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Motivation

What is data-flow analysis

@ "Computing ‘safe’ approximations to the set of values /
behaviours arising dynamically at run time, statically or at
compile time.”

@ Typically used by compiler writers to optimize running time of
compiled code.

o Constant propogation: Is the value of a variable constant at a
particular program location.
@ Replacex := y + z by x := 17 during compilation.

@ More recent interest by verification community (starting with

Cousot-Cousot 1977).

o |deas used in SLAM tool to verify properties (“lock-unlock
protocol is respected”) of device driver code.



Motivation

Constant Propogation Example

A variable x has constant value ¢ at a program
point N if along every execution the value of x
at Nis c.

Example: At program point G, constants are
Rc ={(a,1),(b,2),(d,3)}. H




Motivation

Overview of data-flow analysis

Informal intro and motivation

Lattices

Data-flow analysis more formally

Kildall's algo for computing over-approximation of JOP.
Knaster-Tarski Fixpoint Theorem

Correctness of Kildall's algo (computes the least solution to
equations).



Motivation

Data-flow analysis as approximation of collecting semantics

@ Collecting semantics of a
program: For each program
point N, the set of states the 7
program could be in at point N.
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Motivation

Data-flow analysis as approximation of collecting semantics

@ Collecting semantics of a
program: For each program
point N, the set of states the

program could be in at point N.

@ Example: Parity-based abstract
interpretation.

@ Abstract values: o, e, oe

@ States represented:
o+—{1,3,5,...},
e—{0,2,4,...},
oe — {0,1,2,3,...}.

® So (o0,e) —
{1,3,5,...} x {0,2,4,...}.
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Motivation

Data-flow analysis as approximation of collecting semantics
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Motivation

Data-flow analysis as approximation of collecting semantics

@ Collecting semantics of a Y
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Motivation

Data-flow analysis as approximation of collecting semantics

@ Collecting semantics of a
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Motivation

Why abstract data should have a “lattice” structure

@ A natural subset lattice structure:

..., (oe, 0e)}
[
)

{(0,0), (0, €)
A
(oe, oe)

L)
[ )
o/o \o {(oe, e), (oe, 0e)} (o, oe)o/ \ézo (e, oe)
{( ) (

N )_
ANy N

0 L
@ ... and a more “efficient” but less-precise lattice.

@ Ordering is “is more precise than".
@ Take “join” or “least upper bound” of abstract states at a

AT nE



Motivation

Why transfer functions should be “monotonic”

@ More precise source state should lead to more precise target
state.



Lattices

Partial Orders

@ A partially ordered set is a non-empty set D along with a
partial order <.

is reflexive (d < d for each d € D)

is transitive (d < d’ and d’ < d” implies d < d")

is anti-symmetric (d < d’ and d’ < d implies d = d’).

A

gi
o <
o <



Lattices

Binary relations as Graphs

We can view a binary relation on a set as a directed graph.

N



Lattices

Partial Order as a graph

A partial order is then a special kind of directed graph:

Ao A
Mt 1]
Y X

Graph representa- representation
tion




Lattices

Upper bounds etc.

@ An element u € D is an upper bound of a set .

of elements X C D, if x < u for all x € X. /\
d

@ u is the least upper bound (or lub or join) of

X if uis an upper bound for X, and for T T
every upper bound y of X, we have u <.

We write u = | | X.
@ Similarly, v =[] X (v is the greatest lower \/

bound or glb or meet of X).



Lattices

Lattices

@ A lattice is a partially order set in which every pair of
elements has an lub and a glb.

@ A complete lattice is a lattice in which every subset of
elements has a lub and glb.

/N
{12}- -{23} 1 I /\

{1,2,3}

{2}®

NN/

Questlon. Example of lattice which is not complete?




Lattices

Monotonic functions

@ A function f : D — D is monotonic or
order-preserving if whenever x < y we have

) < Fy). 5

<N\



Data-flow Framework

Data-flow / abstract-interpretation framework

Program are finite directed graphs with following nodes
(statements):

Nodes or statements in a program

L L L$
K
i ey Y
N M
M M

@ Expressions:
er=cl|x|etele—e]|exe.
@ Boolean expressions:
be:=tt|ff|e<ele=e| be| beV be| beA be.

