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Finding Knight’s Tours on an M x N Chessboard with 
0 (MN) Hysteresis McCulloch-Pith Neurons 

Kuo-Chun Lee and Yoshiyasu Takefuji 

Abstract-How can a knight he moved on a chessboard so that the 
knight visits each square once and only once and goes hack to the starting 
square? The earliest serious attempt to find a knight’s tour on the chess- 
hoard was made by L. Euler in 1759 [l]. In this correspondence, a parallel 
algorithm based on the hysteresis McCulloch-Pith neurons is proposed 
to solve the knight’s tour problem. The relation between the traveling 
salesman problem and the knight’s tour problem is also discussed. A large 
number of simulation runs were performed to investigate the behavior 
of the hysteresis McCulloch-Pitts neural model. The purpose of this 
correspondence is to present a case study-how to successfully represent 
the combinatorial optimization problems by means of neural network. 

I. INTRODUCTION 
A Hamiltonian cycle of a graph G is a cycle that contains every 

vertex of G. The name Hamiltonian cycle can be regarded as a 
misnomer, since Hamilton was not the first one to look for cycles 
which pass through every vertex of a graph [2]. The earliest example 
of a problem which can be expressed in terms of Hamiltonian 
cycles is the celebrated knight’s tour problem. This problem has 
interested many great mathematicians: De Moivre, Vandermonde [3], 
Warnsdorff [4], Pratt [5] ,  Roget, Legendre [6],  and De Lavemede 171. 
Most of formerly proposed methods are based on either divide-and- 
conquer or backtracking, especially on the 8 x 8 chessboard problem. 
They are all based on sequential computing. No general methods 
have been given to this problem in the last two centuries [8]. No 
parallel algorithm has been reported, either. Using the artificial neural 
network, a parallel algorithm is proposed to solve the knight’s tour 
problem in this correspondence. 

Neural network applications may be classified into two types: 
optimization and associative retrieval/classification [9]. For example, 
the Hopfield neural network can be used to solve combinatorial 
optimization problems in which the gradient descent method seeks the 
local minimum of a given Liapunov energy function E. In general, 
the Liapunov energy function E is given by constraints and a cost 
function. The synaptic weights between neurons are determined by 
the energy function. The mathematical model of the artificial neural 
networks consists of two important components: neurons and synaptic 
links. The output signal generated by one neuron propagates to the 
others through synaptic links. The linear sum of the weighted input 
signals determines the new state of the neuron. The system dynamics 
depends on the neuron model as well as the problem representation. 
With two kinds of problem representations, the practicability of three 
neuron models, the sigmoid neuron, the McCulloch-Pitts neuron, and 
the hysteresis McCulloch-Pitts neuron, are tested for solving the 
knight’s tour problem. 

11. NEURON MODELS 
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A. Sigmoid Neuron 
The neural network for combinatorial optimization problems was 

first introduced by Hopfield and Tank in 1985 [lo]. They used the 
differentiable and continuous neuron model, sigmoid function. In their 
paper [lo], the symmetric conductance matrix T with zero diagonal 
elements must be used to guarantee the convergence to the local 
minimum. For a given energy function E ,  the motion equation of the 
i th  neuron is given by 

(1) 
dC, - Ut aE 
df 7 aK 

where li, and V, are the input and the output of the zth neuron and 
7 is a constant. 

The inpuvoutput relationship is described by the sigmoid function 

~ - 

(2) 
1 
2 

V, = g(XCT,) = -(1 + tanh (XUz)). 

The parameter X is a constant gain which damages the steepness 
of the sigmoid curve. Theorem 1 shows that -Lrt /r  term increases 
the computational energy E under some conditions when sigmoid 
neurons are used. 

