
300 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 2, FEBRUARY 1994

Finding Knight’s Tours on an M x N Chessboard with
0 (MN) Hysteresis McCulloch-Pith Neurons

Kuo-Chun Lee and Yoshiyasu Takefuji

Abstract-How can a knight he moved on a chessboard so that the
knight visits each square once and only once and goes hack to the starting
square? The earliest serious attempt to find a knight’s tour on the chess-
hoard was made by L. Euler in 1759 [l]. In this correspondence, a parallel
algorithm based on the hysteresis McCulloch-Pith neurons is proposed
to solve the knight’s tour problem. The relation between the traveling
salesman problem and the knight’s tour problem is also discussed. A large
number of simulation runs were performed to investigate the behavior
of the hysteresis McCulloch-Pitts neural model. The purpose of this
correspondence is to present a case study-how to successfully represent
the combinatorial optimization problems by means of neural network.

I. INTRODUCTION
A Hamiltonian cycle of a graph G is a cycle that contains every

vertex of G. The name Hamiltonian cycle can be regarded as a
misnomer, since Hamilton was not the first one to look for cycles
which pass through every vertex of a graph [2]. The earliest example
of a problem which can be expressed in terms of Hamiltonian
cycles is the celebrated knight’s tour problem. This problem has
interested many great mathematicians: De Moivre, Vandermonde [3],
Warnsdorff [4], Pratt [5] , Roget, Legendre [6], and De Lavemede 171.
Most of formerly proposed methods are based on either divide-and-
conquer or backtracking, especially on the 8 x 8 chessboard problem.
They are all based on sequential computing. No general methods
have been given to this problem in the last two centuries [8]. No
parallel algorithm has been reported, either. Using the artificial neural
network, a parallel algorithm is proposed to solve the knight’s tour
problem in this correspondence.

Neural network applications may be classified into two types:
optimization and associative retrieval/classification [9]. For example,
the Hopfield neural network can be used to solve combinatorial
optimization problems in which the gradient descent method seeks the
local minimum of a given Liapunov energy function E. In general,
the Liapunov energy function E is given by constraints and a cost
function. The synaptic weights between neurons are determined by
the energy function. The mathematical model of the artificial neural
networks consists of two important components: neurons and synaptic
links. The output signal generated by one neuron propagates to the
others through synaptic links. The linear sum of the weighted input
signals determines the new state of the neuron. The system dynamics
depends on the neuron model as well as the problem representation.
With two kinds of problem representations, the practicability of three
neuron models, the sigmoid neuron, the McCulloch-Pitts neuron, and
the hysteresis McCulloch-Pitts neuron, are tested for solving the
knight’s tour problem.

11. NEURON MODELS

Manuscript received October 21, 1990; revised August 22, 1991 and

K. Lee is with the R&D Development, Cirrus Logic Inc., Fremont, CA

Y. Takefuji is with the Department of Electrical Engineering and Applied

IEEE Log Number 9206201.

September 5 , 1992.

94538.

Physics, Case Westem Reserve University, Cleveland, OH 44105.

A. Sigmoid Neuron
The neural network for combinatorial optimization problems was

first introduced by Hopfield and Tank in 1985 [lo]. They used the
differentiable and continuous neuron model, sigmoid function. In their
paper [lo], the symmetric conductance matrix T with zero diagonal
elements must be used to guarantee the convergence to the local
minimum. For a given energy function E , the motion equation of the
i th neuron is given by

(1)
dC, - Ut aE
df 7 aK

where li, and V, are the input and the output of the zth neuron and
7 is a constant.

The inpuvoutput relationship is described by the sigmoid function

~ -

(2)
1
2

V, = g(XCT,) = -(1 + tanh (XUz)).

The parameter X is a constant gain which damages the steepness
of the sigmoid curve. Theorem 1 shows that -Lrt /r term increases
the computational energy E under some conditions when sigmoid
neurons are used.