@ Assume unique initial node /.



Data-flow Framework

Data-flow framework contd.

@ Complete lattice L = (D, <).
® Add new bottom element to get
Ly =(Dy, <)

J

€1

@ Transfer function fip : Dy — D, for each node and incoming
edge L and outgoing edge M.

L L L$
K
i e Y
N M
M M

@ We assume transfer functions are monotonic, and satisfy
f(L)= L.

@ Junction nodes have identity transfer function.



Data-flow Framework

What we want to compute for a given program

@ Path in a program: Sequence of connected edges or program
points.
@ Transfer functions extend to paths in program:

fascp = fcp o fgc © fag.

@ For “infeasible” paths p, f, will be A\d. L.
@ Join over all paths (JOP) definition: For each program point

N
dy = | ] fo(do).
paths p from / to N

where dj is a given initial value at entry node.



Data-flow Framework

Example framework: parity interpretation

@ Underlying lattice

(oe, oe)

[ ]
(o, oe)oﬁ h (e, oe)

(0,0) @ (0, €)@ (e,0) ® (e, e)

1L
@ Transfer functions: for x := e node:
s[x — o] if [e]s =0

fun(s) =< s[x—e] if[els=e
s[x — oe] if [e]s = oe



Data-flow Framework

Kildall's algorithm to compute over-approximation of JOP

@ Initialize data value at each program point to L, entry node
to dp.

@ Mark data values at all nodes.

@ Repeat while there is a marked value:

@ Choose a node M with marked value dy;, unmark it, and
“propogate” it to successor nodes (i.e. for each successor node
N, replace value at N by fyn(dm) U dn).

@ Mark value at successor node if old value was marked, or new
value larger than old value.

@ Return data values at each point as over-approx of JOP.



Data-flow Framework

Kildall’s algo on parity interpretation example
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Data-flow Framework

Kildall’s algo on parity interpretation example

<

Underlying lattice
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Data-flow Framework

Kildall’s algo on parity interpretation example

Underlying lattice

(oe, oe)
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Data-flow Framework

Kildall’s algo on parity interpretation example
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Data-flow Framework

Kildall’s algo on parity interpretation example
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Data-flow Framework

Kildall’s algo on parity interpretation example
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Data-flow Framework

Kildall’s algo on parity interpretation example
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Data-flow Framework

Kildall’s algo on parity interpretation example
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Data-flow Framework

Kildall’s algo on parity interpretation example
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Data-flow Framework

Kildall’s algo on parity interpretation example
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Data-flow Framework

Kildall’s algo on parity interpretation example

Underlying lattice
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Data-flow Framework

Kildall’s algo on parity interpretation example

Underlying lattice
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Data-flow Framework

Another example analysis: Constant Propogation

A variable x has constant value ¢ at a program
point N if along every execution the value of x
at Nis c.

Example: At program point G, constants are
Rc ={(a,1),(b,2),(d,3)}. H




Data-flow Framework

Another example program

ProgPt Actual constant data

A )

B (x,1) 2
C 0 3
D (v, 1)

E (Xv—l)v(Y71)




Data-flow Framework

Framework instance for CP

@ Underlying lattice

// \\ _1)
Sty

(v, D} {x -1), (v, -1}

{(r;1)} o

°
L

@ Transfer function for assignment node n of the form x := exp.

fa(P) = {(y,c) |y #x} U { é(X7 d)} if [explp = d

otherwise.

@ Initial value at entry node: 0.
@ Transfer functions monotonic?



Data-flow Framework

Kildall's algo on CP example: 1




Data-flow Framework

Kildall's algo on CP example: 2




Data-flow Framework

Kildall's algo on CP example: 3




Data-flow Framework

Kildall's algo on CP example: 4




Data-flow Framework

Kildall's algo on CP example: 5

Di {6 1), (v, 1)}

x:=-1 4



Data-flow Framework

Kildall's algo on CP example: 6

{Go -1, (v, 1)}




Data-flow Framework

Kildall's algo on CP example: 7

{Go -1, (v, 1)}




Data-flow Framework

Kildall's algo on CP example: 8




Data-flow Framework

Kildall's algo on CP example: 9




Data-flow Framework

Kildall's algo vs Actual Constant data

ProgPt Actual data Kildall's data
0

A )

B (x,1) (x,1) 2
C ) ) s
D (v,1) 1]

E (X,—l),(y,l) (Xv—l)




Data-flow Framework

What Kildall’s algo computes

@ In general, computes an over-approximation of JOP.

