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AbstrM- A genetic algorithm is used lo find solutions b the 
standard 8x8 knight's tour problem, and its performance is 
compared against standard depth-first seareh with 
backtracking. The binary encoding is described, along with a 
simple repair technique which can be used to extend burs that 
have reached impasse. The repair method is powerful enough 
on its own to find complete tours, given randomly generated 
bitstrings. But when used in coajuoctiou with a genetic 
algorithm, considerably more solutioos are found. Depth-first 
search is shown to find more solutious under certain 
conditions, but the genetic algorithm finds solutioos more 
consistently for arbitrary initial conditions. 

I. THE KNIGHT'S TOUR 

The Knight's Tour is as follows: given a chessboard of 
specified size and dimension, find a sequence of legal 
knight moves such that the knight touches every square 
once and only once. Mordecki [ I ]  shows that on an 8x8 
board, an upper bound on the number of tours is 
approximately 1 . 3 0 S ~ 1 0 ~ ~ .  Lobbing and Wegener [Z] 
computed the exact number of re-entrant, or cyclic tours 
(those that end on the start square) as being 
13,267,364,410,532. But the number of blind alleys is 
significantly greater. 

The problem has captured the imagination of chess 
players and mathematicians for centuries. Taylor, Euler 
and Lagrange. for example, all worked on the knight's tour, 
Taylor often being credited for proposing it as a 
mathematical problem in the early-I700s, and Euler for 
giving it serious analysis in the mid-1700s after several of 
his contemporaries had already found solutions [3]. The 
Belgian chess master Koltanowski made a career of 
performing knight's tour exhibitions. Audience members 
would fill a chessboard with names or dates, and after a 
minute of study, Koltanowski would recite a knight's tour 
calling out the names on the squares, while blindfolded. 

Much like the well-known "traveling salesman" 
problem, it can be solved using depth-first search with 
backtracking, simply by trying every possible sequence, 
backing up when reaching an impasse and trying a 
different route. Other algorithms have also been used. 
Wamsdorff (1823) devised a method [4] which does not 
require backtracking and finds one solution immediately, 
but fails for n>75. Parbeny [SI used both divide-and 
conquer, and a neural network, for building larger tours out 
of smaller ones. 
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11. GmEjlc ALGORITHMS 

Genetic algorithms are search algorithms based loosely 
on the principles of natural evolution, particularly genetic 
evolution. They have been useful for optimization 
problems, such as finding the shortest path through a set of 
cities. By applying simplified notions of selection, 
crossover, mutation, and survival of the fittest to an 
artificial population of candidate solutions, a genetic 
algorithm can, with relatively little tailoring of the solution 
method to the problem domain, evolve solutions. The 
concept of the genetic algorithm was described by Holland 
in 1975 [6], but the technique did not become popular until 
the mid-1980s. 

The genetic algorithm used here is the Simple Genetic 
Algorithm (SGA) described by Holland [6] and later by 
Goldberg [7]. In an SGA. the genetic operators are applied 
successively to random members of the population until a 
new population of size equal to the old population is 
generated. Gradual improvement in the quality of the 
solutions is achieved by selecting strings for recombination 
that tend to be more fit; i.e., that themselves represent 
better solutions than the other strings in the population. 

We chose to use an elitist version of the SGA. In our 
version of elitism, after a new population is generated, the 
most fit individual from the previous generation is always 
copied over the least fit individual in the new generation. 
Elitism guarantees that the fitness of the most fit individual 
found so far, plotted over time, never decreases. 

111. ENCODING 
The binary encoding described here was also developed 

independently by Miler Lee [8] at Stanford University. 
Both Lee and present author Slocum introduced their 
encoding methods in class projects. Lee used a different 
repair method than Slocum (described here). 

Assuhing a fixed starting square, a complete knights 
tour is a sequence of 63 moves. A cyclical knights tour is a 
sequence of 64 moves. Although we did not consider 
whether or not a tour was cyclical, we utilized an encoding 
that represented 64 moves, to allow for the possibility of 
considering cyclical tours in the future. 

