAL_EXPRESS_S

HO: EXI STS( X, HL, H2) Hl: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: AM H4: 6 H4: PM

22



HO: EXI STS( X, H1, H2) Hl: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3: H4: pm
HO: EXI STS( X, H1, H2) HL: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3: H4: PM
HO: EXI STS( X, H1, H2) HLl: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2: AND( H3, H4) H3: H4: pm
HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2:1eaves H2: Aber H3:at H2:and(H3, H4) : H4: PM
HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3: H4: pm
HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3: H4: PM
HO: EXI STS( X, H1, H2) HL1: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3: H4: pm
HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2:|eaves H2: LOC TI ME_CAL_EXPRESS

HO: def (X, HL, H2) HL: TR_CAL_EXPRESS(X) H2:|eaves H2:LOC_TI ME_CAL_EXPRESS_S

HO: def (X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2: AND( H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: def (X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2: AND( H3, H4) H3:10 H3: AM H4: 6 H4: pm

HO: def (X, H1, H2) Hl: TR CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3:am H4: 6 H4: PM

HO: def (X, H1, H2) Hl: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2: AND( H3, H4) H3:10 H3:am H4: 6 H4: pm

HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: def (X, H1, H2) H1: TR_CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: pm

HO: def (X, H1, H2) H1: TR _CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: PM

HO: def (X, H1, H2) H1: TR _CAL_EXPRESS(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: pm

HO: def (X, H1, H2) H1: Cal edoni an_Express(X) H2: DEPART H2: LOC_TI ME_CAL_EXPRESS

HO: def (X, H1, H2) H1: Cal edoni an_Express(X) H2: DEPART H2: LOC_TI ME_CAL_EXPRESS_S

HO: def (X, H1, H2) H1: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: def (X, H1, H2) HL: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: AM H4: 6 H4: pm

HO: def (X, H1, H2) HL: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3:am H4: 6 H4: PM

HO: def (X, H1, H2) Hl: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2: AND(H3, H4) H3:10 H3:am H4: 6 H4: pm

HO: def (X, H1, H2) HL: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: PM

HO: def (X, H1, H2) H1: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3: AM H4: 6 H4: pm

HO: def (X, H1, H2) H1: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: PM

HO: def (X, H1, H2) H1: Cal edoni an_Express(X) H2: DEPART H2: Aber H3:at H2:and(H3, H4) H3:10 H3:am H4: 6 H4: pm

HO: def (X, H1, H2) H1: Cal edoni an_Express(X) H2:|eaves H2: LOC_TI ME_CAL_EXPRESS

HO: def (X, H1, H2) H1: Cal edoni an_Express(X) H2:|eaves H2: LOC_TI ME_CAL_EXPRESS

HO: def (X, H1, H2) HL: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: H4: PM

HO: def (X, H1, H2) HL: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: HA: pm

HO: def (X, H1, H2) HL: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: H4: PM

HO: def (X, H1, H2) H1: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2: AND(H3, H4) H3:10 H3: H4: pm

HO: def (X, H1, H2) HL: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3: H4: PM

HO: def (X, H1, H2) HL: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3: HA: pm

HO: def ( X, H1, H2) H1: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3: H4: PM

HO: def ( X, H1, H2) H1: Cal edoni an_Express(X) H2:|eaves H2: Aber H3:at H2:and(H3, H4) H3:10 H3: H4: pm