Theorem 1: If the inpuvoutput function is continuous and nonde-
creasing, the Ut/. term in (1) increases the computational energy
E when

and if either
dL<
d t I‘, > 0 and - < 0)

or
dL:
d t

I‘, < 0 and - > 0)

is satisfied.
Proof See [28]. Theorem 2 states that the computational energy

function E monotonically decreases regardless of the condition of
the symmetry and diagonal constraints in the conductance matrix as
long as the neurons obey a nondecreasing function and the motion
equation of the i t h neuron is given by

dC, - d E
- -- -
d t 81:’

Theorem 2: dE/d t 5 0 is satisfied under two conditions such as
dC, - d E
d t ar:

1; = f (V z)

- _ _ -

and

where j (L T L) is a nondecreasing function.
Proof

dl’ db’ dE -=E--- dE
d t dVz dL;

z

dE dC
dTi, d t where - is replaced by - (condition 1)

dV
d li, 5 0, where -2 > 0 (condition 2).

Q.E.D

0018-9472/94$04.00 0 1994 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 2. FEBRUARY 1994 301

B. McCulloch-Pitts Neuron

McCulloch and Pitts [l l] proposed a mathematical model based
on the biological computation in 1943. The input/output function is
given by I< = f (Ut) = 1 if Uz 2 0 and 0, otherwise where I: and U ,
are the output and the input of the i th neuron, respectively. Takefuji
and Lee have successfully used the McCulloch-Pitts neuron and the
modified McCulloch-Pitts neuron in neural networks (without the
U - i / r term in the motion equation) for graph planarization problems
[12], tiling problems [131, RNA secondary structure prediction prob-
lems [14], [15], maximum independent set problems [15], and sorting
problems 1161. The convergence speed of the neural network with
McCulloch-Pitts neurons is relatively faster than that of the network
with sigmoid neurons. As long as the neural network simulation
is performed on the digital computer, Theorem 2 is inadequate to
explain the convergence behavior. The reason is that the sigmoid
function is no longer continuous on digital computation.

Theorem 3 shows the convergence of the system with the discrete
McCulloch-Pitts neurons.

Theorem 3: AE/At 5 0 is satisfied under two conditions such as

and

where f(CZ) is a binary function: f (U,) = 1 if Uz 2 0, 0 otherwise.
Proof: See [29]. Although the McCulloch-Pitts neuron has

the advantage of fast convergence, it causes undesirable oscilla-
tory behavior in neural dynamics. On the contrary, the hysteresis
McCulloch-Pitts neurons, discussed below, suppress the oscillatory
behavior.

C. Hysteresis McCulloch-Pitts Neuron

In 1986, Hoffman and Benson [17] proposed sigmoid neurons with
hysteresis for learning, where any changes in synaptic connection
strengths are replaced by hysteresis. Due to the hysteresis property,
the system tends to stay in the region of phase space where it is
located. They introduced the theory on a role for sleep in learning.
In 1985, Segundo and Martinez reported the discovery of dynamic
and static hysteresis in Crayfish stretch receptors 1181. They stated
that hysteresis might be more widespread than suspected in sensory
and perhaps other systems. Yanai and Sawada [I91 also presented
the associative memory network in which they used the neurons
with the hysteresis property. They showed that the recalling ability
improves with the hysteretic property. Takefuji and Lee introduced a
hysteresis McCulloch-Pitts neuron model [20]. The hysteresis prop-
erty suppresses the oscillatory behavior of neural dynamics so that the
convergence time becomes shorter. The hysteresis McCulloch-Pitts
neuron has been successfully used for crossbar switch scheduling [20]
and fault-cell allocation 1211. Fig. 1 shows the inputloutput relation
of the hysteresis McCulloch-Pitts neuron model. The output of the
i th hysteresis McCulloch-Pitts neuron K is given by: V, = 1 if
L-? 2 UTP (upper trip point), 0 if Ut 5 LTP (lower trip point), and
unchanged otherwise, where Ir, is the input of the ith neuron. The
output at any moment depends upon the present value of the input
as well as the previous values.

Theorem 4 states that a system with hysteresis McCulloch-Pitts
neurons can converge to the local minimum.

Theorem 4: AElAt 5 0 is satisfied under two condition such as

LTP UTP
Ui

Fig. 1. The input/output relationship of the hysteresis McCulloch-Pitts
neuron.

and

I/* = f (U,)

where f (U ,) is a hysteresis binary function.
Pro08 See [21], [29].