Depending on the square on which the knight resides. 
there can be from 2 to 8 possible moves. Thus, a move can 
be represented in three bits using binary encoded values 
such as shown below in Figure 1. 
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. 4 . 3 -  . 100 . 011 . 
5 . . . 2  101 . . . 010 
. . x . .  . . x . .  
6 . a . 1  110 . . * 001 
. 7 . 0 .  . 111 . 000 . 

Rgure 1. numeric npresentations for legd knight moves from 
square x 

A series of 64 knight moves can thus be represented 
with a binary suing of length 64x3=192 bits. A starting 
square is chosen, and moves then proceed relative to the 
current square. Thus, for start square FA (the center of the 
board) a string which staTts: 

110110001010101 . . . .  
is decoded into the series of digits: 

110-110-001-010-101 . . .  = 66125 . . .  
which, in algebraic chess notation. represents the tour 
fragment: 

(E4) - C3 - A2 - C1 - E2 - C3 . . .  
Note that in this example, square C3 is visited twice. 

already violating the definition of a legal tour. This gives 
rise to a natural method for evaluating the fitness of 
strings: by simply counting the number of legal moves it 
represents. That is, it is decoded and its path traversed until 
the knight makes an illegal move (jumps off the board) or 
the knight revisits a square already visited. m e  number of 
legal moves made up to that point. thus an integer from 1 
to 63. is the fitness of the string. In the previous example, 
the value of the string is 4, since four legal moves: 

- C3 - A2 - C1 - E2 

were made. The bits which follow an illegal move are 
ignored. A fully legal tour is thus known ahead of time to 
have a fitness value of 63. We always ignore the last three 
bits, since we are not at this time wncemed with whether 
the tour is cyclic. 

An interesting property of this encoding is that it gives a 
heavy bias to bits that appear early in the suing. A change 
in a string alters the starting point for all subsequent 
moves. Thus a change in the first few moves of a low 
fitness string could result in a substantial increase in 
fitness. and vice-versa, whereas a change after the first 
illegal move may have no effect at all. If a string has near 
optimum fitness, a change in the beginning of the string 
could decrease its fitness drastically. This is one of the 
reasons that we chose to use an elitist genetic algorithm. 

IV. EXTENDING PARTIAL TOURS USING REPAIR 

Our first experiments using the implementation 
described above did not yield any legal tours even when 
several million strings were evaluated over the course of 
many thousands of generations. Lee [8] also made this 
observation, and therefore limited his runs to smaller 
boards, We instead devised a simple method of repairing, 
or extending the tour using the rightmost, as yet unused 
portion of the partial solutions. as follows. 

For each string in the population, the point at which it 
was no longer evaluated (i.e., where the knight jumped off 
the board or back onto a previous square) is where repair 
occurs. At that point, the move indicated (the 3-bit chunk) 
is checked to see if substituting another 3-bit pattern will 
allow the tour to proceed. Since there are only 7 possible 
replacement values, this is not overly expensive. If a 
substitution cannot be made which extends the tour, 
evaluation of that string stops. If a replacement can be 
made which extends the tour, the evaluation then can 
proceed to the right, as before. No backtracking is 
performed. 

For instance, in the previous example, evaluation of the 
string reached an impasse when square C3 was 
encountered for a second time. Thus, the string: 

1 1 0 1 1 0 0 0 1 0 1 0 ~  . . .  
having reached impasse at the rightmost substring 101. 
would consider using 000 instead. From E2. this would 
represent a move off of the board, so substring 001 would 
be considered. From E2, this represents a move to GI, 
which has not yet been visited and is therefore a legal 
move. The string therefore continues to be evaluated, 
having been changed to: 

1 1 0 1 1 0 0 0 1 0 1 0 ~  . . .  
Each string is therefore still evaluated left-to-right, 

repairing when an impasse is reached. Since the repair 
actually modifies the string, the population is altered due 
to the process of fitness evaluation. The implications of 
altering a population during fitness evaluation has been 
explored by Whitley et. al(1994) [91. 

