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Abstract: In our earlier work [22], we have pre-
sented a synthesis of electrical machines and mecha-
nisms, and presented a new set of devices called electri-
cal mechanisms (emecs). In emecs irregularly shaped 
magnets are attached to different parts of the mechanism, 
and provide customizable tangential forces in different 
configurations. The presence of these tangential forces 
differentiates emecs from other mechanisms. In this pa-
per we present a simple method to design these magnets 
based on integral equations. We show that properly de-
signed emecs offer surprising properties - we can design 
slider-crank mechanisms which can present oscillatory 
forces to the load, even when driven by a constant force. 
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1. Introduction 
Our earlier paper [22] generalized the concept of motors 
to electrical mechanisms (emecs). As opposed to motors, 
which are revolute or prismatic pairs enhanced with 
magnets (permanent, electromagnets), emecs are entire 
mechanisms enhanced, in various places with magnets. 
In general the magnets are irregular in shape and size, 
and the device cannot be regarded as a set of lin-
ear/rotary motors driving a mechanism. The magneti-
cally enhanced joints (pairs) in emecs are called epairs.  

This paper presents a simple design method to design 
primarily the passive components of emecs in a system-
atic fashion. Methods of active control will be dealt with 
in future papers. Our methods rely on integral equation 
formulations (or their discretized linear equation equiva-
lents). We show that properly designed emecs show 
surprising properties – a slider crank can show oscil-
latory output torque, even with a constant force at 
the slider. We can design a magnetic flywheel for an 
IC engine, which can ideally reduce torque ripple to 
zero (it was non-zero in our heuristically designed IC 
engine flywheel in [22]). 

We believe our work is the first to do a systematic syn-
thesis of electrical prime movers and mechanisms, and 
present systematic design methods for the same. Com-
parison with the state-of-art is in Appendix-A (we are 
unaware of any directly related work). The work is ap-
plicable generally, in robots, automobiles, aircraft, 
spacecraft, etc. The power levels are comparable to me-
dium power pneumatics (see the discussion in [22]). 

This paper summarizes the architecture of emecs (elabo-
rating our previous discussion in [22]), introduces im-

portant design principles, and finally presents a detailed 
example of the capabilities of a properly designed slider-
crank emec.  First, we illustrate the concept through the 
simplest of emecs, a prismatic pair, showing an integral 
equation formulation for the design (Section 2). The 
structure and design of emecs follows (Section 3). A 
detailed discussion of the slider-crank follows (Section 
4), and then conclusions (Section 5). 

2. A simple EMEC 

 
Figure 1 Synthesis of arbitrary position variant tan-
gential force using position variant magnetic 
strengths, interacting with a fixed magnet. 

We use a simple example to illustrate the idea of an 
emec. Figure 1 shows a simple emec, composed of a 
single prismatic pair, enhanced with magnets on both the 
guide and the slider. We wish to control the motion of 
the slider, of mass m, w.r.t the guide. Newton’s law is 

 totmx F=��   
where F tot is the total force acting on the slider, from all 
sources. If the total applied force is constant, so is the 
acceleration of the slider. 
 
In many circumstances, however, it is desirable to have 
a constant force resulting in a non-constant acceleration, 
or a non-constant force resulting in a constant accelera-
tion. For example, in a vibration jig, the acceleration of 
the table holding the object should have all frequency 
components upto the maximum vibration frequency to 
be tested. It is preferable that the prime mover driving 
the jig should work at a constant force/torque output. 
 
How is this possible? For a non-constant acceleration, 
the total force has to be non-constant (assuming the 
mass is constant, which is true in mechanisms we dis-
cuss here). However, if a portion of this force is pro-
vided by the internal structure of the mechanism, then 
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the acceleration of the slider can be non-constant, even if 
the applied external force is constant. An emec achieves 
this by using internal electromagnetic forces, which are 
non-contact, repeatable, and are approaching power lev-
els of medium power pneumatics. The internal elec-
tromagnetic force is tangential to the contact surfaces, 
differentiating emecs from all other mechanisms, and 
leads to some surprising properties. There are also 
normal forces due to the magnetics, but for the class of 
emecs considered, these can be subsumed in the contact 
reactions, and do not figure in the dynamics. Emecs hav-
ing global interactions require these forces to be ac-
counted for, but this is outside the scope of this paper. 
 
Considering the prismatic pair again, let us denote the 
internal force by Fm. Then Newton’s law becomes (for 
time and position dependent forces): 

( ) ( ) ( ), , ,tot ext mmx F x t F x t F x t= = +��
 

An appropriate tangential Fm(x,t) can enable a desired 
acceleration for a given external force. In the emecs we 
consider, this force is generated by the differently sized 
magnets interacting with each other1, is time invariant, 
but changing as a function of position (see Figure 1). 
This change of tangential internal force w.r.t position is 
critical to the emec, and accounts for its properties.  