111. KNIGHT 's TOUR PROBLEM AND CITY-ORDER
NEURAL REPRESENTATION

The neural network for the traveling salesman problem (TSP) has
been investigated by Hopfield and Tank. The goal is to find the
shortest path where the salesman visits all cities but only once per
city and goes back to the starting city, Le., the shortest Hamiltonian
cycle. They formulated the problem using the city-order matrix
representation where the row and the column represent the city and
the visiting order, respectively. The city-order matrix representation
needs N 2 neurons in total where N is the number of cities. Based on
the city-order representation, the TSP energy function is as follows:

. A- N 1v

+~((kkvz,t-lv))2
2 2=1 r=l

" z=1 y#z r = l

The first term and the second term force each row and each
column to fire one and only one neuron, respectively. The third
term forces the system to fire S neurons in total. As for the last
term, it contains the distance information corresponding to a given
tour. Neural network investigators have worked on improving the
quality and the performance of the Hopfield-Tank neural network
through the scaling, normalization, and annealing 1221-1241. They
proposed techniques to alleviate the difficulties for solving large-size
problems. However, the solution quality degrades with the problem
size rapidly. The state of the global minimum energy of TSP gives
the best solution, but no one knows the global minimum unless
an exhaustive search is used. If the global minimum energy of the
problem is known as a constant, it has no difficulties to test whether
the state of the system is in the global minimum or not. Before we
solve large-size TSP, it is better to start with the problems which are
similar to TSP but with less complexity. The knight's tour problem
can be considered as one of the best examples where the global
minimum is known.

302 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 2 , FEBRUARY 1994

Fig. 2. The legal moves of the knight

The knight’s tour problem is to find a Hamiltonian cycle on a
chessboard. On the chessboard, the knight moves in an L shape as
shown in Fig. 2. The knight’s tour problem is mapped into TSP.
There are 8 x 8 squares on the chessboard. According to the matrix
representation proposed by Hopfield and Tank, the knight’s tour
problem on the 8 x 8 cheeseboard becomes 64-city TSP. Considering
the energy function for this problem in (3), the only difference
is the distance between cities. In the knight’s tour problem, the
distance between two squares is either 0 for the legal move or a
large positive number for the illegal move. The legal moves between
squares provide the connectivity information. Note that the global
minimum of the computational energy of the problem is zero. If the
Hamiltonian cycle is found, the state of the system reaches the global
minimum of the computational energy.

In order to test the neural network based on the city-order repre-
sentation, the first three terms were modified in the energy function
[25]. The first three terms indicate the constraints for firing only one
neuron in each column and row, respectively, and that :I7 neurons are
fired in total. The new energy function is

E = - E
r= l (- v ,=1

, .Y / .Y

- I N u

We first experimented a sigmoid neuron as a processing element.
The motion equation, time evolution of the system, is given by

\

- B E dz y(l y , + I + 1; 1 - 1) . (5)
y = l

The goal of the knight’s problem I S to find one of the global mnima
instead of the local mnimum In TSP, the solutions are examined by
checking whether a Hamiltonian cycle is formed whenever the state
of the system converges. For the knight’s tour problem, the system
convergence is defined that dC: , / d t is 0 for all of the neurons when
the system dynamics follows (5) If the -Cr2 / r term is involved in the

motion equation, the system convergence cannot be mathematically
well defined. It is not hard to find a valid tour, i.e., a Hamiltonian
cycle, when coefficient ;I is larger than B. The quality of the solution
depends on how to tune the coefficient parameters. We tested 6 x 6
and 8 x 8 chessboard problems where 1000 runs were performed for
each case and the parameters A . 13, and X were chosen in a variety
of ranges. After the experiments, the city-order neural representation
could not find any single solution for the knight’s tour problem. In
other words, to find one of global minima is a difficult task although
the global minimum of the knight’s tour problem is known to be zero.
We also simulated the behavior of McCulloch-Pitts neural networks
with and without hysteresis for the knight’s tour problem. We still
could not find any solution. It can be concluded that the neural
network based on the city-order representation could hardly find any
solution.