Starting at square E4, our first run found a tour at 
generation 60, and is shown in Figure 2 (the bitstring has 
been translated to octal for readability, along with a 
chessboard showing the sequence of moves) 

Although we were not concemed with cyclic tours. we 
did note that the third solution found (at generation 99 of 
the first run), was in fact cyclic (shown in Figure 3). 
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s t r i n g  = 4 3 6 5 0 3 6 0 1 6 7 2 4 7 1 2 3 3 3 6 7 0 7 2 3 5 2 4 6 6  
3 6 7 1 6 0 2 1 2 4 6 4 2 2 5 6 5 7 1 0 6 4 1 0 2 1 4 3 4 6 1 0 7 2  

0 5  48 0 7  3 2  03 4 6  2 9  2 0  
08  3 3  04  47 3 0  2 1  60 4 5  
49 0 6  3 1  0 2  6 1  4 4  1 9  28  
34  0 9  5 0  43 2 2  2 7  62  5 9  
53  1 4  35  1 0  0 1  1 8  4 1  2 6  
3 6  11 54 5 1  42 2 3  58  63  
1 5  5 2  1 3  3 8  1 7  5 6  2 5  40 
1 2  3 7  1 6  5 5  24  3 9  64 57  

Figure 2. first knights tour found, at generation 60 

string = 4 3 6 5 0 3 6 0 1 6 7 2 4 7 1 2 3 3 3 6 1 4 7 2 5 6 5 7 1 4  
2 7 6 1 6 0 2 1 2 4 5 7 0 2 5 4 3 0 1 6 0 3 4 5 2 0 7 0 5 6 5 4 1 7  

0 5  2a 07  3 2  03  26 23 20 
08 3 1  0 4  2 7  48 2 1  56  2 5  
2 9  06 3 3  02  55  24 1 9  22 
34 0 9  30 47 42 4 9  54  5 7  
63 1 4  35  1 0  01 1 8  4 1  50  
3 6  11 6 4  43 4 6  5 1  5 8  5 3  
1 5  62 1 3  38  1 7  60 4 5  40 
1 2  3 1  1 6  6 1  4 4  3 9  5 2  59  

Figure 3. first cyclic knights bur found, a1 generation 99. 

v. TESTMFI1-1ODOU)Gt 

A. Test Methodology -- CA + Repair 

The elitist SGA with repair was used, with string length 
192 encoded as previously described. The population size 
was 50, with one-paint crossover at a rate of SO%, and 
mutation rate of 1% (that is, each bit is flipped with 
probability 0.01). We chose these GA parameters because 
they were commonly used in other research literature. 

We ran the algorithm for 20,000 generations, which 
results in 1 million individuals being evaluated. Naturally, 
it is possible (in fact, quite likely) for there to be duplicates 
among the 1 million strings, since the process of selection 
results in copying individuals from one generation to the 
next. Therefore, the GA probably evaluated considerably 
less than 1 million different strings. 

This process took 50 seconds on a Dell Pentium 3 
laptop running Windows 2000 and Visual C++. We ran the 
experiment 5 times per start square. for each of the 64 
possible start squares, recording the number of distinct 
lours found in each of the 64x5=320 runs. 

B. Test Methodology -- Repair only 

As stated earlier, without repair the GA was unable to 
find any tours. Since adding repair enabled solutions to be 
found, it was necessary to determine whether the GA was 
doing any useful work, or if repair alone would suffice. 