Prismatic EMEC versus  Linear Motor 

 

                                                 
1 There are other means of generating these forces, e.g. 
attraction between magnets and magnetic materials, 
eddy/hysteresis effects, etc, but this is out of scope of 
this paper. 

 
Figure 2 (a) Linear Motor versus (b) Active Pris-
matic EMEC. Coils are present only on the follower 
(moving member). (c) Passive Emec 

It is illustrative to compare a linear motor with a pri-
matic emec in more detail. Figure 5 compares a linear 
motor with its closest comparable emec – the prismatic 
epair. Figure 2(a) shows a simplified linear motor. 
Regularly spaced permanent magnets in the track inter-
act with the electromagnet in the follower. By a proper 
phasing of the current in the follower (polarity reversal 
after each pole piece is crossed), a constant (roughly) 
forward force is generated on the follower. The residual 
ripple in the force can be smoothed out by another fol-
lower which is offset by half a pole pitch, and mechani-
cally connected to the one depicted, as is well known in 
the design of linear motors (reduction of cogging torque). 
 
Figure 2  (b) shows a prismatic active emec. Unlike the 
linear motor, the pole pieces are not of the same mag-
netic strength. The strength increases and decreases in a 
“sinusoidal” fashion with position (in general the spac-
ing can be irregular too). With the same excitation as 
before, the forward force increases and decreases in a 
sinusoidal fashion. 
 
Finally, Figure 2(c) shows a completely passive pris-
matic emec. At any position, say “x”, the net force is the 
difference between the backward pull of the (smaller) 
magnets to the left of x, and the forward pull of the (lar-
ger) magnets to the right, and is related to the slope of 
the magnetic strength curve. A positive slope implies a 
forward force, and a negative slope a backwards force. 
The total forward force summed over all positions is 
zero, since the system cannot provide net energy.  
 
Why do we need such position variant structures? In 
short, to compensate for nonlinear mechanism and 
prime mover dynamics which change as a function of 
position/ configuration. At those positions where the 
prime mover forward force (as reflected through the 
mechanism position function) is weak, the passive emec 
can add to the forward force, and vice versa in those 
positions where the prime mover is excessively strong.  
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An IC engine furnishes an excellent example. At top 
dead center (TDC), the combustion is just starting, and 
the crank is in line with the connecting rod resulting in a 
small lever arm. Due to both effects, the net torque de-
livered is zero. Further into the cycle, the combustion 
completes, and the lever arm is also large, resulting in a 
torque much larger than the mean torque. Further into 
the cycle, during compression (just before TDC), the net 
torque delivered is negative, and energy is absorbed by 
the engine from the flywheel. This position variant 
torque can be smoothed by putting a magnetic position 
varying load, which absorbs/releases energy losslessly 
with the IC engine (Section 4). 

Synthesis of Fields and Forces 
The fundamental way a position variant magnetic force 
is generated is by generating a position variant magnetic 
field. The field produced by a single elementary magnet 
shows a fixed variation with distance – approximately 
inverse square. Arbitrary position variant magnetic 
fields (not inverse square) in general require multiple 
magnets whose size, material strengths, etc varies with 
position, i.e., a spatial distribution of magnets (Figure 
3). The spatial distribution of magnets can be calculated 
as follows.  

 
Figure 3 Force between two magnets represented by 
current distributions 

First, the origin of magnetic fields can be identified as 

current densities ( )J r
JJJJJGG

 (or magnetic moments, this is 

equivalent) in space. Two interacting magnets M1 and 
M2 can hence be identified by associated current densi-

ties ( ) ( )1 1 1 1 1 1, ,J r J x y z=
JJJJJGG JJJJJJJJJJJG

  ( ) ( )2 2 2 2 2 2, ,J r J x y z=
JJJJJGG JJJJJJJJJJJG

  in 

their respective regions. These current densities depend 
on the materials used for these magnets. Using the Biot-
Savart law [23][24], the magnetic field B and forces F12 
acting on M2 due to M1 as arranged in Figure 3 are given 
by the relevant cross products: 

( ) ( )

( ) ( )

12

1 1 2

12

2 1
12

0
2 1

12 2 1 12

12 2 2 2 2

,  Teslas
4

,

 Newtons

r r
R

r
J r dV

R
B r

R r r r

F J r B r dV

μ
π

−

×=

= − =

= ×

∫

∫

JJG JJG

�JJJJGJG G

JG JG �

JJJJJJGJG JG
 (1.1) 

From Equation (1.1), the elemental force between an 
elemental current density comprising the magnet M1, 

( )1 1
J r
JJJJGG

at location 1r
JG

, and the elemental current density 

comprising the magnet M2 , ( )2 2J r
JJJJJJGJG

, at location 2r
JG

, 

depends on the vector displacement between 

them 12 2 1R r r= −
JG JG

. Since we are discussing a 1-D 

prismatic pair, this reduces to the distance between the 
elemental currents, 12 2 1x x x= − . The total force F12 
between the magnets M1 and M2 is the integral of all 
these elemental forces, over both the regions enclosed 
by the magnets.  
 
