
Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow Analysis / Abstract Interpretation

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

16 January 2009

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

What is data-flow analysis

“Computing ‘safe’ approximations to the set of values /
behaviours arising dynamically at run time, statically or at
compile time.”

Typically used by compiler writers to optimize running time of
compiled code.

Constant propogation: Is the value of a variable constant at a
particular program location.
Replace x := y + z by x := 17 during compilation.

More recent interest by verification community (starting with
Cousot-Cousot 1977).

Ideas used in SLAM tool to verify properties (“lock-unlock
protocol is respected”) of device driver code.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Constant Propogation Example

A variable x has constant value c at a program
point N if along every execution the value of x

at N is c .

Example: At program point G , constants are

RG = {(a, 1), (b, 2), (d , 3)}.
d := a+b

e := b+c

c := 0

1

2

3

4

5

A

B

C

D

E

F

H

c := 4
6

a := 1

b := 2

G

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Overview of data-flow analysis

Informal intro and motivation

Lattices

Data-flow analysis more formally

Kildall’s algo for computing over-approximation of JOP.

Knaster-Tarski Fixpoint Theorem

Correctness of Kildall’s algo (computes the least solution to
equations).

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

.

.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

.

.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

Example: Parity-based abstract
interpretation.

Abstract values: o, e, oe

States represented:
o 7→ {1, 3, 5, . . .},
e 7→ {0, 2, 4, . . .},
oe 7→ {0, 1, 2, 3, . . .}.

So (o, e) 7→
{1, 3, 5, . . .} × {0, 2, 4, . . .}.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

Example: Parity-based abstract
interpretation.

Abstract values: o, e, oe

States represented:
o 7→ {1, 3, 5, . . .},
e 7→ {0, 2, 4, . . .},
oe 7→ {0, 1, 2, 3, . . .}.

So (o, e) 7→
{1, 3, 5, . . .} × {0, 2, 4, . . .}.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(o, e)

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

Example: Parity-based abstract
interpretation.

Abstract values: o, e, oe

States represented:
o 7→ {1, 3, 5, . . .},
e 7→ {0, 2, 4, . . .},
oe 7→ {0, 1, 2, 3, . . .}.

So (o, e) 7→
{1, 3, 5, . . .} × {0, 2, 4, . . .}.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(o, e)

(o, e)

(o, e)

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

Example: Parity-based abstract
interpretation.

Abstract values: o, e, oe

States represented:
o 7→ {1, 3, 5, . . .},
e 7→ {0, 2, 4, . . .},
oe 7→ {0, 1, 2, 3, . . .}.

So (o, e) 7→
{1, 3, 5, . . .} × {0, 2, 4, . . .}.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(o, e)

(o, e)

(o, e)

(e, e)

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

Example: Parity-based abstract
interpretation.

Abstract values: o, e, oe

States represented:
o 7→ {1, 3, 5, . . .},
e 7→ {0, 2, 4, . . .},
oe 7→ {0, 1, 2, 3, . . .}.

So (o, e) 7→
{1, 3, 5, . . .} × {0, 2, 4, . . .}.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(o, e)

(o, e)

(o, e)

(e, e)

(e, e), (o, e)

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

Example: Parity-based abstract
interpretation.

Abstract values: o, e, oe

States represented:
o 7→ {1, 3, 5, . . .},
e 7→ {0, 2, 4, . . .},
oe 7→ {0, 1, 2, 3, . . .}.

So (o, e) 7→
{1, 3, 5, . . .} × {0, 2, 4, . . .}.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(o, e)

(o, e)

(o, e)

(e, e)

(e, e), (o, e)

(e, e), (o, e)

(e, e), (o, e)

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

Example: Parity-based abstract
interpretation.

Abstract values: o, e, oe

States represented:
o 7→ {1, 3, 5, . . .},
e 7→ {0, 2, 4, . . .},
oe 7→ {0, 1, 2, 3, . . .}.

So (o, e) 7→
{1, 3, 5, . . .} × {0, 2, 4, . . .}.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(o, e)

(o, e)

(o, e)

(e, e)

(e, e), (o, e)

(e, e), (o, e)

(o, e), (e, e)

(e, e), (o, e)

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

Example: Parity-based abstract
interpretation.

Abstract values: o, e, oe

States represented:
o 7→ {1, 3, 5, . . .},
e 7→ {0, 2, 4, . . .},
oe 7→ {0, 1, 2, 3, . . .}.