Since the GA was generating 1 million strings o v a  the 
course of its 20,000 generations, we generated 1 million 
strings randomly and applied repair to each of them, 
counting the number of complete tours that were produced. 
We also ran this experiment 5 times per start square for 
each of the 64 possible stan squares, recording the number 
of distinct tours found in each of the 64x5=320 runs. We 
also noted that the time to complete these runs was 
comparable to that of the GA. namely, about 50 seconds 
per run. 

C. Test Methodology -- Backtracking 

Solving a knight's tour using backtracking is a simple 
exercise commonly given as an undergraduate 
programming exercise. Searchin,g the web provides 
numerous examples of illustrative algorithm and class 
assignments. We felt it was important to compare the 
performance of the GA against this standard algorithm 
under similar conditions. 

A start square is selected, and a move is chosen from 
the sequence shown in Figure 1. If the move is legal, the 
process repeats from the new square. This continues until 
the move either jumps off the board, or lands on a square 
already visited. Then, the last move is retracted and the 
next move in sequence is tried. This was run on the same 
laptop, also for 50 seconds. Each of the 64 possible start 
squares was considered, and the number of tours found in 
50 seconds, for each start square, was recorded. 
On the Internet, one finds a variety of descriptions 

regarding the observed performance of this backtracking 
algorithm on the knight's tour. Many such sources describe 
the 8x8 problem as being too large for simple backtracking 
to find solutions in such a short period of time; in fact, one 
such academic site indicated that it would take over a 
million years to even find one solution! Incorporating the 
Warnsdorff technique mentioned earlier is a frequently- 
mentioned way of speeding the discovery of solutions. 
While true, we felt that it utilized too much chess-specific 
information, as we wanted to use only generic search 
techniques. Besides, to our surprise, we discovered that the 
supposition of simple backtracking being infeasible for 
finding 8x8 tours was incorrect -- given the right start 
conditions, we were able to quickly find thousands. 

VI. RESULTS 

A. Results .- GA + Repair 

The GA was run for 50 seconds, time enough for 20.000 
generations and thus 1,000,oOO string evaluations 
(including the repair algorithm). The number of distinct 
complete tours were tallied for each run (duplicate tours, 
which presumably could happen frequently due to genetic 
selection, were not counted). The chessboard in Figure 4 
shows, for each square, the average number of complete 
tours found starting at that square, averaged over 5 runs 
each. Figure 5 gives relevant statistics: 
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C. Results -. Backtracking 
Depth-first search with backtracking was run for 50 

seconds, for each start square. The number of complete 
tours were tallied for each square. The chessboard in 
Figure 8 shows, for each square, the number of complete 
tours found starting at that square. Figure 9 shows relevant 
statistics: 

Figure 4. GA+Reoair: Avg. #of lours found in 20,000 
gens, starting at each square (min and m a  values are 

shown in boldface) 

[Total number of runs (64x5) I 320 
Average # of tours per run 
Most tours found in one run 

I 89 
I 642 

~~ 

Gist toGs found in one run 
% of runs with no tours found 

10 
I 6% Figure 8. m g :  Number of tours 

found staning ateach square. 
Figure 5 .  GA+Reoair: Performance statistics. 

Total number of runs 

Most tours found in one run 
Least tours found in one run 

B.  Results -- Repair only 
One million strings were generated randomly for each 

start square, and the repair algorithm was applied to each 
string, taking about 50 seconds for each run. The number 
of distinct complete tours were tallied for each run. The 
chessboard in Fieure 6 shows. for each sauare. the average - . .  - 

Figure 9. Backtracking: Performance statistics. 
number of complete tours found starting at that square, 
averaged over 5 runs each. Figure 7 gives relevant 
statistics: 

Figure 6. Reoair only: Avg. #of toun in I.000.000 strings, 
starting at each square (min and mar values shown in boldface) 

Total number of runs (64x5) 
Average # of tours per run 

I 320 
1 3  

Most tours found in one run 
Least tours found in one run 
% of runs with no tours found 

1 29 

I 20% 
IO 

Figure 7. -: Performance (values 
rounded IO the nearest integer) 

We also repeated the backtracking runs for a different 
sequence of moves. Each time a square is visited, the 8 
possible knight moves must be tested in tum. For the 
above runs, the order of moves tried is given in Figure I .  
in which the moves are tested in circular order. We also 
tried the following relative order: 0-4-2-5-1-7-3-6. 