Now, in our prismatic epair, M1 is rigidly attached to one 
link, and M2 to the other. As the links slide against each 
other, the force F12 changes, due to the change in the 
elemental forces. The change in the elemental force is 
due to the change in the distance between two elemental 
current densities 

12 2 1 12 2 1x x x x x x′ ′ ′= − → = − . 
where the primes denote the new positions. We assume 
that the currents are constant – we are discussing perma-
nent magnets here. Since the motion is rigid, the change 
in distance is the same for all pairs of elemental current 
densities, and can be equated to the change in distance x 
between a reference point on the first magnet M1 and a 
reference point on the second magnet M2 (say centroids). 

12 2 1 12x x x x x′ ′ ′= − = +  
We use “x” instead of “Δx”, for reasons which will be 
clearer below. Given an x, the relative position of the 
magnets is completely specified. Then, from Equation 
(1.1) when the links slide, the field B is a function of 
both x2 and x (x1 is integrated out), but force F12 is only a 
function of x (x1 and x2 are integrated out), and the cur-
rent densities (or equivalently magnetic moments) in the 
magnets. We can write: 

( ) ( )

( ) ( ) ( ) ( )
2 2

12 1 2 12 1 2 1 2 12

,

, ,

B x B x x

F x x F x x x J J f xκ

=

= = − = ∫ ∫
(1.2) 

Where ( )
1 2
,J Jκ ∫ ∫  depends on the integrals of the 

elemental current densities or equivalently magnetic 
moments in the magnets. Equation (1.2) is intuitive – the 
force between two magnets depends only on (a) the 
magnetic moments inside the magnets and (b) the sepa-
ration between them, in a 1-D setting (in a 3-D setting, 
the relative orientation also matters). If the force F12 is 
specified at all relative distances, the resulting integral 
equation can be solved to yield the current densities 

1 2,J J , at all points in the interior of both magnets. This 
is the basis of our approach. 
However, a simpler form of Equation (1.2) suffices for 
our 1-D prismatic pair. From the third equation of Equa-
tion (1.1), and the first equation of Equation (1.2), it is 
easy to see that (see Figure 4): 

( ) ( )
( ) ( )
( ) ( )

12 1 2 12 1 2

2 2 2

2 2 2

,

,

F x x F x x x

J x B x x dx

J x B x x dx

= = − =

=

−

∫
∫

(1.3) 
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F12 
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Here we have used the fact that ( )2B x
JJJJJJG

, the field den-

sity per unit length, produced at location 2x , depends 
only on the distance from the reference point on M1 to 
the current location x2. , which is x-x2.  

 
Figure 4: Geometry of force production 

The intuition is that the force on magnet M2 due to M1 at 
a distance x, is composed of the sum of all the elemental 
forces produced by a (linear) current density at x2 , mul-
tiplied by the field strength at that point, which is at a 
distance x-x2 from reference point on magnet M1. (Figure 
4). This is a convolution integral. With a slight change 
of notation, this can be re-written as the sum of elemen-
tal forces produced per unit length on a unit current J2 at 
x2, ( )

2
f x x− multiplied by the ratio of the actual current 

density to a unit current:  

( ) ( ) ( )12 2 2 2 2F x K x f x x dx= −∫  (1.4) 

We shall denote ( )f x as the kernel (Newtons per meter), 

and the dimensionless ratio ( )2 2K x  will be called the 
equivalent strength. In many cases, we have a finite 
number of magnets (not a continuous distribution) and 
Equation (1.4) changes to. 

( ) ( )12 i i
i

F x K f x x= −∑ (1.5) 

Here the kernel is a force (Newtons) and can be com-
puted by finite-element methods, given the shape and 
properties of M1. We shall discuss how to determine the 
equivalent strengths below. 
 
We note that the convolution integral is valid in this 
form only for a 1-D pair. For 2-D and 3-D structures, 
magnet orientation enters the equations too, and Equa-
tion (1.2) does not reduce to such simple forms. 
 