So (o, e) 7→
{1, 3, 5, . . .} × {0, 2, 4, . . .}.

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(o, e)

(o, e)

(o, e)

(e, e)

(e, e), (o, e)

(e, e), (o, e)

(o, e), (e, e)

(o, e), (e, e)

(e, e), (o, e)

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow analysis as approximation of collecting semantics

Collecting semantics of a
program: For each program
point N, the set of states the
program could be in at point N.

Example: Parity-based abstract
interpretation.

Abstract values: o, e, oe

States represented:
o 7→ {1, 3, 5, . . .},
e 7→ {0, 2, 4, . . .},
oe 7→ {0, 1, 2, 3, . . .}.

So (o, e) 7→
{1, 3, 5, . . .} × {0, 2, 4, . . .}.

Abstract states at H represents
N × 2N, which is a safe approx

p := 2*p +q

A

B

D

E

p > q

p <= q

I

p := p+1 J

F

G

q := q+2

H

C

(2p + q, q) if p > q
(p, q) o/w

(o, e)

(o, e)

(o, e)

(e, e)

(e, e), (o, e)

(e, e), (o, e)

(o, e), (e, e)

(o, e), (e, e)

(o, e), (e, e)

(e, e), (o, e)

(2p + q, q + 2)

(p, q)

(p + 1, q + 2)

(p + 1, q)
(2p + q, q)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Why abstract data should have a “lattice” structure

A natural subset lattice structure:

{(o, o)}

∅

{(oe, oe)}

(e, oe)

(o, o)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

{(o, o), (o, e) . . . , (oe, oe)}

{(o, o), (o, e)} {(oe, e), (oe, oe)}

(o, e) (e, o){(o, e)} {(oe, e)}

... and a more “efficient” but less-precise lattice.
Ordering is “is more precise than”.
Take “join” or “least upper bound” of abstract states at a
point.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Why transfer functions should be “monotonic”

More precise source state should lead to more precise target
state.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Partial Orders

A partially ordered set is a non-empty set D along with a
partial order ≤.

≤ is reflexive (d ≤ d for each d ∈ D)
≤ is transitive (d ≤ d ′ and d ′ ≤ d ′′ implies d ≤ d ′′)
≤ is anti-symmetric (d ≤ d ′ and d ′ ≤ d implies d = d ′).

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Binary relations as Graphs

We can view a binary relation on a set as a directed graph.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Partial Order as a graph

A partial order is then a special kind of directed graph:

Graph representa-
tion

Hasse-diagram
representation

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Upper bounds etc.

An element u ∈ D is an upper bound of a set
of elements X ⊆ D, if x ≤ u for all x ∈ X .

u is the least upper bound (or lub or join) of
X if u is an upper bound for X , and for
every upper bound y of X , we have u ≤ y .
We write u =

⊔

X .

Similarly, v =
d

X (v is the greatest lower
bound or glb or meet of X).

a b

cd

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Lattices

A lattice is a partially order set in which every pair of
elements has an lub and a glb.

A complete lattice is a lattice in which every subset of
elements has a lub and glb.

∅

{1} {2} {3}

{1, 2} {2, 3}{1, 3}

{1, 2, 3}

o e

⊥

oe

Question: Example of lattice which is not complete?

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Monotonic functions

A function f : D → D is monotonic or
order-preserving if whenever x ≤ y we have
f (x) ≤ f (y).

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow / abstract-interpretation framework

Program are finite directed graphs with following nodes
(statements):

Nodes or statements in a program

x := e y > 1

L

M

L

M

N

L

M

K

Expressions:

e ::= c | x | e + e |e − e | e ∗ e.

Boolean expressions:

be ::= tt | ff | e ≤ e |e = e | ¬be | be ∨ be | be ∧ be.

Assume unique initial node I .

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Data-flow framework contd.

Complete lattice L = (D,≤).

Add new bottom element to get
L⊥ = (D⊥,≤⊥).

⊥

(D,≤)

Transfer function fLM : D⊥ → D⊥ for each node and incoming
edge L and outgoing edge M.

x := e y > 1

L

M

L

M

N

L

M

K

We assume transfer functions are monotonic, and satisfy
f (⊥) = ⊥.

Junction nodes have identity transfer function.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

What we want to compute for a given program

Path in a program: Sequence of connected edges or program
points.

Transfer functions extend to paths in program:

fABCD = fCD ◦ fBC ◦ fAB .

For “infeasible” paths p, fp will be λd .⊥.