Appendix B: Generation space encoded by CRU-grammar 1

DEPARTI NG_EVENT
-- TRAIN DEPART
-- the Cal edoni an Express DEPART
-- the Cal edoni an Express |eaves LOCATION TI ME
-- the Cal edoni an Express | eaves Aberdeen TIME
<<< the Cal edoni an Express |eaves Aberdeen at 10am
<<< the Cal edoni an Express |eaves Aberdeen at 10 o' clock in the norning
-- the Cal edoni an Express | eaves LOCATION at 10am
<<< the Cal edoni an Express |eaves Aberdeen at 10am
-- the Cal edoni an Express | eaves LOCATION at 10 o' clock in the norning
<<< the Cal edoni an Express |eaves Aberdeen at 10 o'clock in the norning
-- the Cal edoni an Express departs LOCATI ON TI ME
-- the Cal edoni an Express departs Aberdeen TIME
<<< the Cal edoni an Express departs Aberdeen at 10am
<<< the Cal edoni an Express departs Aberdeen at 10 o' clock in the norning
-- the Cal edoni an Express departs LOCATION at 10am
<<< the Cal edoni an Express departs Aberdeen at 10am
-- the Cal edoni an Express departs LOCATION at 10 o’clock in the norning
<<< the Cal edoni an Express departs Aberdeen at 10 o' clock in the norning
-- the Cal edoni an Express departs from LOCATI ON Tl ME
-- the Cal edoni an Express departs from Aberdeen TI ME
<<< the Cal edoni an Express departs from Aberdeen at 10am
<<< the Cal edoni an Express departs from Aberdeen at 10 o' clock in the norning
-- the Cal edoni an Express departs from LOCATION at 10am
<<< the Cal edoni an Express departs from Aberdeen at 10am
-- the Cal edoni an Express departs from LOCATION at 10 o’ clock in the morning
<<< the Cal edoni an Express departs from Aberdeen at 10 o’clock in the norning
-- the train DEPART
-- the train | eaves LOCATION TI ME
-- the train | eaves Aberdeen TIME
<<< the train | eaves Aberdeen at 10am
<<< the train | eaves Aberdeen at 10 o' clock in the norning
-- the train | eaves LOCATION at 10am
<<< the train | eaves Aberdeen at 10am
-- the train | eaves LOCATION at 10 o’ clock in the norning
<<< the train | eaves Aberdeen at 10 o' clock in the norning
-- the train departs LOCATION TI ME
-- the train departs Aberdeen TIME
<<< the train departs Aberdeen at 10am
<<< the train departs Aberdeen at 10 o'clock in the norning
-- the train departs LOCATION at 10am
<<< the train departs Aberdeen at 10am
-- the train departs LOCATION at 10 o’clock in the norning
<<< the train departs Aberdeen at 10 o' clock in the norning
-- the train departs from LOCATI ON TI ME
-- the train departs from Aberdeen TI ME
<<< the train departs from Aberdeen at 10am
<<< the train departs from Aberdeen at 10 o' clock in the norning
-- the train departs from LOCATION at 10am
<<< the train departs from Aberdeen at 10am
-- the train departs from LOCATION at 10 o' clock in the norning
<<< the train departs from Aberdeen at 10 o' clock in the norning
-- it DEPART
-- it leaves LOCATION TI ME
-- it leaves Aberdeen TIME
<<< it | eaves Aberdeen at 10am
<<< it leaves Aberdeen at 10 o'clock in the norning
-- it leaves LOCATION at 10am
<<< it leaves Aberdeen at 10am
-- it leaves LOCATION at 10 o'clock in the morning
<<< it leaves Aberdeen at 10 o' clock in the norning
-- it departs LOCATION TI ME
-- it departs Aberdeen TIME
<<< it departs Aberdeen at 10am
<<< it departs Aberdeen at 10 o'clock in the norning
-- it departs LOCATION at 10am
<<< it departs Aberdeen at 10am
-- it departs LOCATION at 10 o’'clock in the norning
<<< it departs Aberdeen at 10 o'clock in the norning
-- it departs from LOCATION TI ME