The chessboard in Figure 10 shows the number of 
complete tours found staning at each square, for the new 
search sequence. Figure 11 shows relevant statistics. 

Figure IO. Backtracking: Number of tom found starting a1 each 
square. Sequence used is 14-36-2-84-7 relative 10 Figure 1. 
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Total number of runs 

Most tours found in one run 
Least tours found in one run 
70 of ruiis with no tours found 1 95% 

Figure 11. Backtracking: Performance statistics 
for revised sequence. 

VII. CONCLUSIONS 

Consider the summary of data as shown in Figure 12. 
The experiments yielded a number of surprises. We were 
pleasantly surprised by the performance of the GA in 
finding complete 8x8 tours so reliably, regardless of the 
initial conditions. But we were equally intrigued by the 
ability of simple backtracking to find large numbers of 
tours, if one is willing to uy a variety of starting 
conditions. 

We presented a repair algorithm which was shown to 
find individual tours reliably. In fact, given arbitrary initial 
conditions, the repair algorithm alone applied to random 
strings appears to be more likely to find a solution than 
sample backtracking. It found tours 80% of the time, 
whereas backtracking found tours only 5 to 17% of the 
time for the initial conditions we considered. 

Incorporating a genetic algorithm with repair was 
shown to find roughly 30 times as many tours as using 
repair alone. It found tows in 94% of the runs, also 
considerably better than backtracking. Also, the GA 
appears to be much less sensitive to the starting conditions 
than is backtracking; the number of tours found ranged 
from 19 to 420 for the GA, while for backtracking it 
ranged from 0 to 4256 (with the vast majority of start 
squares yielding no solutions with backtracking). Genetic 
search seems to be considerably more reliable, if less 
sporadically spectacular, for this application. 

Simple backtracking often performed extremely well, 
finding in one case over 40W 8x8 tours in less than one 
minute. In fact, it found more tours than any other method. 

This is in stark contrast to statements commonly made 
on websites and undergraduate homework assignments. 
But its performance is very sensitive to the start square, 
and the order in which squares are tried. This explains why 
so many computer programmers believe that it is incapable 
of finding solutions to the 8x8 problem. since there is an 
8 5 9 5 %  chance that a particular run, for an initial set of 
conditions, will find no tours even for lengthy runs. In 
some ways. backtracking performed the best, but in other 
ways, it performed the worst. 

This discovery suggests a simple modification for using 
backtracking to solve the knight’s tour quickly. Since it 
was observed that certain start squares yield many tours 
quickly, simply have the algorithm try each start square for 
a few seconds, and if no tours are found, try the next start 
square. Once a start square is found which yields some 
solutions. allow that run to continue and many solutions 
will be found. 

The genetic algorithm was shown to be a particularly 
reliable method of finding 8x8 knight’s tours. With a 
population size of only 50, finding on average 89 tours 
among the <I,WO,oM) candidates is indicative of a well- 
directed search, especially for a space of this nature 
tours in a search space of ZI9’ strings). Repair assists the 
genetic algorithm dramatically. Yet, the hill-climbing 
method used borrows no chess-specific knowledge, and 
does no backtracking or look-ahead. Nor does repair alone 
produce very good results. The two methods compliment 
each other nicely, as neither does well alone. 

VIII. “WORK 

The work presented here utilized what seemed to us to 
be the simplest and most obvious genetic encoding and 
recombination operators. It is likely that other operators 
may realize significant performance improvements. In 
particular, we plan next to try Whitley’s edge 
recombination operator [lo] which seems well-suited to 
this application. 

Figure 12. Summary of results 
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