Join over all paths (JOP) definition: For each program point
N

dN =
⊔

paths p from I to N

fp(d0).

where d0 is a given initial value at entry node.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Example framework: parity interpretation

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

Transfer functions: for x := e node:

fMN(s) =







s[x 7→ o] if [e]s = o

s[x 7→ e] if [e]s = e

s[x 7→ oe] if [e]s = oe

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algorithm to compute over-approximation of JOP

Initialize data value at each program point to ⊥, entry node
to d0.

Mark data values at all nodes.

Repeat while there is a marked value:

Choose a node M with marked value dM , unmark it, and
“propogate” it to successor nodes (i.e. for each successor node
N , replace value at N by fMN(dM) ⊔ dN).
Mark value at successor node if old value was marked, or new
value larger than old value.

Return data values at each point as over-approx of JOP.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

(o, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

(o, e)

(o, e)

(o, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

(o, e)

(e, e)

(o, e)

(o, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

(o, e)

(o, e)

(e, e)

(o, e)
(e, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

(o, e)

(oe, e)

(e, e)

(o, e)
(e, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

(oe, e)

(oe, e)

(e, e)

(oe, e)
(e, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

(oe, e)

(oe, e)

(oe, e)

(oe, e)
(e, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

(oe, e)

(oe, e)

(oe, e)

(oe, e)
(oe, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(o, e)

(oe, e)

(oe, e)

(oe, e)

(oe, e)(oe, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(oe, e)

(o, e)

(oe, e)

(oe, e)

(oe, e)

(oe, e)
(oe, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on parity interpretation example

Underlying lattice

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

B

print p,q

p > q

Fp := p+1

A

C

D

E

G

q := q+2

(oe, e)

(o, e)

(oe, e)

(oe, e)

(oe, e)

(oe, e)
(oe, e)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Another example analysis: Constant Propogation

A variable x has constant value c at a program
point N if along every execution the value of x

at N is c .

Example: At program point G , constants are

RG = {(a, 1), (b, 2), (d , 3)}.
d := a+b

e := b+c

c := 0

1

2

3

4

5

A

B

C

D

E

F

H

c := 4
6

a := 1

b := 2

G

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Another example program

ProgPt Actual constant data
A ∅
B (x , 1)
C ∅
D (y , 1)
E (x ,−1), (y , 1)

A

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Framework instance for CP

Underlying lattice
∅

{(y, 1)} {(x,−1)}

{(y, −1)} {(x, 1)}

{(x, 1), (y, 1)} {(x,−1), (y, −1)}

⊥

Transfer function for assignment node n of the form x := exp.

fn(P) = {(y , c) | y 6= x} ∪

{

{(x , d)} if [exp]P = d

∅ otherwise.

Initial value at entry node: ∅.
Transfer functions monotonic?

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on CP example: 1

A

B

D

x := 1

y := x*x

x := −1

C
2

3

4

0

1

E

∅

⊤

⊤

⊤

⊤

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on CP example: 2

A

B

D

x := 1

y := x*x

x := −1

C
2

3

4

0

1

E

∅

⊤

⊤

⊤

{(x, 1)}

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on CP example: 3

A

B

D

x := 1

y := x*x

x := −1

C
2

3

4

0

1

E

∅

{(x, 1)}

⊤

⊤

{(x, 1)}

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on CP example: 4

A

B

D

x := 1

y := x*x

x := −1

C
2

3

4

0

1

E

∅

{(x, 1)}

{(x, 1), (y, 1)}

⊤

{(x, 1)}

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on CP example: 5

A

B

D

x := 1

y := x*x

x := −1

C
2

3

4

0

1

E

∅

{(x, 1)}

{(x, 1), (y, 1)}

{(x,−1), (y, 1)}

{(x, 1)}

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on CP example: 6

A

B

D

x := 1

y := x*x

x := −1

C
2

3

4

0

1

E

∅

∅

{(x, 1), (y, 1)}

{(x,−1), (y, 1)}

{(x, 1)}

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on CP example: 7

A

B

D

x := 1

y := x*x

x := −1

C
2

3

4

0

1

E

∅

∅

∅

{(x,−1), (y, 1)}

{(x, 1)}

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on CP example: 8

A

B

D

x := 1

y := x*x

x := −1

C
2

3

4

0

1

E

∅

∅

∅

{(x, −1)}

{(x, 1)}

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo on CP example: 9

A

B

D

x := 1

y := x*x

x := −1

C
2

3

4

0

1

E

∅

∅

∅

{(x, −1)}

{(x, 1)}

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Kildall’s algo vs Actual Constant data

ProgPt Actual data Kildall’s data
A ∅ ∅
B (x , 1) (x , 1)
C ∅ ∅
D (y , 1) ∅
E (x ,−1), (y , 1) (x ,−1)

A

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

What Kildall’s algo computes

In general, computes an over-approximation of JOP.