EXAMPLE OF A KERNEL 
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 Figure 5 Example of a kernel showing horizontal 
component of force. 

An example kernel determined by finite-element analy-
sis (FEM) is shown in Figure 5, where two 10 mm x 10 
mm x 5 mm magnets are shown, one attached to each 
link in the prismatic epair. Opposite poles face each 
other, resulting in attractive forces between the magnets. 
The vertical separation is 1 mm (air gap). The horizontal 
separation varies. When the top magnet is far to the left 
(more than 20 mm apart), the interaction is weak, and 
the horizontal force in the positive x direction is weak. 
As it approaches, the horizontal force first increases, 
peaks at 30 N at 5 mm separation, and then rapidly goes 
to zero when the magnets are right on top of each other 
(here the force is vertical). The force reverses direction 
after the top magnet slides past the bottom one. The in-
tegral of the force is zero, because the system is passive.. 
In general, Modern Neodymium magnets are powerful 
enough to offer 10’s of Newton’s of force at a few mm 
separation, with structures only a couple of cm2 in area.  

3. Optimization of Equivalent 
Strengths 

Generating/computing an appropriate kernel is only half 
the story. The other half is to determine and synthesize 
magnetic structures with the correct equivalent strengths 
as per Equation (1.4) or(1.5). Determining optimal 
equivalent strengths is discussed in detail below. But 
first we mention a couple of points regarding realization 
of equivalent strengths of the magnets involved: 

• One method is to use different materials, and keep 
the same dimensions. It is easily seen from first 
principles, that if the B-H curve is scaled by a factor 
of N, all fields scale up by a factor of N, and forces 
by a factor of N2. The same effect can be obtained 
by changing the air gaps in the flux paths. 

• Alternatively, the dimensions of the magnets can be 
chosen to generate specified equivalent strengths 
(using FEM analysis).  

Even after generating an appropriate kernel, and with the 
ability to accurately synthesize equivalent strengths, 
every force profile cannot be exactly synthesized. There 

x-x2x2
x

Ref Point on M1
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Motion allowable only along x-direction. Motion pre-
vented in other directions due to guide (not shown) 
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is residual error, which can be minimized by choosing 
optimal equivalent strengths. 
 
We show below that an optimal profile of equivalent 
strengths can be selected using methods of convex opti-
mization [25]. The error in force at each position-, can 
be expressed as a convex function of the equivalent 
strengths. Various criteria can be used – minimization of 
the mean-square error over all positions (L2), minimiza-
tion of the maximum error over all positions (L∞), etc.  
 
Our notation is as follows. ftarget(x) is the force as a func-
tion of x, targeted to be synthesised, fsynth(x) is the syn-
thesized force, and the kernel is denoted by ( )f x , and 
is obtained apriori from FEM analysis. The error at each 
position x is Err(x). The optimization can include limits 
on equivalent strengths, due, say to manufacturing con-
straints. Other constraints (sums, differences, etc) on 
equivalent strengths can also be included if required. 
 
The optimization procedure is given below: 

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )

2

2

2

min or

Subject to:

Err ,  Max Err

Err synth target

,synth
Under Constraints:

min maxBounds :
Other Constraints on K's

K
E E

E x dx E xx

x f x f x

f x K x f x x dx

K K x K

∞

∞
= =

= −

′ ′ ′= −

≤ ≤

∫

∫
(1.6) 

Equation (1.6) is written for a continuous profile of 
magnets. For a discrete set of N magnets, the integrals 
are replaced by sums. Since the objective function (L2 or 
L∞  ) is convex w.r.t K, and the constraints are also con-
vex (bounds, and other convex constraints) Equation 
(1.6) specifies a convex optimization, solvable using 
state-of-art solvers like CPLEX. In our discussion below, 
we discretize the synthesized force at M equally spaced 
positions xi. The synthesized force at different positions 
xi can be then written as a matrix equation 

( ) [ ]

[ ]

( )

[ ]

( ) ( ) ( ) ( )

ij

1 2

ij

1 2

max min

1 2

F K
synth

x , , ,

F

K , , ,

, , ,
synth synth synth synth

Specification at M points, with N Magnets:
i=1..M, j=1..M

,  

T

m

i j

T

T

m

M N

N

f

x x x

f x x

K K K

f x f x f x f x

x

x xx x
N

×
=

=

= −

=

=

−
Δ Δ =

⎡ ⎤
⎢ ⎥⎣ ⎦

…

…

…

JJJJJJJJJGG G

G

G

JJJJJJJJJG

(1.7) 

In the absence of constraints on K, singular-value-
decomposition (SVD) can be used in Equation (1.7), for 
minimizing the squared error. The max error can be 
minimized using Linear Programming. In the general 
case, where constraints are present a convex optimiza-
tion solver is required. The output of this optimization is 
a specification of the equivalent strengths of all magnets 
in this prismatic pair.  