Theorem 1: If the inpuvoutput function is continuous and nonde- 
creasing, the Ut/. term in (1) increases the computational energy 
E when 

and if either 
dL< 
d t  I‘, > 0 and  - < 0) 

or 
dL: 
d t  

I‘, < 0 and  - > 0) 

is satisfied. 
Proof See [28]. Theorem 2 states that the computational energy 

function E monotonically decreases regardless of the condition of 
the symmetry and diagonal constraints in the conductance matrix as 
long as the neurons obey a nondecreasing function and the motion 
equation of the i t h  neuron is given by 

dC, - d E  
- -- - 
d t  81:’ 

Theorem 2: dE/d t  5 0 is satisfied under two conditions such as 
dC, - d E  
d t  ar: 

1; = f ( V z )  

- _ _  - 

and 

where j ( L T L )  is a nondecreasing function. 
Proof 

dl’ db’ dE -=E--- dE 
d t  dVz dL; 

z 

dE dC 
dTi, d t  where - is replaced by - (condition 1) 

dV 
d li, 5 0, where -2 > 0 (condition 2). 

Q.E.D 
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B. McCulloch-Pitts Neuron 

McCulloch and Pitts [ l l ]  proposed a mathematical model based 
on the biological computation in 1943. The input/output function is 
given by I< = f (Ut)  = 1 if Uz 2 0 and 0, otherwise where I: and U ,  
are the output and the input of the i th neuron, respectively. Takefuji 
and Lee have successfully used the McCulloch-Pitts neuron and the 
modified McCulloch-Pitts neuron in neural networks (without the 
U - i / r  term in the motion equation) for graph planarization problems 
[12], tiling problems [ 131, RNA secondary structure prediction prob- 
lems [14], [15], maximum independent set problems [15], and sorting 
problems 1161. The convergence speed of the neural network with 
McCulloch-Pitts neurons is relatively faster than that of the network 
with sigmoid neurons. As long as the neural network simulation 
is performed on the digital computer, Theorem 2 is inadequate to 
explain the convergence behavior. The reason is that the sigmoid 
function is no longer continuous on digital computation. 

Theorem 3 shows the convergence of the system with the discrete 
McCulloch-Pitts neurons. 

Theorem 3: AE/At  5 0 is satisfied under two conditions such as 

and 

where f(CZ) is a binary function: f (U, )  = 1 if Uz 2 0, 0 otherwise. 
Proof: See [29]. Although the McCulloch-Pitts neuron has 

the advantage of fast convergence, it causes undesirable oscilla- 
tory behavior in neural dynamics. On the contrary, the hysteresis 
McCulloch-Pitts neurons, discussed below, suppress the oscillatory 
behavior. 

C. Hysteresis McCulloch-Pitts Neuron 

In 1986, Hoffman and Benson [17] proposed sigmoid neurons with 
hysteresis for learning, where any changes in synaptic connection 
strengths are replaced by hysteresis. Due to the hysteresis property, 
the system tends to stay in the region of phase space where it is 
located. They introduced the theory on a role for sleep in learning. 
In 1985, Segundo and Martinez reported the discovery of dynamic 
and static hysteresis in Crayfish stretch receptors 1181. They stated 
that hysteresis might be more widespread than suspected in sensory 
and perhaps other systems. Yanai and Sawada [I91 also presented 
the associative memory network in which they used the neurons 
with the hysteresis property. They showed that the recalling ability 
improves with the hysteretic property. Takefuji and Lee introduced a 
hysteresis McCulloch-Pitts neuron model [20]. The hysteresis prop- 
erty suppresses the oscillatory behavior of neural dynamics so that the 
convergence time becomes shorter. The hysteresis McCulloch-Pitts 
neuron has been successfully used for crossbar switch scheduling [20] 
and fault-cell allocation 1211. Fig. 1 shows the inputloutput relation 
of the hysteresis McCulloch-Pitts neuron model. The output of the 
i th hysteresis McCulloch-Pitts neuron K is given by: V,  = 1 if 
L-? 2 UTP (upper trip point), 0 if Ut 5 LTP (lower trip point), and 
unchanged otherwise, where Ir, is the input of the ith neuron. The 
output at any moment depends upon the present value of the input 
as well as the previous values. 

Theorem 4 states that a system with hysteresis McCulloch-Pitts 
neurons can converge to the local minimum. 