Always terminates if lattice has no infinite ascending chains.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

More on lattices

A Chain in a partial order (D,≤) is a totally ordered subset of
D.
Ascending chain: d0 < d1 < d2 <
Let L = (D,≤) be a complete lattice.
The product lattice L = (D ×D,≤′) where (d1, d2) ≤

′ (d ′
1, d

′
2)

iff d1 ≤ d ′
1 and d2 ≤ d ′

2 is also a complete lattice.
Exercise: compute product of parity lattice below with itself.

o e

⊥

oe

Maximum ascending chain in L = L × L is bounded by twice
max ascending chain in L (if there is a max ascending chain in
L).

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Termination of Kildall’s algo

Let d i be the vector of values after the i -th step of algo.
Then after each step i , either number of marks decreases by 1
and d i+1 = d i , or number of marks increase by 0 or 1 and
d i+1 > d i .
Thus each d i increases (≥), and if it doesn’t strictly increase
we lose a mark.
Thus maximum number of steps in algo is bounded by length
of longest increasing chain in L * number of program points.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Viewing correctness

Extend fn’s to f over D = D × · · · × D given by

f (d1, . . . , dk) = (· · · , fm(Dj), · · ·).

Then:

L = (D,≤′) is also a complete lattice.

f is montonic on L if each fn is.

Set up equations Eq relating the data values at each program
point.

Least solution to Eq is same as LFP of functional f on lattice
L.

If each fn is distributive, then JOP = LFP(f).

Otherwise, if fn is only monotonic, JOP ≤ LFP(f).

Kildall’s algo computes least solution to Eq, for monotone
frameworks.

Note this is a stronger claim than “Kildall’s algo computes
JOP for distributive frameworks”.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Induced Equations

Framework induces natural data-flow equations:

xE = e for an entry node E

xN = fn(xM) for an assignment node n with incoming point

M and outgoing point N

xN = XL ⊔ XM for a junction node with incoming points L,M
and outgoing N.

· · · etc.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Equations for CP example

Equations induced by CP analysis:

xA = ∅
xB = f1(xA)
xC = xB ⊔ xE

xD = f3(xC)
xE = f4(xD).

A

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Equations for CP example

Equations induced by CP analysis:

xA = ∅
xB = f1(xA)
xC = xB ⊔ xE

xD = f3(xC)
xE = f4(xD).

Values computed by Kildall are a solution to
these equations.

A

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

∅

{(x, 1)}

∅

∅{(x,−1)}

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Exercise: Give 2 solutions to equations induced for this program

Use collecting semantics with concrete stores in {x} → Z.

Write down induced equations.

Give two different solutions to the equations.

B

x := 2

C

x:=x+1

D

A

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Natural ordering on solutions

Consider “vectorised” lattice D = (Dk ,≤′) (similar to product
lattice L × L).

Each solution is a point in this vectorised lattice

We will see that these solutions form a complete lattice, with
least and greatest element.

This is the least solution we mean.

In fact a solution is a “fixpoint” of a natural function f

induced by transfer functions for each node.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Correctness

JOP

LFPLFP JOP=

Monotonic Framework Distributive Framework

(D,≤)

Kildall’s algo always computes LFP.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Knaster-Tarski fixpoint theorem for lattices

A lattice is a partially order set in which
every pair of elements has an lub and a glb.

A complete lattice is a lattice in which every
subset of elements has a lub and glb.

A function f : D → D is monotonic or
order-preserving if whenever x ≤ y we have
f (x) ≤ f (y).

A fixpoint of a function f : D → D is an
element x ∈ D such that f (x) = x .

A pre-fixpoint of f is an element x such that
x ≤ f (x).

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Knaster-Tarski Fixpoint Theorem

Theorem (Knaster-Tarski)

Let (D,≤) be a complete lattice, and f : D → D a monotonic

function on (D,≤). Then:

(a) f has at least one fixpoint.

(b) The set of fixpoints P of f itself forms a complete lattice

under ≤.