@ Always terminates if lattice has no infinite ascending chains.



Data-flow Framework

More on lattices

A Chain in a partial order (D, <) is a totally ordered subset of
D.

Ascending chain: dy < di < do < ....

Let L = (D, <) be a complete lattice.

The product lattice L = (D x D, <') where (d1, d2) < (dj, d})
iff di < dj and d» < d} is also a complete lattice.

Exercise: compute product of parity lattice below with itself.

N
\/

Maximum ascending chain in L = L x L is bounded by twice

max ascending chain in L (if there is a max ascending chain in
L).



Data-flow Framework

Termination of Kildall’s algo

@ Let d; be the vector of values after the i-th step of algo.

@ Then after each step /, either number of marks decreases by 1
and 3,-+1 = d;, or number of marks increase by 0 or 1 and
d,'+1 > d;. B

@ Thus each d; increases (>), and if it doesn't strictly increase
we lose a mark.

@ Thus maximum number of steps in algo is bounded by length
of longest increasing chain in L * number of program points.



Data-flow Framework

Viewing correctness

Extend f,'s to f over D = D x --- x D given by

Fldi,....de) = (-, fu(D;), ).

Then:

o
o
o

L= (D,<')is also a complete lattice.

f is montonic on L if each f,, is.

Set up equations Eq relating the data values at each program
point.

Least solution to Eq is same as LFP of functional f on lattice
L.

If each f, is distributive, then JOP = LFP(f).

Otherwise, if f, is only monotonic, JOP < LFP(?).

Kildall's algo computes least solution to Eq, for monotone
frameworks.

Note this is a stronger claim than “Kildall's algo computes
JOP for distributive frameworks”.



Data-flow Framework

Induced Equations

Framework induces natural data-flow equations:

XE
XN

XN

for an entry node E
for an assignment node n with incoming point

M and outgoing point N
for a junction node with incoming points L,M

and outgoing N.
etc.



Data-flow Framework

Equations for CP example

Equations induced by CP analysis:

XA = (Z)

xg = fi(xa)
xc = xpUXg
xp = f(xc)

XE = f4(XD).




Data-flow Framework

Equations for CP example

Equations induced by CP analysis:

XA = (Z)

xg = f(xa)
xc = xpUXg
xp = f(xc)
XE = f4(XD).

E
Values computed by Kildall are a solution to {(x—1)}

these equations.




Data-flow Framework

Exercise: Give 2 solutions to equations induced for this program

@ Use collecting semantics with concrete stores in {x} — Z.
@ Write down induced equations.

@ Give two different solutions to the equations.




Data-flow Framework

Natural ordering on solutions

@ Consider “vectorised” lattice D = (D*, <') (similar to product
lattice L x L).

@ Each solution is a point in this vectorised lattice

@ We will see that these solutions form a complete lattice, with
least and greatest element.

@ This is the least solution we mean.

@ In fact a solution is a “fixpoint” of a natural function f
induced by transfer functions for each node.



Data-flow Framework

Correctness

Monatonic Framework Distributive Framework

Kildall's algo always computes LFP.



Knaster-Tarski Theorem

Knaster-Tarski fixpoint theorem for lattices

(]

A lattice is a partially order set in which
every pair of elements has an lub and a glb.

@ A complete lattice is a lattice in which every =

subset of elements has a lub and glb. / \

@ A function f : D — D is monotonic or
order-preserving if whenever x < y we have
F(x) < F(y). s
@ A fixpoint of a function f : D — D is an o
element x € D such that f(x) = x.

SN

@ A pre-fixpoint of f is an element x such that
x < f(x).