Theorem 4: AElAt 5 0 is satisfied under two condition such as 

LTP UTP 
Ui 

Fig. 1. The input/output relationship of the hysteresis McCulloch-Pitts 
neuron. 

and 

I/* = f (U,)  

where f ( U , )  is a hysteresis binary function. 
Pro08 See [21], [29]. 

111. KNIGHT 's TOUR PROBLEM AND CITY-ORDER 
NEURAL REPRESENTATION 

The neural network for the traveling salesman problem (TSP) has 
been investigated by Hopfield and Tank. The goal is to find the 
shortest path where the salesman visits all cities but only once per 
city and goes back to the starting city, Le., the shortest Hamiltonian 
cycle. They formulated the problem using the city-order matrix 
representation where the row and the column represent the city and 
the visiting order, respectively. The city-order matrix representation 
needs N 2  neurons in total where N is the number of cities. Based on 
the city-order representation, the TSP energy function is as follows: 

. A- N 1v 

+~((kkvz,t-lv))2 
2 2=1 r=l 

" z=1 y#z r = l  

The first term and the second term force each row and each 
column to fire one and only one neuron, respectively. The third 
term forces the system to fire S neurons in total. As for the last 
term, it contains the distance information corresponding to a given 
tour. Neural network investigators have worked on improving the 
quality and the performance of the Hopfield-Tank neural network 
through the scaling, normalization, and annealing 1221-1241. They 
proposed techniques to alleviate the difficulties for solving large-size 
problems. However, the solution quality degrades with the problem 
size rapidly. The state of the global minimum energy of TSP gives 
the best solution, but no one knows the global minimum unless 
an exhaustive search is used. If the global minimum energy of the 
problem is known as a constant, it has no difficulties to test whether 
the state of the system is in the global minimum or not. Before we 
solve large-size TSP, it is better to start with the problems which are 
similar to TSP but with less complexity. The knight's tour problem 
can be considered as one of the best examples where the global 
minimum is known. 
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Fig. 2. The legal moves of the knight 

The knight’s tour problem is to find a Hamiltonian cycle on a 
chessboard. On the chessboard, the knight moves in an L shape as 
shown in Fig. 2. The knight’s tour problem is mapped into TSP. 
There are 8 x 8 squares on the chessboard. According to the matrix 
representation proposed by Hopfield and Tank, the knight’s tour 
problem on the 8 x 8 cheeseboard becomes 64-city TSP. Considering 
the energy function for this problem in (3), the only difference 
is the distance between cities. In the knight’s tour problem, the 
distance between two squares is either 0 for the legal move or a 
large positive number for the illegal move. The legal moves between 
squares provide the connectivity information. Note that the global 
minimum of the computational energy of the problem is zero. If the 
Hamiltonian cycle is found, the state of the system reaches the global 
minimum of the computational energy. 

In order to test the neural network based on the city-order repre- 
sentation, the first three terms were modified in the energy function 
[25]. The first three terms indicate the constraints for firing only one 
neuron in each column and row, respectively, and that :I7 neurons are 
fired in total. The new energy function is 

E = - E  
r= l  ( - v  ,=1 

, .Y / .Y 

- I N u 

We first experimented a sigmoid neuron as a processing element. 
The motion equation, time evolution of the system, is given by 

\ 

- B E dz y(l y , + I  + 1; 1 - 1 ) .  ( 5 )  
y = l  

The goal of the knight’s problem I S  to find one of the global mnima 
instead of the local mnimum In TSP, the solutions are examined by 
checking whether a Hamiltonian cycle is formed whenever the state 
of the system converges. For the knight’s tour problem, the system 
convergence is defined that dC:  , / d t  is 0 for all of the neurons when 
the system dynamics follows ( 5 )  If the -Cr2 / r  term is involved in the 

motion equation, the system convergence cannot be mathematically 
well defined. It is not hard to find a valid tour, i.e., a Hamiltonian 
cycle, when coefficient ;I is larger than B.  The quality of the solution 
depends on how to tune the coefficient parameters. We tested 6 x 6 
and 8 x 8 chessboard problems where 1000 runs were performed for 
each case and the parameters A .  13, and X were chosen in a variety 
of ranges. After the experiments, the city-order neural representation 
could not find any single solution for the knight’s tour problem. In 
other words, to find one of global minima is a difficult task although 
the global minimum of the knight’s tour problem is known to be zero. 
We also simulated the behavior of McCulloch-Pitts neural networks 
with and without hysteresis for the knight’s tour problem. We still 
could not find any solution. It can be concluded that the neural 
network based on the city-order representation could hardly find any 
solution. 