(c) The least fixpoint of f coincides with the glb of the set of

postfixpoints of f , and the greatest fixpoint of f coincides

with the lub of the prefixpoints of f .

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Fixpoints of f

Post

Pre

lfp

gfp

(D,≤)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Proof of Knaster-Tarski theorem

(a) g =
⊔

Pre is a fixpoint of f .

(b) g is the greatest fixpoint of f .

(c) Similarly l =
d

Post is the least fixpoint of f .

(d) Let P be the set of fixpoints of f . Then (P ,≤) is a complete

lattice.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Proof of K-T theorem: (a)

��

��

����

��

��

Pre

(D,≤)

g

⊥

f (g)

f (x)

x

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Proof of K-T theorem: (d)

(D,≤)

P

u

v

⊤

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Computing lfp’s and gfp’s

��

��

��

��

��

��

��

��

��

��

��

Pre

(D,≤)

g

⊥

⊤

f (f (⊥))

F

(f i (⊥))

f (⊥)

l

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Computing lfp’s and gfp’s

“Ascending Chain Condition”: No infinite ascending chains, or

Continuity:

X ⊆ D is directed if every finite subset of X has an upper
bound in X .
f on (D,≤) is continuous if for every directed subset X of D

we have f (
⊔

X) =
⊔

(f (X)).

Then
lfp(f) =

⊔

(f n(⊥)).

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

A more general condition

A complete partial order (cpo) is a partial order in which every
ascending chain has an lub.

A pointed cpo is one which has a least element ⊥.

Let (D,≤) be a cpo. A function f : D → D is continuous if
for any ascending chain X in D, f (

⊔

X) =
⊔

(f (X)).

Fact

If f is a continuous function on a pointed cpo (D,≤) then f has a
least fixpoint and

lfp(f) =
⊔

i≥0

(f i (⊥)).

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Monotonicity, distributivity, and continuity

Monotonic Distributive Continuous

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Back to Kildall: JOP ≤ LFP for monotone framework

We show JOP ≤ c , for any FP c .

JOP =
⊔

i≥0 JOPi , where JOPi =
⊔

paths p,|p|≤i fp(e).

Claim: JOPi ≤ c for any fixpoint c .

By induction on i : Base case immediate.
Assume JOPi ≤ c , and consider JOPi+1

x := e

M

N

cNd

cM

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Correctness: JOP = LFP for finite distributive framework

JOP = LFP for distributed framework, finite lattice.

Enough to show that JOP is a fixpoint of f .

x := e

M

N

dM

dN

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

What Kildall’s algo computes (ctd)

Values at each step are bounded above by any fixed point c .

x := e

M

N

cN

cM

d i
M

d i
N

d i+1
N

Thus it follows that d ≤ l where l is LFP of f .

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

What Kildall’s algo computes (ctd)

Sufficient now to show that d ≥ l .
Suffices to show that d is such that d ≥ f (d) (i.e. d is a

postfixpoint of f)
We observe that if a value d

i
M was unmarked at some step in

the algo, its value would have been propogated.
Thus, in particular, dN ≥ fMN(dM), since dM would have been
propogated.

By Knaster-Tarski theorem,
l = glb(Post), and hence d ≥ l .

Post

Pre

lfp

gfp

(D,≤)

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Correctness

JOP

LFPLFP JOP=

Monotonic Framework Distributive Framework

(D,≤)

Kildall’s algo always computes LFP.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Back to Constant Propogation

f CP
n is monotonic

f CP
n is not distributive.

Consider node n with statement y := x ∗ x , and abstract
values d1 = {(x , 1)} and d2 = {(x ,−1)}.
fn(d1 ⊔ d2) = ⊤
fn(d1) ⊔ fn(d2) = {(y , 1)}.

Motivation Lattices Data-flow Framework Knaster-Tarski Theorem Correctness of Kildall

Why computing JOP for CP is undecidable

Post Correspondence Problem (PCP): Given strings u1, . . . , un

and v1, . . . , vn, is there a string w = ui1ui2 · · · uil such that
w = vi1vi2 · · · vil , with i1 = 1.

Consider program for which computing JOP for Constant
Propogation implies solution to PCP.
while (*) {

if(*) {

x := x * u_1;

y := y * v_1;

}

......

if(*) {

x := x * u_n;

y := y * v_n;

}

}

if (x == y) z := 1 else z := -1;

	Motivation
	Lattices
	Data-flow Framework
	Knaster-Tarski Theorem
	Correctness of Kildall