-- it departs from Aberdeen TIME
<<< it departs from Aberdeen at 10am
<<< it departs from Aberdeen at 10 o'clock in the norning
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-- it departs from LOCATION at 10am
<<< it departs from Aberdeen at 10am
-- it departs from LOCATION at 10 o'clock in the nmorning
<<< it departs from Aberdeen at 10 o’ clock in the norning
-- TRAIN | eaves LOCATION TI ME
-- the Cal edoni an Express |eaves LOCATION TI ME
-- the Cal edoni an Express | eaves Aberdeen TIME
<<< the Cal edoni an Express |eaves Aberdeen at 10am
<<< the Cal edoni an Express |eaves Aberdeen at 10 o' clock in the norning
-- the Cal edoni an Express | eaves LOCATION at 10am
<<< the Cal edoni an Express |eaves Aberdeen at 10am
-- the Cal edoni an Express |eaves LOCATION at 10 o’ clock in the norning
<<< the Cal edoni an Express |eaves Aberdeen at 10 o' clock in the norning
-- the train | eaves LOCATION TI ME
the train | eaves Aberdeen TI ME
<<< the train | eaves Aberdeen at 10am
<<< the train | eaves Aberdeen at 10 o' clock in the norning
-- the train | eaves LOCATION at 10am
<<< the train | eaves Aberdeen at 10am
-- the train | eaves LOCATION at 10 o’ clock in the norning
<<< the train | eaves Aberdeen at 10 o'clock in the norning
-- it leaves LOCATION TI ME
-- it leaves Aberdeen TIME
<<< it leaves Aberdeen at 10am
<<< it leaves Aberdeen at 10 o'clock in the norning
-- it leaves LOCATION at 10am
<<< it |l eaves Aberdeen at 10am
-- it leaves LOCATION at 10 o'clock in the norning
<<< it leaves Aberdeen at 10 o'clock in the norning
-- TRAIN | eaves Aberdeen TIME
-- the Cal edoni an Express | eaves Aberdeen TIME
<<< the Cal edoni an Express |eaves Aberdeen at 10am
<<< the Cal edoni an Express |eaves Aberdeen at 10 o' clock in the norning
-- the train | eaves Aberdeen TIME
<<< the train | eaves Aberdeen at 10am
<<< the train | eaves Aberdeen at 10 o' clock in the norning
-- it leaves Aberdeen TIME
<<< it |l eaves Aberdeen at 10am
<<< it leaves Aberdeen at 10 o'clock in the norning
-- TRAIN | eaves Aberdeen at 10am
<<< the Cal edoni an Express |eaves Aberdeen at 10am
<<< the train | eaves Aberdeen at 10am
<<< it leaves Aberdeen at 10am
-- TRAIN | eaves Aberdeen at 10 o'clock in the norning
<<< the Cal edoni an Express |eaves Aberdeen at 10 o' clock in the norning
<<< the train | eaves Aberdeen at 10 o' clock in the norning
<<< it leaves Aberdeen at 10 o'clock in the norning
-- TRAIN | eaves LOCATION at 10am
-- the Cal edoni an Express | eaves LOCATION at 10am
<<< the Cal edoni an Express |eaves Aberdeen at 10am
-- the train | eaves LOCATION at 10am
<<< the train | eaves Aberdeen at 10am
-- it leaves LOCATION at 10am
<<< it leaves Aberdeen at 10am
-- TRAIN | eaves Aberdeen at 10am
<<< the Cal edoni an Express |eaves Aberdeen at 10am
<<< the train | eaves Aberdeen at 10am
<<< it | eaves Aberdeen at 10am
-- TRAIN | eaves LOCATION at 10 o’ clock in the norning
the Cal edoni an Express | eaves LOCATION at 10 o' clock in the morning
<<< the Cal edoni an Express | eaves Aberdeen at 10 o'clock in the norning
-- the train | eaves LOCATION at 10 o’ clock in the norning
<<< the train | eaves Aberdeen at 10 o'clock in the norning
-- it leaves LOCATION at 10 o'clock in the morning
<<< it leaves Aberdeen at 10 o' clock in the norning
-- TRAIN | eaves Aberdeen at 10 o' clock in the norning
<<< the Cal edoni an Express |eaves Aberdeen at 10 o' clock in the norning
<<< the train | eaves Aberdeen at 10 o' clock in the norning