While Equation 1.6 is written with respect to a prismatic 
pair, it is evident that the same equations (with changes 
from linear position x to angular position θ, torque in-
stead of force, if required) can be used for any of the 
epairs in an emec. We shall use it for a revolute pair in 
Section 5: 
 
What force profiles can be generated thus? From Equa-
tion (1.4), taking (spatial) Fourier Transforms 

( ) ( ) ( )synth eqF jw K jw F jw=  (1.8) 
The Fourier Transform of the synthesized force 

( )synthF jw  is the product of the Fourier Transforms of 
the kernel and the equivalent strength. Clearly the set of 
all derivable force profiles is spectrally limited to the 
spatial frequencies present in the kernel, and those in a 
realizable equivalent strength profile (maximum rate of 
change of magnetization direction and strength). Both 
are limited by manufacturing processes – the kernel’s 
spatial frequencies are limited to the smallest magnetic 
domain which can be easily manufactured, and the 
equivalent strength by the sharpest change in magnetiza-
tion orientation possible. Disk drive technologies are 
proof that spatial frequencies in microns per cycle can 
be constructed. The spectral approach can also be used 
for optimization in the spectral domain (details omitted). 
 

Epairs to Emecs 
We have discussed the structure and design of the sim-
plest emec, composed of a single epair. Based on Equa-
tion 1.6 we briefly discuss extensions to emecs com-
posed of multiple pairs. 
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Figure 6: Design of a Serial emec 

In Figure 6, we have a serial manipulator, in a certain 
configuration specified by inter-link angles (φ0, φ1, φ2, 
…). For simplicity, we treat a planar emec, but the re-
sults generalize for a general 3-D emec, with more con-
figuration parameters. The force/torque at joint I is given 
by Fi and τi respectively, and can be determined as a 
function of the end-effector forces/torques at this con-
figuration, using standard kinematic equations 
[1][2][3][4]. As per Section 2, the normal forces due to 
the magnetics in epairs can be ignored, and the design of 
the emec reduces to designing each epair with specified 
tangential forces/torques each configuration, as per 
Equation(1.6). The design of parallel manipulators is 
similar, with the additional constraint that the 
forces/torques have to be partitioned amongst the differ-
ent paths leading to the end-effector. 

4. Applications 
We present an analysis of the dynamics of the important 
slider-crank emec (i.e. a slider-crank mechanism en-
hanced with magnets at various places). Our major 
conclusions are that the output force need not be re-
lated to the input force through the mechanism’s 
transfer function, but can be within limits arbitrary. 
This offers new features in the design of mechanisms, 
wherein dynamics can be partly decoupled from 
kinematics. 
 
The output force/torque of an emec is the combination 
of the input force/torque, reflected through the mechan-
icsm position function, together with internal magnetic 
forces/torques. The output force/torque in general 
changes with mechanism configuration. This changing 
force/torque will be called the output force/torque func-
tion of the emec. We show that emecs can have a wide 
range of output force/torque functions, limited primarily 
by the spatial resolution of the magnetic kernel. Unlike 
classical mechanisms, the input torque/ force and output 
force/torque are not related by a geometric/kinematic 
parameter (e.g. in a lever/gear etc), but depend on the 
magnetic field strength, which is independent of kine-
matics (as long as the magnetics fits inside the space 
provided by the mechanism in all its positions).  The 
dynamics can even be changed, by changing the magnet-
ics, while keeping the rest of the mechanism invariant.  
 
We discuss a lossless slider-crank emec, so that the in-
put power is completely and instantaneously transferred 
to the output, if the magnetic energy storage was absent. 
We also assume that the mechanism is moving slowly, 
so that electromagnetic wave effects are negligible 
(quasi-static - true in most cases).The temporal (not spa-

tial) bandwidth of our slider-crank emec is hence infinite. 
Spatial bandwidth is discussed in detail below. 

 Slider-Crank Mechanism 
We shall discuss the behaviour of the slider-crank emec 
in Figure 7 when a force is applied to the slider and out-
put torque taken from the crank (e.g. an IC engine). The 
opposite case, where the crank is driven is omitted for 
lack of space, but is qualitatively similar. The structure 
of the mechanism imposes a zero output function at the 
mechanism positions corresponding to top and bottom 
dead centers (TDC/BDC).  
 