IV. CITY- CITY REPRESENTATION

The city-order matrix representation fails to find any solution for
the knight’s tour problem. This does not imply that neural networks
always fail. The failures in the city-order neural network experiment
have motivated us to find a new neural representation for the
problem. A two-dimensional triangular neural network representation
is introduced. This new representation is constructed for city-city
relations. The city-city representation has been successfully used by
Xu and Tsai [26] to solve TSP. In the city-city representation, a P x f‘
matrix is used for a P-city problem and each element u , , ~ represents
the link between the i th city and the j t h city. Fig. 3 shows a city-city
representation for a 6-city traveling salesman problem where the black
square denotes the link exists. Because the matrix is symmetrical, only
P (P - 1) / 2 elements are needed. A 4 x 4 chessboard example is
given as shown in Fig. 4. Each square is assigned a number associated
with its coordinate. For instance, the number for the square (3, 2)
is 10. The possible legal moves starting from the square with the
coordinate (u . b) should be one of the squares with the coordinate

2. b - 1). (a + 1, b - 2) . (a - 1. h - 2) . (n - 2, b - l), if they exist,
as shown in Fig. 5 . Based on the legal move for the knight, the d z , J
matrix is determined. dz, , is 1 if the move from the ith square to the
j t h square is legal, 0 otherwise. The system consists of P (P - l) / 2
processing elements or neurons where P is the number of squares
in an Jf x S chessboard. Based on the cityxity representation, the
following motion equation for the neuron which represents the move
from the i th square to the j t h square is used to solve the problem:

(0 - 2. b + l) , (a - 1. b + 2) . (a + 1, b + 2) . (a + 2.b + 11, (a +

The upper triangular elements in the two-dimensional array are
used: I” ,J for i < j and K,] for i > j is given by The
state of L<,3 actually represents a path between the i th and j t h
square. In other words, the upper triangular neural array represents
the nondirected adjacency matrix to find a Hamiltonian cycle. The
first and the second term describe that there exist two legal moves
for the i th square and the j t h square, respectively. According to the
(6), it needs no more than 8 x P neurons instead of P (P - 1) /2
neurons because each square has eight possible legal moves at most.

The system convergence is defined that d U , , / d t is 0 for all
neurons. The following procedure describes the proposed parallel

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 2. FEBRUARY 1994

city
1 2 3 4 5 6

Fig. 3. The city-city representation.

1 2 3 4

Fig. 4. A 4 x 4 chessboard and the number associated with the respective
square.

Fig. 5. The eight legal moves from the square with the coordinate (a, b).

algorithm based on the first-order Euler method with hysteresis
McCulloch-Pitts neural model.

0 Set t = 0.
The small negative number is assigned to the initial values of
Uz,J (t) for i = 1 to P - 1
and j = i + 1 to P.
Evaluate values of K , , (t) based on the hysteresis binary
function for i = 1 to P - 1 and j = i + 1 to P.
V ,] (t) = 1, if U Z ,] (t) 2 UTP
K,,(t) = 0, if U Z , , (t) 5 LTP
unchanged otherwise.
Use the motion equation in (6) to compute Arz, ,(t)
if d t ,] = 1 then

9

303

2 3 4 5 6 7 R 9 I011 12 1314 15 16

Lq i:
Fig. 6. The 4 x4 chessboard with local loops and its final state of the neurons.

30%

20%

10%

0%

percenme

6

chessboard size

Fig

4.

5.
6.

7. The relationship among the hysteresis band, the chessboard size,
and the percentage to find a valid knight’s tour.

if d, , = 0 then A r t , (t) = 0.
Compute C*z (t) based on the first-order Euler method:
li,] (t + 1) = U, ? (t) + AUz (t) for i = 1 to P - 1 and
3 = 2 + 1 to P.
Increment t by 1
If A G] (t) = 0 for i = 1 to P - 1 and 3 = i + 1 to P then
stop this procedure else go to step 2 .