<<< it leaves Aberdeen at 10 o'clock in the norning
-- TRAIN departs LOCATI ON TI ME
-- the Cal edoni an Express departs LOCATI ON TI ME
-- the Cal edoni an Express departs Aberdeen TIME
<<< the Cal edoni an Express departs Aberdeen at 10am
<<< the Cal edoni an Express departs Aberdeen at 10 o' clock in the norning
-- the Cal edoni an Express departs LOCATION at 10am
<<< the Cal edoni an Express departs Aberdeen at 10am
-- the Cal edoni an Express departs LOCATION at 10 o’clock in the norning
<<< the Cal edoni an Express departs Aberdeen at 10 o' clock in the norning
-- the train departs LOCATION TI ME
the train departs Aberdeen TIME
<<< the train departs Aberdeen at 10am
<<< the train departs from Aberdeen at 10 o' clock in the norning
-- the train departs LOCATION at 10am
<<< the train departs Aberdeen at 10am
-- the train departs LOCATION at 10 o’ clock in the norning
<<< the train departs from Aberdeen at 10 o' clock in the norning
-- it departs LOCATION TI ME
-- it departs Aberdeen TIME
<<< it departs Aberdeen at 10am
<<< it departs Aberdeen at 10 o'clock in the norning
-- it departs LOCATION at 10am
<<< it departs Aberdeen at 10am
-- it departs LOCATION at 10 o’clock in the norning
<<< it departs Aberdeen at 10 o'clock in the norning
-- TRAIN departs Aberdeen TIME
-- the Cal edoni an Express departs Aberdeen TIME
<<< the Cal edoni an Express departs Aberdeen at 10am
<<< the Cal edoni an Express departs Aberdeen at 10 o' clock in the norning
-- the train departs Aberdeen TIME
<<< the train departs Aberdeen at 10am
<<< the train departs Aberdeen at 10 o' clock in the norning
-- it departs Aberdeen TIME
<<< it departs Aberdeen at 10am
<<< it departs Aberdeen at 10 o'clock in the norning
-- TRAIN departs Aberdeen at 10am
<<< the Cal edoni an Express departs Aberdeen at 10am
<<< the train departs Aberdeen at 10am
<<< it departs Aberdeen at 10am
-- TRAIN departs Aberdeen at 10 o'clock in the norning
<<< the Cal edoni an Express departs Aberdeen at 10 o' clock in the norning
<<< the train departs Aberdeen at 10 o' clock in the norning
<<< it departs Aberdeen at 10 o'clock in the norning
-- TRAIN departs LOCATION at 10am
-- the Cal edoni an Express departs LOCATION at 10am
<<< the Cal edoni an Express departs Aberdeen at 10am
-- the train departs LOCATION at 10am
<<< the train departs Aberdeen at 10am
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-- it departs LOCATION at 10am
<<< it departs Aberdeen at 10am
-- TRAIN departs Aberdeen at 10am
<<< the Cal edoni an Express departs Aberdeen at 10am
<<< the train departs Aberdeen at 10am
<<< it departs Aberdeen at 10am
-- TRAIN departs LOCATION at 10 o'clock in the norning
-- the Cal edoni an Express departs LOCATION at 10 o’clock in the norning
<<< the Cal edoni an Express departs Aberdeen at 10 o' clock in the norning
-- the train departs LOCATION at 10 o’ clock in the norning
<<< the train departs Aberdeen at 10 o'clock in the norning
-- it departs LOCATION at 10 o’'clock in the norning
<<< it departs Aberdeen at 10 o'clock in the norning
-- TRAIN departs Aberdeen at 10 o'clock in the morning
<<< the Cal edoni an Express departs Aberdeen at 10 o' clock in the norning
<<< the train departs Aberdeen at 10 o' clock in the norning
<<< it departs Aberdeen at 10 o'clock in the norning
-- TRAIN departs from LOCATI ON TI ME
-- the Cal edoni an Express departs from LOCATI ON TI ME
-- the Cal edoni an Express departs from Aberdeen TIME