IV. CITY- CITY REPRESENTATION 

The city-order matrix representation fails to find any solution for 
the knight’s tour problem. This does not imply that neural networks 
always fail. The failures in the city-order neural network experiment 
have motivated us to find a new neural representation for the 
problem. A two-dimensional triangular neural network representation 
is introduced. This new representation is constructed for city-city 
relations. The city-city representation has been successfully used by 
Xu and Tsai [26] to solve TSP. In the city-city representation, a P x f‘ 
matrix is used for a P-city problem and each element u , , ~  represents 
the link between the i th  city and the j t h  city. Fig. 3 shows a city-city 
representation for a 6-city traveling salesman problem where the black 
square denotes the link exists. Because the matrix is symmetrical, only 
P ( P  - 1 ) / 2  elements are needed. A 4 x 4 chessboard example is 
given as shown in Fig. 4. Each square is assigned a number associated 
with its coordinate. For instance, the number for the square (3, 2) 
is 10. The possible legal moves starting from the square with the 
coordinate ( u .  b )  should be one of the squares with the coordinate 

2. b - 1). ( a  + 1, b - 2 ) .  ( a  - 1. h - 2) .  ( n  - 2, b - l),  if they exist, 
as shown in Fig. 5 .  Based on the legal move for the knight, the d z , J  
matrix is determined. dz, ,  is 1 if the move from the ith square to the 
j t h  square is legal, 0 otherwise. The system consists of P ( P  - l ) / 2  
processing elements or neurons where P is the number of squares 
in an Jf x S chessboard. Based on the cityxity representation, the 
following motion equation for the neuron which represents the move 
from the i th  square to the j t h  square is used to solve the problem: 

(0 - 2. b + l) ,  ( a  - 1. b + 2) .  ( a  + 1, b + 2) .  ( a  + 2.b + 11, ( a  + 

The upper triangular elements in the two-dimensional array are 
used: I” ,J for i < j and K,] for i > j is given by The 
state of L<,3 actually represents a path between the i th  and j t h  
square. In other words, the upper triangular neural array represents 
the nondirected adjacency matrix to find a Hamiltonian cycle. The 
first and the second term describe that there exist two legal moves 
for the i th  square and the j t h  square, respectively. According to the 
(6), it needs no more than 8 x P neurons instead of P ( P  - 1) /2  
neurons because each square has eight possible legal moves at most. 

The system convergence is defined that d U , , / d t  is 0 for all 
neurons. The following procedure describes the proposed parallel 
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city 
1 2 3 4 5 6  

Fig. 3. The city-city representation. 

1 2  3 4  

Fig. 4. A 4 x 4 chessboard and the number associated with the respective 
square. 

Fig. 5.  The eight legal moves from the square with the coordinate (a, b). 

algorithm based on the first-order Euler method with hysteresis 
McCulloch-Pitts neural model. 

0 Set t = 0. 
The small negative number is assigned to the initial values of 
Uz,J ( t )  for i = 1 to P - 1 
and j = i + 1 to P. 
Evaluate values of K , , ( t )  based on the hysteresis binary 
function for i = 1 to P - 1 and j = i + 1 to P. 
V , ] ( t )  = 1, if U Z , ] ( t )  2 UTP 
K,,( t )  = 0, if U Z , , ( t )  5 LTP 
unchanged otherwise. 
Use the motion equation in (6) to compute Arz, ,( t)  
if d t , ]  = 1 then 

9 
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Lq i: 
Fig. 6.  The 4 x4 chessboard with local loops and its final state of the neurons. 
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Fig 

4. 

5. 
6. 