There are two kinds of possible solutions when the city-city neural
representation is used. One is the valid knight’s tour and the other is
the local-loop solution. The solution with local loops is unsatisfactory.
Fig. 6 shows an example with local loops on the 4 x 4 chessboard
and its final state of neurons. The original city-order representation is
able to avoid such local loops when the state of the system converges
to a solution. However, the city-order representation has never given
any successful solution. We have tested the knight’s tour problem
for 6 x 6,8 x 8,lO x 10,12 x 12,14 x 14,16 x 16,18 x 18, and
20 x 20 chessboards using the city-city neural representation. The
simulator was developed in C on DEC 3100 and in Turbo Pascal
on Macintosh SEI30 based on the proposed procedure to verify our
algorithm. Several hysteresis bands were used and tested. Fig. 7
shows the relationship among the hysteresis band, the chessboard
size, and the percentage to find a valid knight’s tour solution. The
knight’s tour is shown in Fig. 8 from 6 x 6 to 14 x 14 chessboard.
Fig. 9 shows three solutions for different rectangle chessboards. The
required convergence time is no more than 30 iteration steps in our
experiments.

Our simulation results show that the different neural respre-
sentations, and neuron models provide the different behaviors. In
[lo], for the 10-city TSP, the percentage to find a valid tour is
about 32%. For the 40-city TSP, the percentage drops to less
than 1%. For the 8 x 8 knight’s tour problem, it is equivalent

304 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 2, FEBRUARY 1994

Fig. 8. Knight’s tours solutions from 6 x 6 to 14 x 14 chessboard
Fig. 10. A knight’s tour solution on a 40 x 40 chessboard

Fig. 9. The knight’s tours for three different chessboards

to the 64-city TSP in terms of the complexity if the city-order
representation is used. Using the city-order representation, we have
never found any solution to the knight’s tour problem. If we use the
cityxity neural representation, for the 8 x 8 knight’s problem the
percentage to find a valid solution is about 30% as shown in Fig.
10. The percentage drops to around 1% for the 20 x 20 knight’s
tour problem. (It is equivalent to 400 cities TSP in terms of the
complexity.) Note that the percentage number [IO] indicates the
convergence frequency to the local minimum while our percentage
number indicates the convergence frequency to the global minimum.
The quality of the solution degrades when the problem size increases
in TSP and the knight’s tour problems. However, the solution quality
in TSP degrades more rapidly than that in the knight’s tour problem.
Remember that in the knight’s tour problem we must find the global
minimum instead of the local minimum. Meanwhile, we did not put
any effort to tune the parameters in our simulations. We can conclude
that the cityycity neural representation is better than the city-order
neural representation for the knight’s tour problem.

v. HOW TO DEAL WITH THE LARGE-SIZE KNIGHT ’S TOUR PROBLEM

As the size of the chessboard increases, it becomes very difficult
to find a Hamiltonian cycle. However, it is possible to have another
alternative to construct a large-size solution based on the small-size
solutions. The small-size solutions become cells to form a large cell.
For instance, by using knight’s tour solutions obtained from the
parallel algorithm for the 8 x 8 chessboard problem, it is possible
to construct a solution on an 8 S x 8 N chessboard where S is any
positive integer. Fig. 10 shows a knight’s solution on a 40 x 40
chessboard by the expansion of 25 pieces of the 8 x 8 knight’s tour
solutions.

Fig. 11. Invalid solution after merging. (a) Before merging.
(b) After merging.

When small-size cells are merged together, they are likely to form
an invalid knight’s tour which is not a Hamiltonian cycle. An example
is given to explain the invalid case where four small cells are merged
together to form a solution in Fig. 11. Fig. ll(a), each rectangle
represents a knight’s tour solution for the small-size chessboard. As
one cell is merged with the other, both have to open the closed cycle
in order to connect themselves, Fig. 1 l(b) shows the invalid solution
after merging. In order to find a solution on the large-size chessboard,
we need to provide a proper procedure to guarantee a Hamiltonian
cycle. A simple procedure is to cascade small-size solutions one by
one in one direction as shown in Fig. 12. This method can guarantee
that the final solution is always a valid one. By this procedure, a
large-size solution can by easily obtained. The solution in Fig. 10 is
a typical example.

The question arises: how to find the cascading paths between the
cells? The answer is very simple. If the knight wants to find a closed
loop in four moves, the shape of the result must be a parallelogram,
as shown in Fig. 13. Parallelograms play a key role in obtaining the
cascading paths. To cascade cell A and cell B together successfully,
as shown in Fig. 14, we have to find a parallelogram between the
right side of cell A and the left side of cell B. In Fig. 14(a), the bold
lines indicate a possible parallelogram. Disconnect two bold lines and
add the other side lines in this parallelogram. Then cell A and cell
B are cascaded successfully. The final result is shown in Fig. 14(b).
As long as parallelograms exist between the cells, the cells can be
cascaded successfully. For instance, there exists only one path when
the knight moves into any corner of the chessboard. This means that

305 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 2, FEBRUARY 1994

Fig. 12. The cascading method to form a large-size solution in one direction.