A slider-crank (Figure 7) can be converted into an emec 
by adding magnets at one or more of the following: 
a) The revolute pairs (crankshaft bearing A and the 

crank  pin B in Figure 7) 
b) The prismatic pair (slider C) and its pin D to the 

connecting rod. 
In case (b) the reciprocating motion of the prismatic pair 
and its pin imposes a half-period symmetry. The mag-
netic forces/torques generated in the second half cycle 
are time reversed copies of those generated in the first 
half cycle. No such constraint is present for the revolute 
pair on the crank axle (and its pin). Hence, for maximum 
flexibility, we discuss enhancement of the crankshaft (it 
can be shown that enhancement of the crank pin does 
not lead to new capabilities). 

 
Figure 7: Slider-Crank Mechanism with Enhanced 
Magnetics on both crank axle and slider (red) 

We discuss the customizability of our slider-crank emec, 
based on a spatial Fourier Decomposition of the output 
force, given a constant force in the direction of motion. 
If a sinusoidal output of a given spatial frequency can be 
synthesized, any output function having spatial frequen-
cies upto this bandwidth can be synthesized using su-
perposition of magnetic structures corresponding to each 
spatial frequency. This is based on the linearity of Max-
well’s equations, and approximate linearity of magnetic 
materials (details are skipped for brevity). 
 
To keep the discussion simple, we shall assume that the 
connecting rod is long, so the force F on the slider and 
the torque τ on the crank are related by 

( )sinFτ θ=  
where θ is the angle of the crank from the line joining 
the centers. The discussion does not change qualitatively 
for short connecting rods. The torque on the load is 
given by 

( )sin mFτ θ τ= +  

Input/Output 
Output/Input 

θ 

Β 

Α D

C

Fi, τι 

Fi-1, τι−1 

F0, τ0 
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where τm is the magnetic correction to the raw torque 
( )sinF θ . A specified force ( )specF θ  should result 

in a specified synthesized torque ( )spec θΤ , using mag-

netic kernels ( )τ θ . The magnets are designed using 
the discrete version of Equation (1.6) for torque synthe-
sis, with N magnets equally spaced in angle, and error 
evaluated at M points kθ : 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

1

0

1 ;
2;

sin

N

k j k j
j

err k m k spec k spec k

k M M N

K
N

F

πθ θ τ θ θ θ θ

τ θ τ θ θ θ

−

=

= ≥

Τ ≈ − Δ Δ =

= − Τ −

∑

…

 

Our approach will be to design magnetics for ( )spec kθΤ   
of various spatial frequencies and amplitudes. Optimiza-
tion to minimize the error (either mean-square – L2 – or 
max - L∞ ) is done using SVD techniques, as per Section 
3, since we do not have constraints on equivalent 
strengths for our examples. 
 
Our kernel is a scaled version of Figure 4, and dimen-
sioned [22] such that it is effective for use in torque 
smoothing of an IC engine working at 1KW at 2000 
RPM – it occupies an angular extent of 2 degrees at 10 
cm radius. The spatial spectrum (not shown) has signifi-
cant frequencies till 30 cycles/revolution. Hence we ex-
pect our designs to be able to match any torque function 
having components till 30 cycles/revolution, and this is 
indeed the case (these results are not shown for brevity). 
 
Here, since we deal with fundamental capabilities of 
emecs, we present only normalized results, and results 
with actual dimensions indicate power-size levels ap-
proaching medium-power pneumatics for comparable 
dimensions (see the photograph in Figure 12). 
 
We illustrate how magnetics can smooth the jerky 
torque produced by a slider-crank driven by a constant 
force (in direction of motion). The crank torque corre-
sponding to a constant force input at the slider is shown 
in Figure 8, and is a rectified sine wave. By proper mag-
netics, this rectified sine wave can be converted to sine 
wave of any desired different frequency and desired 
amplitude (within limits), as along as the average torque 
per cycle is kept invariant (for a passive emec).  

 

 
 Figure 8 (a) Torque function and and (b) Magnetic 
Structure for zero target ripple (TOP VIEW). Con-
necting Rod is attached to Rotor structure  

Figure 8 (a) shows the raw torque (rectified sine-wave 
purple), the synthesized torque (blue) and the error (ma-
genta) for zero target ripple (constant torque). Figure 8 
(b) shows the magnetic structure. When used in an IC-
engine, the Rotor is attached to the crankshaft, and 
stator is attached to the engine block (stationary). The 
stator is composed of a disk of non-magnetic material, 
into which magnets of varying sizes are inserted in the 
“butterfly-shaped” areas. Red colour indicates North on 
top of the stator, and Blue South on top of the stator. 
The Rotor is on top of the stator, is composed of a long 
magnet, with North facing the stator. Hence the rotor is 
attracted to the blue areas (having South on top), and 
repelled from the red areas (having North on top). The 
rotor magnet is attracted more where the stator has a 
larger magnet (more blue)2. The total force is given by 
the signed sum of the torques due to the interactions 
between the rotor and stator magnets, and is related to 
the slope of the stator magnetic profile curve, as per Sec-
tion 2. The magnetic profile of the stator has been de-
signed to exactly cancel the torque ripple of the slider-
crank, as further explained below. The residual ripple of 
a few percent is due to the finite number of magnets 
(180). It will vanish if we use a continuously variable 
magnetic profile. 
 