Knaster-Tarski Theorem

Knaster-Tarski Fixpoint Theorem

Theorem (Knaster-Tarski

)

Let (D, <) be a complete lattice, and f : D — D a monotonic
function on (D, <). Then:

(a) f has at least one fixpoint.

(b) The set of fixpoints P of f itself forms a complete lattice
under <.

(c) The least fixpoint of f coincides with the glb of the set of
postfixpoints of f, and the greatest fixpoint of f coincides
with the lub of the prefixpoints of f.




Knaster-Tarski Theorem

Fixpoints of f




Knaster-Tarski Theorem

Proof of Knaster-Tarski theorem

(a) g =||Preis a fixpoint of f.
(b) g is the greatest fixpoint of f.
(c) Similarly / =[] Post is the least fixpoint of f.

(d) Let P be the set of fixpoints of f. Then (P, <) is a complete
lattice.



Knaster-Tarski Theorem

Proof of K-T theorem: (a)




Knaster-Tarski Theorem

Proof of K-T theorem: (d)




Knaster-Tarski Theorem

Computing Ifp’s and gfp’s

e

o LIF(L))

. F(F(L))
o f(Ll)
(0.<)



Knaster-Tarski Theorem

Computing Ifp’s and gfp’s

@ “Ascending Chain Condition”: No infinite ascending chains, or
@ Continuity:

o X C D is directed if every finite subset of X has an upper
bound in X.
e f on (D, <) is continuous if for every directed subset X of D

we have (|| X) = [](f(X)).
Then
Ifp(f) = |_|(F"(L))-



Knaster-Tarski Theorem

A more general condition

@ A complete partial order (cpo) is a partial order in which every
ascending chain has an lub.

@ A pointed cpo is one which has a least element L.

o Let (D, <) be a cpo. A function f : D — D is continuous if
for any ascending chain X in D, f(|_] X) = J(f(X)).

If f is a continuous function on a pointed cpo (D, <) then f has a
least fixpoint and

Ifo(f) = |_](F(L))-

i>0




Knaster-Tarski Theorem

Monotonicity, distributivity, and continuity

AR AN

Monotonic Distributive Continuous




Correctness of Kildall

Back to Kildall: JOP < LFP for monotone framework

@ We show JOP < ¢, for any FP €.
® JOP = | ];5¢JOP;, where JOP; = [ |, plpl<i fo(e).
@ Claim: JOP; < ¢ for any fixpoint €.

@ By induction on i: Base case immediate.

@ Assume JOP; <, and consider JOP;;4

..CM



Correctness of Kildall

Correctness: JOP = LFP for finite distributive framework

@ JOP = LFP for distributed framework, finite lattice.
@ Enough to show that JOP is a fixpoint of f.
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What Kildall’s algo computes (ctd)

@ Values at each step are bounded above by any fixed point €.

@ Thus it follows that d < [ where I is LFP of .
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What Kildall’s algo computes (ctd)

@ Sufficient now to show that d > .
o Suffices to show that d is such that d > f(d) (i.e. d is a
postfixpoint of f)
@ We observe that if a value di, was unmarked at some step in
the algo, its value would have been propogated.
@ Thus, in particular, dy > fun(dum), since dy would have been
propogated.

¢ By Knaster-Tarski theorem,
I = glb(Post), and hence d > .
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Correctness

Monatonic Framework Distributive Framework

Kildall's algo always computes LFP.



Correctness of Kildall

Back to Constant Propogation

o fCP

n

o fnCP

is monotonic

is not distributive.

o Consider node n with statement y := x % x, and abstract
values di = {(x,1)} and d» = {(x, —1)}.

@ fn(dl L d2) =T

o fo(d) U fa(d2) = {(y,1)}.



Correctness of Kildall

Why computing JOP for CP is undecidable

@ Post Correspondence Problem (PCP): Given strings u1,. .., u,
and vi,...,V,, is there a string w = u; uj, - - - u;, such that
W = VjVj, -V, with i; = 1.

@ Consider program for which computing JOP for Constant
Propogation implies solution to PCP.

while (%) {
if (%) {
X :=x *x u_l;
y 1=y * v_1;
}
if (%) {
X := X ¥ u_n;
y =y % v_n;
}
}

if (x ==y) z := 1 else z := -1;
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