Fig. 13. A parallelogram formed with four knight’s path.

Cell A Cell B Cell A Cell B

(a) (b)

both cells indicate parallelogram. (b) The final result after cascading.
Fig. 14. Cell ‘4 and cell B are cascaded sucessfully. (a) Two bold lines on

there always exists one side of a possible parallelogram. If the other
cell has a path which can form a parallelogram shown in Fig. 13, the
cells are cascadable. It is concluded that the 1 000 000 x 1 000 000
chessboard problem or larger problems were solved by our algorithm
in several minutes on a Macintosh SE/30.

VI. CONCLUSION
Hopfield and Tank [lo] presented very good examples to show

how to map the problem onto neural networks. Wilson and Pawley
[27] tried to improve the algorithm but failed. Their failure was
caused not by the method of neural computation but by the neural
representation and the neuron model. In other words, in order
to obtain better solutions we must pay attention to mapping of

the problem onto a proper neural network. The hysteresis neurons
and city-city neural representation provided better result than the
city-order neural representation for the knight’s tour problem. The
cascading method also gives hope for the solution of the large-
size knight’s tour problems. Although the cascading method is not
a general approach for any large-size problems, the decomposition
methodology should play a key role in solving large-size ones. Using
the artificial neural network and cascading approach, we can provide
the solution for the knight’s tour problem which has been investigated
for two centuries but no general algorithms have been provided.

ACKNOWLEDGMENT

The authors wish to thank the anonymous referees for their valuable
suggestions and comments.

REFERENCES

[I] L. Euler, in Memoire de Berlin for 1759, Berlin, Germany, pp. 310-337,
1766.

[2] R. J. Wilson and J. J. Watkins, Graphs: An Introductory Approach.
New York: Wiley, 1990, pp. 144-145.

[3] Vandermonde, in L’Historie de I’Academie des Sciences for 1771. Paris,
France, pp. 566-574, 1774.

[4] H. C. Warnsdorff, Des Rosselsprunges einfachste und allgemeinsre
Losung, Schmalkalden, 1823.

[SI Pratt, in Studies ofchess, 6th ed.
[6] Legendre, Theorie des Nombres, 2nd Ed., vol. 2. Paris, France: 1830,

p. 165.
[7] De Lavemede, Memories de l’iicademie Royale du Gard. Nimes,

France: 1839, pp. 151-179.
181 W. W. Rouse Ball and H. S . M. Coxeter, Mathematical Recreations &

Essays, 1st ed. 1892; 12th ed. 1974. Toronto, Ont., Canada: Univ.
Toronto Press.

[9] S. Y. Kung and J. N. Hwang, “Neural network architectures for
robotic applications,” IEEE Trans. Robotics Automat., vol. 5 , no. 5,

IO] J. J. Hopfield and D. W. Tank, “Neural computation of decisions in
optimization problems,” Biol. Cybern., vol. 52, pp. 141-152, 1985.

111 W. S. McCulloch and W. H. Pitts, “A logical calculus of ideas immanent
in nervous activity,” Bull. Math. Biophys., vol. 5, p. 115, 1943.

121 Y. Takefuji and K. C. Lee, “A near-optimum parallel planarization
algorithm,” Science, vol. 245. pp. 1221-1223, Sept. 1989.

131 -, “A parallel algorithm for tiling problems,” IEEE Trans. Neural
Networks, vol. I , no. 1, pp. 143-145, Mar. 1990.

[14] Y. Takefuji, C. W. Lin, and K. C. Lee, “A parallel algorithm for
estimating the secondary structure in ribonucleic acids,” Biol. Cybern.,
vol. 63, no. 3, 1990.

[15] Y. Takefuji, L. Chen, K. C. Lee, and J. Huffman, “Parallel algorithm
for finding a near-maximum independent set of a circle graph,” IEEE
Trans. Neural Networks, vol. I , no. 3, Sept. 1990.

