Elliptic curve Cryptography

Muralidhara V N Assistant Professor IIIT Bangalore

Elliptic Curve

Curve over a field defined by

$$y^2 = x^3 + ax + b$$

Elliptic Curves in Cryptography

Curve over a finite field (integer mod p) defined by

$$y^2 = x^3 + ax + b$$

$$4a^3 + 27b^2 \neq 0$$

Example

(b) $y^2 = x^3 + x + 1$

Operation for elliptic curve Geometrically Q+R is reflection of intersection of Q and R

Discrete Logarithm Problem on ECGiven an Integer k and a point P, on the

computing kP is easy .

• Can be done using repeated addition, takes only O(log k).

Discrete Logarithm Problem on EC
Given an Integer k and a point P, on the computing kP is easy .

• But given kP and P, computing P is Hard.

• In general only exponential time algorithms are known .

How is it used in Cryptography Public key crypto systems

Alice and Bob has a pair of keys.

When Alice wants to send a message Encryption (message, public key of Bob) Decryption (message, private key of Bob) How is it used in Cryptography Users select an elliptic curve and a point G of large order, say n.

Alice chooses a large integer A (\leq n) which is her secret key and public key is AG. How is it used in Cryptography Alice chooses a large integer A (<n) which is her secret key and public key is AG.

To send a message, M to Alice

Send (KG, M + KAG)

How is it used in Cryptography Alice chooses a large integer A (<n) which is her secret key and public key is AG.

To send a message, M to Alice Send (KG, M+ KAG)

Alice Computes M+KAG-A(KG)=M

ECC Security

 Sub-exponential algorithms are known for factorizing Integers and solving discrete logarithmic problems over finite fields.

• In general, only exponential algorithms are known for ECDLP

ECC Security

 In general, only exponential algorithms are known for ECDLP

• Compared to RSA, can use much smaller keys.

 hence for similar security ECC offers significant computational

Comparable Key Sizes for Equivalent Security

Symmetric scheme (key size in bits)	ECC-based scheme (size of <i>n</i> in bits)	RSA/DSA (modulus size in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360