7. The relationship among the hysteresis band, the chessboard size, 
and the percentage to find a valid knight’s tour. 

if d, , = 0 then A r t  , ( t )  = 0. 
Compute C*z ( t )  based on the first-order Euler method: 
li, ] ( t  + 1) = U, ? ( t )  + AUz ( t )  for i = 1 to P - 1 and 
3 = 2 + 1  to P. 
Increment t by 1 
If A G  ] ( t )  = 0 for i = 1 to P - 1 and 3 = i + 1 to P then 
stop this procedure else go to step 2 .  

There are two kinds of possible solutions when the city-city neural 
representation is used. One is the valid knight’s tour and the other is 
the local-loop solution. The solution with local loops is unsatisfactory. 
Fig. 6 shows an example with local loops on the 4 x 4 chessboard 
and its final state of neurons. The original city-order representation is 
able to avoid such local loops when the state of the system converges 
to a solution. However, the city-order representation has never given 
any successful solution. We have tested the knight’s tour problem 
for 6 x 6,8 x 8,lO x 10,12 x 12,14 x 14,16 x 16,18 x 18, and 
20 x 20 chessboards using the city-city neural representation. The 
simulator was developed in C on DEC 3100 and in Turbo Pascal 
on Macintosh SEI30 based on the proposed procedure to verify our 
algorithm. Several hysteresis bands were used and tested. Fig. 7 
shows the relationship among the hysteresis band, the chessboard 
size, and the percentage to find a valid knight’s tour solution. The 
knight’s tour is shown in Fig. 8 from 6 x 6 to 14 x 14 chessboard. 
Fig. 9 shows three solutions for different rectangle chessboards. The 
required convergence time is no more than 30 iteration steps in our 
experiments. 

Our simulation results show that the different neural respre- 
sentations, and neuron models provide the different behaviors. In 
[lo], for the 10-city TSP, the percentage to find a valid tour is 
about 32%. For the 40-city TSP, the percentage drops to less 
than 1%. For the 8 x 8 knight’s tour problem, it is equivalent 
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Fig. 8. Knight’s tours solutions from 6 x 6 to 14 x 14 chessboard 
Fig. 10. A knight’s tour solution on a 40 x 40 chessboard 

Fig. 9. The knight’s tours for three different chessboards 

to the 64-city TSP in terms of the complexity if the city-order 
representation is used. Using the city-order representation, we have 
never found any solution to the knight’s tour problem. If we use the 
cityxity neural representation, for the 8 x 8 knight’s problem the 
percentage to find a valid solution is about 30% as shown in Fig. 
10. The percentage drops to around 1% for the 20 x 20 knight’s 
tour problem. (It is equivalent to 400 cities TSP in terms of the 
complexity.) Note that the percentage number [IO] indicates the 
convergence frequency to the local minimum while our percentage 
number indicates the convergence frequency to the global minimum. 
The quality of the solution degrades when the problem size increases 
in TSP and the knight’s tour problems. However, the solution quality 
in TSP degrades more rapidly than that in the knight’s tour problem. 
Remember that in the knight’s tour problem we must find the global 
minimum instead of the local minimum. Meanwhile, we did not put 
any effort to tune the parameters in our simulations. We can conclude 
that the cityycity neural representation is better than the city-order 
neural representation for the knight’s tour problem. 

v. HOW TO DEAL WITH THE LARGE-SIZE KNIGHT ’S TOUR PROBLEM 

As the size of the chessboard increases, it becomes very difficult 
to find a Hamiltonian cycle. However, it is possible to have another 
alternative to construct a large-size solution based on the small-size 
solutions. The small-size solutions become cells to form a large cell. 
For instance, by using knight’s tour solutions obtained from the 
parallel algorithm for the 8 x 8 chessboard problem, it is possible 
to construct a solution on an 8 S  x 8 N  chessboard where S is any 
positive integer. Fig. 10 shows a knight’s solution on a 40 x 40 
chessboard by the expansion of 25 pieces of the 8 x 8 knight’s tour 
solutions. 

Fig. 11. Invalid solution after merging. (a) Before merging. 
(b) After merging. 