[16] Y. Takefuji and K. C. Lee, “A super parallel sorting algorithm based on
neural networks,” IEEE Trans. Circuits Sysr., vol. 37, no. 1 I , 19%.

1171 G. W. Hoffman and M. W. Benson, “Neurons with hysteresis form
a network that can leam without any changes in synaptic connection
strengths,” in Proc. AIP Conf on Neural Networks for Computing, J. S .
Denker, Ed., AIP, 1986.

I181 J. P. Segundo and 0. D. Martinez, “Dynamic and static hysteresis in
crayfish stretch receptors,” Biol. Cybern., vol. 52, pp. 291-296, 1985.

[I91 H. Yanai and Y. Sawada, “Associate memory network composed of neu-
rons with hysteretic property,” Neural Networks, vol. 3, pp, 223-228,
1990.

[20] Y. Takefuji and K. C. Lee, “An artificial hysteresis binary neuron: A
model suppressing the oscillatory behaviors of neural dynamics,” Biol.
Cybern., vol. 64, pp. 353-356, 1991.

[21] N. Funabiki and Y. Takefuji, “A parallel algorithm for spare allocation
problems,” IEEE Trans. Reliab., vol. 40, no. 3, pp. 338-346, 1991.

[22] R. Cuykendall and R. Reese, “Scaling the neural TSP algorithm,” Biol.
Cybern., vol. 60, pp. 365-371, 1989.

[23] D. E. Van den Bout and T. K. Miller 111, “Improving the performance of
the Hopfield-Tank neural network through normalization and annealing,”
Biol. Cybern., vol. 62, pp. 129-139, 1989.

[24] B. Kamgar-Parsi and B. Kamgar-Parsi, “On problem solving with
Hopfield neural networks,” Bid. Cybern., vol. 62, pp. 415423, 1990.

London, England, 1825.

pp. 641-657, Oct. 1989.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 2, FEBRUARY 1994

H. Szu, “Fast TSP algorithm based on binary neuron output and analog
input using the zero-diagonal interconnect matrix and necessary and
sufficient constraints of the permutation matrix,” in Proc. IEEEInr. Conf
on Neural Networks, vol. 11, 1988, pp. 59-266.
X. Xu and W. T. Tsai, “Effective neural algorithms for the traveling
salesman problem,’’ Neural Networks, vol. 4, pp. 193-205, 1991.
G. Wilson and G. Pawley, “On the stability of the traveling salesman
algorithm of Hopfield and Tank,” B i d . Cybem., vol. 58, pp. 63-70,
1988.
Y. Takefuji and K. C. Lee, “Artificial neural networks for four-coloring
map problems and k-colorability problems,” IEEE Trans. Circuits Syst.,
vol. 38, no. 3, pp. 326333, 1991.
K. C. Lee, Y. B. Cho, Y. Takefuji, and T. Kurokawa, “Convergence
theories of sigmoid, McCulloch-Pitts, and hysteresis McCulloch-Pitts
neurons,’’ CAISR Tech. Rep. TR90-110.

Efficient Dynamic Simulation of Multiple Manipulator
Systems with Singular Configurations

Scott McMillan, P. Sadayappan, and David E. Orin

Abstract-The paper presents an efficient algorithm for the simulation
of a system of m manipulators each having N degrees of freedom
that are grasping a common object. Algorithms for such a system have
been previously developed by others. In [l], an O(mN) algorithm is
presented that does not fully consider the case when one or more of the
manipulators are in singular configurations. However, it is stated in [2]
that the algorithm has an O(mN)+O(m3) computational complexity
when one or more of the chains are singular. This results because the
size of the system of equations to be solved grows linearly with the
number of chains in the system [3]. The algorithm presented in this
paper significantly reduces the size of the system of equations to be
solved to one that grows linearly with the number of singular chains,
s, and achieves an O(mN)+O(s3) complexity. In addition to this
result, efficient O(mN) algorithms are also presented for special cases
where only one or two chains are in singular configurations. These are
particularly useful hecause it is common to deal with systems consisting
of only a few manipulators grasping a common object, and even with
more manipulators, it is unlikely that many of them will be singular
simultaneously. Finally, by applying the algorithm developed for the
case of two singularities to a dual-arm system, an algorithm results that
requires fewer computations than that of existing methods, and has the
added benefit of being robust in the presence of singular manipulators.