In Figure 8  (a) till 45 degrees, the mean torque is 
greater than the torque delivered by the slider-crank, and 
requires the magnetics to add to the output torque. The 
amount of additional torque is large at 0 degrees, but 
decreases to zero at 45 degrees. In Figure 8  (b) the rotor, 
having NORTH at the bottom faces the south poles on 
the stator between 0 and 45 degrees. The size of the sta-
tor magnets increases with angle, but with a gradually 
decreasing slope. The exact slope and the size of the 
magnetized area on the stator depends on the shape and 
magnitude of the kernel. As per the discussion in Sec-
tion 2, a forward force, decreasing with angle results, as 
required. The operation of this butterfly magnetic struc-
ture during the rest of the cycle can be understood on 
                                                 
2 There are other ways of doing this – more powerful 
materials, etc, as explained before – Section 3. 

Rotor 
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similar lines – comparing the required torque correction 
in Figure 8  (a), with the slope and polarity of the mag-
netic structure in Figure 8 (b).  
 
The operation of this device can be understood by en-
ergy exchange between the magnetic field and the prime 
–mover. When the prime mover generates too much 
torque, the excess is stored in the magnetic field. When 
the prime mover torque needs augmentation, this pre-
stored energy is released. This exchange repeats itself 
every cycle. 
 
Stable equilibria, where the rotor comes to rest in the 
absence of prime mover force are marked in green, and 
unstable ones in red. The equilibrium at 45 degrees is 
stable, since just before this position, the force is coun-
terclockwise, and clockwise just after this position. 
 
Equally interesting is the 200% ripple case, where the 
ripple is doubled by the magnetics (say for a rotary vi-
brator). The magnetic structure is shown in Figure 9, and 
is almost 3 times as large as the zero ripple case. The 
magnetic profile is similar to the zero ripple case, but 
slightly offset in angle. This can be understood by look-
ing at the required torque corrections in Figure 9(a). 
 
Figure 10 (a) and (b) show a structure for converting the 
same slider crank, to a device having 150% torque rip-
ple, and a fractional frequency of 2.7 cycles/revolution. 
The torque is ideally discontinous at TDC, and this is 
shown by the sharp change in slope at TDC (in reality 
there is a non-zero transition region). Stable equilibria 
are marked in green, and unstable ones in red. 
 

 

 
Figure 9  (a) Torque function and (b) Magnetic 
Structures for vibration enhancing emec (doubles 
torque ripple). 

Dynamics of these systems is complex. In the simplest 
case of the system producing a constant output torque, 
the angular acceleration is constant, and the load moves 

at a linearly increasing angular velocity. In the presence 
of torque ripple, at each angular position, the load sees 
different torques, leading to nonlinear dynamics. If the 
torque ripple has a single frequency, the resulting dy-
namic equation resemble the large amplitude oscillations 
of a pendulum, and can be integrated using Elliptic Inte-
grals. Details are skipped for lack of space. 

 
Figure 10 (a) Torque function and (b) Magnetics for 
converting a slider-crank output to a sinusoidal 
variation of 2.7 cycles/revolution. 

Torque Smoothing of 1 KW, 2-
cylinder, 2-stroke engine. 

 
Figure 11: Torque Smoothing for 1KW, 2-cylinder 
engine. 

Our ideas are practical. By properly putting magnets 
(structure is similar to those shown before) on an IC 
engine flywheel, we can reduce the torque ripple to zero. 
In Figure 11 the raw torque of a 2-cylinder 2-stroke en-
gine ranges from 10 Nm during peak combustion, to -2 
Nm during compression. By comparison, the smoothed 
torque with 180 magnets on the circumference of the 
flywheel produced by the SVD analysis shows an almost 
constant mean of 5Nm, ripple of 1.8Nm, together with a 
high frequency harmonic – this is caused by the finite 

Rotor 
(Crank)

BDC 

Slope discontinuous at TDC 

BDC TDC Rotor 
(Crank) 

Raw Torque 

Smoothed Torque 
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number of sectors used, and the resulting discrete 
changes in the magnetic strength. 
 