When small-size cells are merged together, they are likely to form 
an invalid knight’s tour which is not a Hamiltonian cycle. An example 
is given to explain the invalid case where four small cells are merged 
together to form a solution in Fig. 11. Fig. ll(a), each rectangle 
represents a knight’s tour solution for the small-size chessboard. As 
one cell is merged with the other, both have to open the closed cycle 
in order to connect themselves, Fig. 1 l(b) shows the invalid solution 
after merging. In order to find a solution on the large-size chessboard, 
we need to provide a proper procedure to guarantee a Hamiltonian 
cycle. A simple procedure is to cascade small-size solutions one by 
one in one direction as shown in Fig. 12. This method can guarantee 
that the final solution is always a valid one. By this procedure, a 
large-size solution can by easily obtained. The solution in Fig. 10 is 
a typical example. 

The question arises: how to find the cascading paths between the 
cells? The answer is very simple. If the knight wants to find a closed 
loop in four moves, the shape of the result must be a parallelogram, 
as shown in Fig. 13. Parallelograms play a key role in obtaining the 
cascading paths. To cascade cell A and cell B together successfully, 
as shown in Fig. 14, we have to find a parallelogram between the 
right side of cell A and the left side of cell B.  In Fig. 14(a), the bold 
lines indicate a possible parallelogram. Disconnect two bold lines and 
add the other side lines in this parallelogram. Then cell A and cell 
B are cascaded successfully. The final result is shown in Fig. 14(b). 
As long as parallelograms exist between the cells, the cells can be 
cascaded successfully. For instance, there exists only one path when 
the knight moves into any corner of the chessboard. This means that 
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Fig. 12. The cascading method to form a large-size solution in one direction. 

Fig. 13. A parallelogram formed with four knight’s path. 

Cell A Cell B Cell A Cell B 

(a) (b) 

both cells indicate parallelogram. (b) The final result after cascading. 
Fig. 14. Cell ‘4 and cell B are cascaded sucessfully. (a) Two bold lines on 

there always exists one side of a possible parallelogram. If the other 
cell has a path which can form a parallelogram shown in Fig. 13, the 
cells are cascadable. It is concluded that the 1 000 000 x 1 000 000 
chessboard problem or larger problems were solved by our algorithm 
in several minutes on a Macintosh SE/30. 

VI. CONCLUSION 
Hopfield and Tank [lo] presented very good examples to show 

how to map the problem onto neural networks. Wilson and Pawley 
[27] tried to improve the algorithm but failed. Their failure was 
caused not by the method of neural computation but by the neural 
representation and the neuron model. In other words, in order 
to obtain better solutions we must pay attention to mapping of 

the problem onto a proper neural network. The hysteresis neurons 
and city-city neural representation provided better result than the 
city-order neural representation for the knight’s tour problem. The 
cascading method also gives hope for the solution of the large- 
size knight’s tour problems. Although the cascading method is not 
a general approach for any large-size problems, the decomposition 
methodology should play a key role in solving large-size ones. Using 
the artificial neural network and cascading approach, we can provide 
the solution for the knight’s tour problem which has been investigated 
for two centuries but no general algorithms have been provided. 
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Efficient Dynamic Simulation of Multiple Manipulator 
Systems with Singular Configurations 

Scott McMillan, P. Sadayappan, and David E. Orin 

Abstract-The paper presents an efficient algorithm for the simulation 
of a system of m manipulators each having N degrees of freedom 
that are grasping a common object. Algorithms for such a system have 
been previously developed by others. In [l], an O(mN) algorithm is 
presented that does not fully consider the case when one or more of the 
manipulators are in singular configurations. However, it is stated in [2] 
that the algorithm has an O(mN)+O(m3) computational complexity 
when one or more of the chains are singular. This results because the 
size of the system of equations to be solved grows linearly with the 
number of chains in the system [3]. The algorithm presented in this 
paper significantly reduces the size of the system of equations to be 
solved to one that grows linearly with the number of singular chains, 
s, and achieves an O(mN)+O(s3) complexity. In addition to this 
result, efficient O(mN) algorithms are also presented for special cases 
where only one or two chains are in singular configurations. These are 
particularly useful hecause it is common to deal with systems consisting 
of only a few manipulators grasping a common object, and even with 
more manipulators, it is unlikely that many of them will be singular 
simultaneously. Finally, by applying the algorithm developed for the 
case of two singularities to a dual-arm system, an algorithm results that 
requires fewer computations than that of existing methods, and has the 
added benefit of being robust in the presence of singular manipulators. 