<<< the Cal edoni an Express departs from Aberdeen at 10am
<<< the Cal edoni an Express departs from Aberdeen at 10 o’clock in the norning
-- the Cal edoni an Express departs from LOCATI ON at 10am
<<< the Cal edoni an Express departs from Aberdeen at 10am
-- the Cal edoni an Express departs from LOCATION at 10 o' clock in the norning
<<< the Cal edoni an Express departs from Aberdeen at 10 o' clock in the norning
-- the train departs from LOCATI ON TI ME
-- the train departs from Aberdeen TI ME
<<< the train departs from Aberdeen at 10am
<<< the train departs from Aberdeen at 10 o' clock in the norning
-- the train departs from LOCATION at 10am
<<< the train departs from Aberdeen at 10am
-- the train departs from LOCATION at 10 o' clock in the norning
<<< the train departs from Aberdeen at 10 o' clock in the norning
-- it departs from LOCATION TI ME
-- it departs from Aberdeen TIME
<<< it departs from Aberdeen at 10am
<<< it departs from Aberdeen at 10 o’ clock in the norning
-- it departs from LOCATION at 10am
<<< it departs from Aberdeen at 10am
-- it departs from LOCATION at 10 o’clock in the norning
<<< it departs from Aberdeen at 10 o'clock in the norning
-- TRAIN departs from Aberdeen TI ME
-- the Cal edoni an Express departs from Aberdeen TIME
<<< the Cal edoni an Express departs from Aberdeen at 10am
<<< the Cal edoni an Express departs from Aberdeen at 10 o' clock in the norning
-- the train departs from Aberdeen TI ME
<<< the train departs from Aberdeen at 10am
<<< the train departs from Aberdeen at 10 o' clock in the norning
-- it departs from Aberdeen TIME
<<< it departs from Aberdeen at 10am
<<< it departs from Aberdeen at 10 o'clock in the norning
-- TRAIN departs from Aberdeen at 10am
<<< the Cal edoni an Express departs from Aberdeen at 10am
<<< the train departs from Aberdeen at 10am
<<< it departs from Aberdeen at 10am
-- TRAIN departs from Aberdeen at 10 o' clock in the norning
<<< the Cal edoni an Express departs from Aberdeen at 10 o' clock in the norning
<<< the train departs from Aberdeen at 10 o' clock in the norning
<<< it departs from Aberdeen at 10 o’ clock in the norning
-- TRAIN departs from LOCATI ON at 10am
-- the Cal edoni an Express departs from LOCATI ON at 10am
<<< the Cal edoni an Express departs from Aberdeen at 10am
-- the train departs from LOCATION at 10am
<<< the train departs from Aberdeen at 10am
-- it departs from LOCATION at 10am
<<< it departs from Aberdeen at 10am
-- TRAIN departs from Aberdeen at 10am
<<< the Cal edoni an Express departs from Aberdeen at 10am
<<< the train departs from Aberdeen at 10am
<<< it departs from Aberdeen at 10am
-- TRAIN departs from LOCATION at 10 o'clock in the nmorning
-- the Cal edoni an Express departs from LOCATION at 10 o’ clock in the morning
<<< the Cal edoni an Express departs from Aberdeen at 10 o’clock in the norning
-- the train departs from LOCATION at 10 o' clock in the norning
<<< the train departs from Aberdeen at 10 o' clock in the norning
-- it departs from LOCATION at 10 o’clock in the norning
<<< it departs from Aberdeen at 10 o’ clock in the norning
-- TRAIN departs from Aberdeen at 10 o' clock in the norning
<<< the Cal edoni an Express departs from Aberdeen at 10 o' clock in the norning
<<< the train departs from Aberdeen at 10 o' clock in the norning
<<< it departs from Aberdeen at 10 o’ clock in the norning
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