This is being manufactured – the test jig shown in 
Figure 12 can hold an arbitrary flywheel (roughly 20 cm 
x 5 cm, unoptimized dimensions), and is instrumented 
with a Messerschmit 100 Nm torque sensor, to measure 
torque of an actual flywheel structure. Initial experimen-
tal results are promising, and full results will be avail-
able by the time of the conference. 

 
Figure 12: Test Jig showing magnetic flywheel (di-
mensions unoptimized) 

Such structures have the following advantages over a 
normal flywheel 
• The magnetic force angular profile can be designed 

to exactly cancel the residual torque ripple, and 
make the engine look like a constant torque prime 
mover 

• The smoothing is speed invariant, and works at low 
speeds too, where a flywheel is ineffective. 

• The magnetics is lighter and has less inertia than a 
flywheel. 

5. Conclusions 
We have analysed the output function (torque/force) of 
an emec. The output function of emecs is not solely de-
pendent on geometric parameters, but can be shaped by 
choosing appropriate magnetics. Integral equation for-
mulations applied to a slider-crank mechanism enable 
oscillatory output torques to be produced, with constant 
force input at the slider. Torque ripple of an IC-engine 
can also be ideally reduced to zero at all speeds. While 
details of system dynamics are in other papers, we note 
that our techniques can be used together with all cur-
rently known methods of mechanism dynamic control. 
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APPENDIX A: RELATED WORK 

Related work in motion control [10]-[12] generally sepa-
rates the problem of designing a prime mover, from that 
of controlling the mechanism driven by it. The prime 
movers are generally either rotor or linear motors, and 
generally but not always there is only a single actuator 
in the mechanism. We generalize this to actuation at all 
joints and links in the mechanism leading to a merger of 
the identities of the mechanism and the prime movers. 
Such devices (emecs) can have better dynamics, fewer 
or no singularities, etc compared to mechanisms driven 
by classical prime mover - e.g. motors.. 
 
Specifically, in (Strete et al 1996 - [10]), a hybrid CAM 
mechanism with a constant velocity motor and a servo 
driving a CAM creating customizable dynamics is pro-
posed. The paper says: 
        ...Classical machines use a single motor, which generates all mo-
tions through a series of mechanical transmissions. Several mechanical 
components (such as linkages, cams, ...) transform the constant angular 
velocity of the motor in cyclic nonuniform motions, and assure also the 
synchronization between the different motions. … The main disadvantage 
of the solution is its lack of flexibility ... 
                                ... Recently, the connection of a servo motor to a 
mechanism has been studied in order to combine the advantages of both the 
classical and the servo solutions. … Hybrid machine … (is a) servo motor 
and a constant velocity (CV) motor that are coupled through a two degree-
of-freedom (DOF) mechanism and drive a single output. ... 

 
Here the prime mover is still a servo motor/CV motor - 
an activated revolute pair in our framework, and requires 
active control to achieve customizable dynamics as ex-
emplified by changing CAM timing. Our work, instead, 
changes the dynamics of the prime-mover-mechanism 
system, by treating the two as an indistinguishable unit, 
which can be designed as per Integral equation formula-
tions, and cost effectively mass produced. The example 
of the IC engine flywheel shows the industrial applica-
bility of the same. 
 
The decoupling of the prime mover from the mecha-
nisms is seen also in  [11] and [12]- our framework cou-
ples the two. In [13] our methods can enable the disk 

drive servo system to achieve controlled accelera-
tion/forces (say max acceleration limited to 1000 m/s2) 
by the design of the mechanism enhanced with magnet-
ics itself, and not necessarily due to active control. Hi-
rose et al [7] describe how multiple actuators can be 
used to maximize power output or minimize energy of a 
robotic mechanism, but the actuators are still rotary or 
linear motors, and separate from the mechanism. Dixon 
[14]describes methods to control amplitude limited ro-
bot manipulators under uncertainty, but the actuators are 
all revolute. In [15], Boldea et al describe linear actua-
tors - a powered prismatic pair in our framework. The 
torque ripple of the switched reluctance motor in [16] 
can be passively reduced using our methods, instead of 
by current control, potentially increasing efficiency. Our 
methods offer improvements to the control of the multi-
actuator driven robot in [17] by changing the nature of 
the actuators themselves to reduce and/or eliminate the 
competition between the different actuators - the entire 
mechanism is designed as a coupled system. The multi-
pole methods in [18] can be used to design the perma-
nent magnets used, our work uses an approximate inte-
gral equation which is easy to solve. Our methods can be 
applied to design high precision positioning mechanisms, 
as opposed to a motor integrated with the mechanism in 
[19].  