I. INTRODUCTION 

In recent years there has been increasing interest in the develop- 
ment of efficient algorithms for the computation of robot dynamics 
in an effort to achieve real-time computational rates. The desirability 
of real-time dynamic simulation has been shown in a number of 
applications such as earth-based teleoperation of remote robotic 
systems in space [4]. Beyond this goal, super-real-time simulation 
is also desired in some applications such as in advanced control 
schemes where trajectory planning is used, and seconds of motion 
trajectory need to be simulated in milliseconds [ 5 ] .  This is useful 
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in multilegged vehicles [6] when prediction of the action of the 
present control is used to ensure safety and stability along a desired 
trajectory. 

The major obstacle to achieving the required computational rates, 
however, is the complexity of the dynamic equations to be simulated. 
The problem is compounded by increases in the structural and 
task complexity found in the systems now being considered. These 
systems may have multiple chains and redundant numbers of degrees 
of freedom, operating at higher speeds, with the topological structure 
changing at real-time rates. 

To simulate such systems, algorithms for the computation of the 
open-chain dynamics of each individual chain must be used in 
addition to equations that describe the interaction between the chains 
(the closed-chain dynamics). Previous work has been done to develop 
efficient algorithms and parallel implementations of the open-chain 
dynamics to reduce its computation time [7]-[l l]. In comparison to 
this body of work, however, much less has been completed to develop 
efficient dynamics algorithms for multiple closed-chain systems, and 
still fewer discuss how to handle the cases when one or more of the 
chains are in singular configurations. 

Two papers that have presented algorithms for the computation 
of multiple-chain dynamics are those by Lilly and Orin [ l ]  and 
Rodriguez, Jain, and Kreutz-Delgado [ 2 ] .  Both develop sequential 
algorithms that have a computational complexity of O ( m N )  where 
m is the number of manipulator chains in the system and N is 
the number of degrees of freedom per chain. While Lilly and Orin 
discuss the complexity for a parallel implementation, they do not fully 
consider the case where chains may be in singular configurations. 
Rodriguez, Jain, and Kreutz-Delgado, on the other hand, go on to 
state that the computational complexity of the algorithm becomes 
O(mX)+O(m3) in the presence of singuladies. 

The goal of this paper is to develop more efficient algorithms 
for the simulation of multiple closed-chain manipulators grasping a 
common object that specifically handle the cases when one or more 
of the manipulators are in singular configurations. In particular, the 
algorithm presented in this paper has a computational complexity of 
O(m:\’)+O(s3) where s is the number of chains in singular con- 
figurations. This represents a significant improvement over previous 
results. In addition to this result, efficient O ( m X )  algorithms are 
also presented for the cases where only one or two chains are in 
singular configurations. These are important since it is uncommon, if 
not undesirable, to deal with systems where many of the manipulators 
grasping the common object are singular simultaneously. Finally, by 
applying the algorithm developed for the case of two singularities to a 
dual-arm system, the resulting algorithm requires fewer total floating 
point operations than that of the method presented in [l], with the 
added benefit of being robust in the presence of singular manipulators. 

In the next section, the dynamic equations and notation used 
in the algorithms for simulating systems of multiple manipulators 
are presented. Particular attention is given to the computational 
problems introduced when manipulators are in singular configu- 
rations. In the third section, an efficient algorithm is developed 
giving special attention to the special cases where only one or two 
manipulators are in singular configurations. In the section following, 
the computational complexity for this algorithm is discussed. An 
example of special interest in many robotics applications is discussed 
in the fifth section where the computational requirements for the 
dual-arm system are examined. Finally, an appendix is included 
that presents a mathematical analysis that characterizes the singu- 
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