I. INTRODUCTION

In recent years there has been increasing interest in the develop-
ment of efficient algorithms for the computation of robot dynamics
in an effort to achieve real-time computational rates. The desirability
of real-time dynamic simulation has been shown in a number of
applications such as earth-based teleoperation of remote robotic
systems in space [4]. Beyond this goal, super-real-time simulation
is also desired in some applications such as in advanced control
schemes where trajectory planning is used, and seconds of motion
trajectory need to be simulated in milliseconds [5] . This is useful

Manuscript received April 20, 1992; revised December 16, 1992. This work
was supported in part by a DuPont Fellowship, an AT&T Ph.D. Scholarship,
and a grant from CRAY Research, Inc.

S. McMillan and D. E. Orin are with the Department of Electrical
Engineering, Ohio State University, Columbus, OH 43210.

P. Sadayappan is with the Department of Computer and Information
Science, Ohio State University, Columbus, OH 43210.

IEEE Log Number 9209649.

in multilegged vehicles [6] when prediction of the action of the
present control is used to ensure safety and stability along a desired
trajectory.

The major obstacle to achieving the required computational rates,
however, is the complexity of the dynamic equations to be simulated.
The problem is compounded by increases in the structural and
task complexity found in the systems now being considered. These
systems may have multiple chains and redundant numbers of degrees
of freedom, operating at higher speeds, with the topological structure
changing at real-time rates.

To simulate such systems, algorithms for the computation of the
open-chain dynamics of each individual chain must be used in
addition to equations that describe the interaction between the chains
(the closed-chain dynamics). Previous work has been done to develop
efficient algorithms and parallel implementations of the open-chain
dynamics to reduce its computation time [7]-[l l]. In comparison to
this body of work, however, much less has been completed to develop
efficient dynamics algorithms for multiple closed-chain systems, and
still fewer discuss how to handle the cases when one or more of the
chains are in singular configurations.

Two papers that have presented algorithms for the computation
of multiple-chain dynamics are those by Lilly and Orin [l] and
Rodriguez, Jain, and Kreutz-Delgado [2] . Both develop sequential
algorithms that have a computational complexity of O (m N) where
m is the number of manipulator chains in the system and N is
the number of degrees of freedom per chain. While Lilly and Orin
discuss the complexity for a parallel implementation, they do not fully
consider the case where chains may be in singular configurations.
Rodriguez, Jain, and Kreutz-Delgado, on the other hand, go on to
state that the computational complexity of the algorithm becomes
O(mX)+O(m3) in the presence of singuladies.

The goal of this paper is to develop more efficient algorithms
for the simulation of multiple closed-chain manipulators grasping a
common object that specifically handle the cases when one or more
of the manipulators are in singular configurations. In particular, the
algorithm presented in this paper has a computational complexity of
O(m:\’)+O(s3) where s is the number of chains in singular con-
figurations. This represents a significant improvement over previous
results. In addition to this result, efficient O (m X) algorithms are
also presented for the cases where only one or two chains are in
singular configurations. These are important since it is uncommon, if
not undesirable, to deal with systems where many of the manipulators
grasping the common object are singular simultaneously. Finally, by
applying the algorithm developed for the case of two singularities to a
dual-arm system, the resulting algorithm requires fewer total floating
point operations than that of the method presented in [l], with the
added benefit of being robust in the presence of singular manipulators.

In the next section, the dynamic equations and notation used
in the algorithms for simulating systems of multiple manipulators
are presented. Particular attention is given to the computational
problems introduced when manipulators are in singular configu-
rations. In the third section, an efficient algorithm is developed
giving special attention to the special cases where only one or two
manipulators are in singular configurations. In the section following,
the computational complexity for this algorithm is discussed. An
example of special interest in many robotics applications is discussed
in the fifth section where the computational requirements for the
dual-arm system are examined. Finally, an appendix is included
that presents a mathematical analysis that characterizes the singu-

0018-9472/94$04.00 0 1994 IEEE

